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Abstract

Objective: The P300 event-related potential (ERP) is sometimes larger for individuals at low- compared to high-risk for alcoholism. These

effects are inconsistent, and how P300 is affected by tobacco smoking in the context of alcoholism risk is unknown. The present study used

P300 to examine the inter-relationship between alcoholism heritability and smoking status.

Methods: P300 was elicited with a visual discrimination task from young adults at low- and high-risk for alcoholism. Half of the subjects

in each risk category reported that they did not smoke cigarettes, and the other half reported that they smoked regularly, with equal numbers

of male and female subjects assessed. ERPs were recorded, and subjects were instructed to respond only to an infrequently presented target

stimulus that occurred in a series of standard and distracter stimuli.

Results: P300 amplitude from the target stimuli was larger for the low-risk compared to high-risk subjects overall. However, smoking

status demonstrated even stronger effects, with non-smokers producing consistently larger component amplitudes than smokers and

accounting for more variance than alcoholism risk. These group factors also significantly affected P300 scalp topography. No reliable

alcoholism risk or smoking group effects were obtained for the ERPs from the other stimuli.

Conclusions: The findings suggest that P300 measures of alcoholism risk in young adults are moderated by smoking status. Theoretical

implications are discussed.

q 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

1.1. Alcoholism risk and P300

Children of alcoholic parents raised by non-alcoholic

foster parents are at higher risk for developing alcoholism

than are the biological children of non-alcoholic parents. As

the P300 event-related brain potential (ERP) has been found

to be smaller in long-term abstinent alcoholics relative to

controls (Begleiter and Porjesz, 1995; Porjesz and Begleiter,

1996), ERP procedures have been used to study individuals

at low- and high-risk (LR, HR) for alcoholism by virtue of

their biological background (e.g. Begleiter et al., 1984;

Elmasian et al., 1982; Polich, 1984). Neuroelectric

measures are heritable (van Beijsterveldt and van Baal,

2002), and the P300 component is strikingly similar for pairs

of monozygotic compared to dyzygotic twins and unrelated

controls (Katsanis et al., 1997; O’Connor et al., 1994; Polich

and Burns, 1987; van Beijsterveldt et al., 1996, 1998).

Moreover, biologically related family members demonstrate

significant inter-family member correlations for P300

measures (Eischen and Polich, 1994; Polich and Bloom,

1999), with loci on the human genome identified that appear

related to ERP generation (Almasy et al., 1999; Begleiter

et al., 1998). Given these genetic influences, the P300 may

serve as a diagnostic marker of heritability and disease

phenotypic etiology (cf. Carlson et al., 2002; Hill et al.,

1999a, 2000; Iacono et al., 2002).

Meta-analysis was used to quantify this possibility by

evaluating P300 findings from the sons of alcoholics

compared to unaffected male controls (Polich et al., 1994).

Analysis of the then 30 available studies indicated that 40%

of the reports found statistically reliable P300 amplitude

effects, such that LR subjects exhibited significantly larger

components than HR subjects. However, considerable inter-

study variation was evident, and P300 amplitude appeared

related to how populations were defined, stimulus modality,

Clinical Neurophysiology 115 (2004) 1374–1383

www.elsevier.com/locate/clinph

1388-2457/$30.00 q 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

doi:10.1016/j.clinph.2004.01.026

* Corresponding author. Tel.: þ1-858-784-8176; fax: þ1-858-784-9293.

E-mail address: polich@scripps.edu (J. Polich).

http://www.elsevier.com/locate/clinph


and task difficulty. These factors have been found to affect

P300 outcomes in subsequent alcoholism risk-group reports

(cf. Benegal et al., 1995; Cohen et al., 1997; Ramachandran

et al., 1996; Reese and Polich, 2003; Rodrı́guez-Holguı́n

et al., 1998a). Additional influences include: (1) in

particular, children and younger adolescents demonstrate

stronger P300 risk-group effects than older adolescents or

adults (Hill et al., 1999b; Rodrı́guez-Holguı́n et al., 1999b;

van der Stelt et al., 1998a); (2) female LR and HR groups

yield amplitude differences generally similar to those

observed for males (Hill and Steinhauer, 1993; Hill et al.,

1995a,b; Polich et al., 1988; Reese and Polich, 2003; van

der Stelt et al., 1998b); (3) P300 variability from alcoholism

risk is likely to stem from co-morbidity for conduct

disorders, substance abuse, and disinhibited psychopathol-

ogies (Bauer and Hesselbrock, 1999a,b; Carlson et al.,

1999; Costa et al., 2000; Finn et al., 1997; Hill et al., 2000;

Iacono et al., 2002; Malone et al., 2001); and (4) the

anatomical size of the right amygdala is significantly

correlated with P300 amplitude in HR adolescents (Hill

et al., 2001). Thus, at least some P300 variability for

alcoholism-risk studies reflects subject age, population

characteristics, and the neuroanatomy of ERP generation

(Ford et al., 1994; Polich and Hoffman, 1998).

1.2. Tobacco smoking and P300

P300 variation across subjects has also been related to

individual differences in propensity for tobacco use. It is

noteworthy that adolescents who begin smoking are 3

times more likely to use alcohol, and smokers are 10

times more likely to develop alcoholism than non-smokers

(Hughes, 1995; Hurt et al., 1994; Jarvik and Schneider,

1992). Further, 80–95% of alcoholics smoke cigarettes

with 70% smoking more than one pack per day compared

with 10% of the general population (Collins and Marks,

1995; Patten et al., 1996). When coupled with behavioral

data that suggest a strong link between tobacco smoking

and alcohol consumption (Friedman et al., 1991; Madden

et al., 1995; Torabi et al., 1993), it is likely that smoking

history contributes to P300 outcomes in alcoholism risk

studies.

ERP data on smoking history effects are sparse. Knott

et al. (1999) compared young and old non-smokers and

smokers on several ERP tasks but found no reliable smoking

history effects. Haarer and Polich (2000) assessed normal

young adults who smoked daily with individuals who

smoked infrequently using a visual task and found smaller

P300 target amplitude for the regular compared to

occasional smokers before and after tobacco smoking. A

large-scale study by Anokhin et al. (2000) assessed

smokers, former smokers, and never-smokers using a visual

discrimination task. P300 amplitude was smaller for any

subject who had smoked, with current smokers producing

components about 5 mV smaller than never-smokers. More

important, some subjects carried a diagnosis of alcoholism,

but this factor contributed to P300 amplitude in a manner

that was relatively weak and additive with smoking status.

Enoch et al. (2001) used combined auditory/visual ERP

tasks to assay subjects with diagnoses for alcoholism and

anxiety disorders. A marginal P300 amplitude smoking

effect for the easy auditory but not difficult visual task for a

sub-sample of the unaffected subjects was obtained. In sum,

ERPs may be affected by tobacco smoking history, but how

this variable contributes to alcoholism risk and P300 is

unclear.

1.3. Present study

Most ERP reports on tobacco have focused on the acute

rather than chronic effects of smoking. P300 amplitude

generally increases and latency decreases immediately after

smoking (Hasenfratz et al., 1989; Houlihan et al., 1996a,b;

Knott et al., 1995), although relative information processing

task difficulty (Ilan and Polich, 1999, 2001; Knott, 1995; Le

Houezec et al., 1994; Pritchard and Robinson, 1998;

Pritchard et al., 1995) and amount smoked or nicotine

level can affect P300 measures (Kodama et al., 1996;

Lindgren et al., 1999). Given the variable findings from

alcoholism-risk and smoking history P300 studies outlined

above, both task and chronic factors are likely to affect ERP

outcomes. The present study was conducted to compare LR

and HR young adult subjects who either had never smoked

tobacco or regularly smoked cigarettes in order to

characterize these effects more directly.

2. Methods

2.1. Subjects

Subjects were young adults obtained as part of the

Collaborative Study on the Genetics of Alcoholism (COGA)

or related projects and recruited at The Scripps Research

Institute laboratory. HR subjects had fathers and at least

one first-degree or two second-degree relatives who met

the criteria for both alcohol dependence as defined by

DSM-III-R and definite alcoholism. No HR subject carried a

diagnosis of alcoholism. LR subjects had no familial

alcoholism or personal alcoholism. Each participating

family member was interviewed with the Semi-Structured

Assessment for the Genetics of Alcoholism, which uses both

DSM-III-R alcohol dependence and Feighner criteria

(Bucholz et al., 1994). All individuals were gainfully

employed or engaged in educational pursuits. Exclusionary

criteria for both groups included major medical problems,

CNS medication, a history of psychiatric problems, or

history of drug abuse. These procedures have been

successfully used to evaluate alcoholism risk with ERPs

(e.g. Hada et al., 2001; Polich and Bloom, 1999;

Ramachandran et al., 1996; Rodrı́guez-Holguı́n et al.,

1999a,b).
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A total of n ¼ 80 subjects were obtained, with equal

numbers in each LR/HR risk and smoking category for

n ¼ 20 per group, as well as equal numbers of each gender,

comparable age (21.9 ^ 3.9, 18–32 years), education

(12.7 ^ 1.9 years), and number of drinks per week

(3.5 ^ 5.3) as obtained by random assignment. Participants

reported normal visual acuity, handedness was distributed

equitably across samples, and each subject was tested in a

single 2-h session. Smoking was defined as daily cigarette

smoking for 6 months or more. Smoking subjects smoked a

mean of 12.4 ^ 7.7 cigarettes per day for an average of

5.9 ^ 3.3 years, with no differences obtained for the

smoking history variables. Smoking subjects were

instructed to smoke before they came to the laboratory

and were assessed 1–3 h after smoking to ensure that acute

nicotine effects were minimized (Domino et al., 1995;

Pritchard, 1991). ERP smoking deprivation effects for this

time duration are undetectable (cf. Bell et al., 1999; Haarer

and Polich, 2000; Houlihan et al., 1996c; Knott et al., 1995).

Each subject provided informed consent.

2.2. Recording conditions and procedure

EEG activity was recorded monopolarly using an

electrode-cap with, 19 electrode sites (Fp1/2, F3/4, C3/4,

P3/4, F7/8, T7/8, P7/8, O1/2, Fz, Cz, Pz) referred to the

nose, with a forehead ground and impedances maintained at

5 kV or less. Electro-ocular (EOG) activity was assessed

with two channels referred to the nose. One electrode was

placed at the outer canthus of the left eye to measure vertical

eye movement, and the second electrode was located on the

forehead to monitor horizontal eye movement. The filter

bandpass was 0.02–50 Hz (3 dB down, 6 dB octave/slope).

The EEG was digitized at 3.9 ms per point for 1500 ms,

with a 187 ms prestimulus baseline. ERP data were

averaged on-line with the same computer also used to

control the stimulus presentation and artifact rejection.

Trials on which the EEG or EOG exceeded ^73.3 mV were

rejected automatically, with comparable numbers of artifact

trials obtained among subject groups.

The same paradigm employed by Anokhin et al. (2000)

was used. ERPs were elicited with 280 stimuli presented on

a computer monitor for 60 ms, with an inter-stimulus

interval of 1.6 s. The target stimulus was a white X-shape

(4 £ 4 cm2, 2.98 £ 2.98), distracter stimuli (5 £ 5 cm2,

3.68 £ 3.68) consisted of non-repeating colored geometric

shapes (e.g. blue hexagons, red pentagons, etc.) arranged in

variegated patterns, and the standard stimulus was a white

square (4 £ 4 cm2, 2.98 £ 2.98). All stimuli were viewed

from a distance of 110 cm, with low level, diffuse ambient

lighting provided by a ceiling fixture. The target and

distracter stimuli each occurred with a probability of 0.125;

the standard stimuli occurred with a probability of 0.75.

Subjects were instructed to look at a dot in monitor’s center,

to press a keypad with their forefinger whenever a target

stimulus was detected, and to refrain from responding when

the distracter or standard stimuli occurred. Response hand

was counterbalanced across subjects. Stimulus presentation

ended when 25 target, 25 distracter, and 150 standard

artifact-free trials were acquired.

3. Results

3.1. Task performance and trial number

Error rates were negligible (,1%) and did not differ

among subject groups. Although LR responded somewhat

more quickly compared to HR (468 vs. 505 ms) subjects,

no significant group effects were obtained for the response

time data.

3.2. ERP analyses

Fig. 1 illustrates the target stimulus ERP grand averages

from the midline and EOG electrodes for each alcoholism

risk and smoking group. Topographic representations of

P300 amplitude from all scalp electrodes are illustrated

below the grand averages. The P300 component was defined

as the largest positive-going peak occurring within

300 –800 ms at each electrode. Peak amplitude was

measured relative to the pre-stimulus baseline, and peak

latency was assessed from the time of stimulus onset.

Extensive preliminary analyses revealed no gender-related

risk-group or smoking-status effects. No group effects were

obtained for the distracter or standard stimuli, which most

likely reflect the minimal stimulus processing required for

these stimuli. These data were not considered further.

Fig. 2 illustrates the mean target P300 amplitude as a

function of coronal electrode for the frontal, central, and

parietal recording locations for each alcoholism risk and

smoking group. A 4-factor (2 risk groups [LR vs. HR] £ 2

smoking status [non-smokers vs. smokers] £ 3 anterior-to-

posterior positions [frontal vs. central vs. parietal] £ 5

coronal electrodes [F7, F3, Fz, F4, F8 vs. T7, C3, Cz, C4, T8

vs. P7, P3, Pz, P4, P8]) repeated measures ANOVA was

applied to the P300 data from the target stimuli. Geisser–

Greenhouse corrections to the df were employed as needed,

with only the corrected probabilities reported. The h2

statistic was computed for subject group effects or

interactions to calculate the proportion of variance

accounted for by each comparison.

3.2.1. Alcoholism risk and smoking groups

LR subjects produced significantly larger P300

amplitudes than HR subjects, Fð1; 76Þ ¼ 4:19; P , 0:05;

h2 ¼ 0:047: Non-smokers yielded significantly larger P300

amplitudes overall than smokers, Fð1; 76Þ ¼ 8:01;

P , 0:01; h2 ¼ 0:089; which accounted for twice the

between-groups variance as the alcoholism risk-group

factor. In addition, non-smokers demonstrated larger

increases in P300 amplitude from the frontal to parietal
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recording sites compared to smokers. This outcome

contributed to the significant interaction between the

smoking status and anterior-to-posterior topography vari-

ables, Fð2; 152Þ ¼ 6:50; P , 0:01; h2 ¼ 0:048: Similarly, a

significant interaction between smoking status and coronal

electrode location was obtained, Fð4; 304Þ ¼ 8:90; P ,

0:0002; h2 ¼ 0:036; such that non-smokers demonstrated

larger midline amplitudes that decreased less toward the

temporal sites compared to smoking subjects. No other

effects or interactions involving the alcoholism risk group

factor were obtained. P300 amplitude increased from the

frontal to parietal recording sites, Fð2; 152Þ ¼ 53:06;

P , 0:0001; was maximal over the midline and decreased

over the lateral coronal sites, Fð4; 304Þ ¼ 161:16;

P , 0:0001: The anterior-to-posterior and coronal factors

yielded a significant interaction, Fð8; 608Þ ¼ 20:74;

P , 0:0001; reflecting the usual pattern of less P300

amplitude coronal electrode differentiation at the frontal

compared to central and parietal electrodes.

The same 4-factor analysis of variance was applied to the

peak latency results. No risk-group or smoking status main

effects or interactions were found. Peak latency increased

from the frontal to parietal sites, Fð1; 76Þ ¼ 11:19;

P , 0:0001; from the midline to lateral electrodes,

Fð4; 304Þ ¼ 9:02; P , 0:0001; with a significant interaction

between these factors obtained, Fð8; 608Þ ¼ 4:49;

P , 0:0001:

3.2.2. Midline electrodes

To assess the interaction between smoking status and the

frontal-to-central electrode position effects found in the

overall analysis, P300 amplitude data from just the midline

electrodes were assessed with a 3-factor (2 risk groups

[LR vs. HR] £ 2 smoking status [non-smokers vs.

smokers] £ 3 midline electrodes [Fz vs. Cz vs. Pz]) repeated

measures ANOVA. P300 amplitude was larger for LR

compared to HR subjects, Fð1; 76Þ ¼ 5:38; P , 0:05; h2 ¼

0:056; and non-smokers again produced larger P300

components than smokers, Fð1; 76Þ ¼ 14:06; P , 0:001;

h2 ¼ 0:146: More important, non-smokers demonstrated

larger increases in P300 amplitude across the midline

recording sites compared to smokers, Fð2; 152Þ ¼ 9:93;

Fig. 1. Grand averaged EOG, midline electrode waveforms, and topographic head plots of P300 amplitude from a visual stimulus paradigm from non-smoking

and smoking young adult subjects who were either at low- or high-risk for alcoholism (n ¼ 20 per group). The topographic maps reflect peak P300 amplitude at

each electrode.
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P , 0:0001; h2 ¼ 0:057: No other main effects or inter-

actions involving alcoholism risk group were obtained.

Component amplitude increased from the frontal to central

electrodes, Fð2; 152Þ ¼ 88:39; P , 0:0001:

3.2.3. Hemispheric P300 effects

Fig. 2 suggests that the alcoholism risk and smoking

groups appear to differ with respect to the laterality patterns

for P300 amplitude. This possibility was assessed with a

4-factor (2 risk groups [LR vs. HR] £ 2 smoking status

[non-smokers vs. smokers] £ 2 hemispheres [left vs.

right]) £ 2 lateral electrode positions (medial vs.

lateral) £ 3 anterior-to-posterior electrode positions [frontal

vs. central vs. parietal] repeated measures ANOVA. Only

the outcomes involving subject groups will be described, as

the other effects were similar to the overall analyses. P300

amplitude over the left hemisphere was smaller than that

over the right hemisphere for the HR subjects with little

hemispheric difference obtained for the LR subjects to

produce a marginal interaction between these factors,

Fð1; 76Þ ¼ 2:95; P , 0:10; h2 ¼ 0:037: In addition, smok-

ing status contributed to these effects such that the

difference between P300 left and right hemisphere ampli-

tudes was smaller for the smoking HR subject compared to

LR group and decreased more from the frontal to parietal

electrodes to yield a significant 4-way interaction among

these variables, Fð2; 152Þ ¼ 3:64; P , 0:05; h2 ¼ 0:042:

Moreover, these P300 amplitude hemispheric differences

were larger for non-smokers compared to smoking subjects

over the medial compared to lateral electrodes to produce a

strong two-way interaction between laterality electrode

location and smoking group, Fð1; 76Þ ¼ 10:9; P , 0:002;

h2 ¼ 0:030; which was also found in the 3-way interaction

that included the frontal-to-parietal location factor,

Fig. 2. Mean P300 amplitude as a function of coronal electrode placement for the frontal, central, and parietal arrays site from non-smokers and smokers who

were either at low- and high-risk for alcoholism (LL, left lateral; LM, left medial; M, medial; RM, right medial; RL, right lateral).
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Fð2; 152Þ ¼ 3:47; P , 0:05; h2 ¼ 0:032: In sum, HR

subjects demonstrated smaller P300 amplitudes over the

left compared to right hemisphere, and smoking decreased

overall amplitudes and this hemispheric difference relative

to LR subjects.

4. Discussion

4.1. Alcoholism risk and smoking

The present study employed the P300 ERP to assess

genetic predisposition to alcoholism by comparing young

adult low- and high-risk groups comprised of non-smoking

and tobacco smoking subjects. P300 amplitude was larger for

LR compared to HR subjects overall—a finding consistent

with some reports using visual stimuli in young adult subjects

(Benegal et al., 1995; Cohen et al., 1997; Ramachandran

et al., 1996). However, P300 amplitude was also larger for

non-smokers compared to smokers in agreement with some

(Anokhin et al., 2000; Haarer and Polich, 2000; Kodama

et al., 1996) but not all (Enoch et al., 2001; Knott et al., 1999)

previous smoking ERP studies. The reasons for these

discrepancies are unclear but may stem from task parameters

that contribute to ERP smoking findings (cf. Domino, 2003;

Houlihan et al., 1996b; Ilan and Polich, 1999; Knott, 1995;

Pritchard and Robinson, 1998; Pritchard et al., 1995). For

example, in the present study active attentional processing of

the visual target stimulus reflected ERP smoking, whereas

the passive processing of the distracter and standard stimuli

produced no reliable effects of smoking history (Houlihan

et al., 1996a; Ilan and Polich, 2001; Knott et al., 1995). Thus,

P300 variability from at-risk for alcoholism and tobacco

smoking individuals may index task parameters that interact

with fundamental group differences.

In addition, it is possible that some of the non-smoking

compared to smoking group differences could reflect initial

tobacco deprivation effects (Bell et al., 1999; Domino et al.,

1995; Sayette et al., 2003). Even though subjects smoked just

before ERP testing so that the time since last their cigarette

was short, behavioral and neuroelectric effects have been

found for tobacco smokers when deprived conditions are

compared to post-smoking (Herning et al., 1983; Hughes and

Hatsukami, 1986; Pritchard and Robinson, 1998). However,

the LR and non-smoking subjects consistently demonstrated

larger and more robust P300 components than the HR and

smoking subjects (cf. Anokhin et al., 2000; Carlson et al.,

1999; Haarer and Polich, 2000; Rodrı́guez-Holguı́n et al.,

1999b). Given the short pre-test deprivation time in

conjunction with the relative strength and overall pattern of

the effects, the P300 risk-group differences appear more

likely to be associated with genetic variation rather than a

situational factor (Begleiter et al., 1998; Hill et al., 2001;

Iacono et al., 2002; Katsanis et al., 1997).

Although P300 and other neuroelectric measures are

heritable (Eischen and Polich, 1994; Eischen et al., 1995;

Katsanis et al., 1997; O’Connor et al., 1994; Polich and

Burns, 1987; van Beijsterveldt and van Baal, 2002),

considerable variability underlies ERP effects for LR and

HR subjects with task difficulty, stimulus modality, and

subject age differentially contributing to alcoholism-risk

findings (cf. Hill et al., 1999a,b, 2001; Polich and Bloom,

1999; Polich et al., 1994; Reese and Polich, 2003;

Rodrı́guez-Holguı́n et al., 1998b,c). Indeed, recent studies

have suggested these effects could indicate that “reduced P3

may be associated with genetic risk for disinhibited

psychiatric disorders generally” (Carlson et al., 2002,

p. 756), and that this relative amplitude reduction may be

an endophenotype associated with a broad spectrum of

disorders (Iacono et al., 2002). The present results are

consonant with the view that both alcoholism risk and

tobacco smoking history can contribute to P300 group

differences.

4.2. Neuropharmacological moderation of P300

Although a direct neuropharmacological connection

between alcoholism risk and P300 has not yet been

identified, the acute rewarding effects of ethanol on

dopaminergic activity are clear from animal studies: “In

general, enhancement of dopamine transmission in the

nucleus accumbens increases ethanol-reinforced respond-

ing, whereas decreasing transmission decreases ethanol

responding…These findings suggest the importance of

dopaminergic activity in the acute rewarding effects of

alcohol” (Hill et al., 1998, p. 47). Such ERP group

variation also may be related to individual mesolimbic

dopamine system differences for nicotine as a positive

reinforcer (Reavill, 1990), since several lines of evidence

link P300 and catecholaminergic mediation of the

underlying generator system: (1) P300 measures are

deficient in Parkinson patients who have decreased levels

of dopamine (Hansch et al., 1982; Stanzione et al., 1991).

(2) The dopamine antagonist sulpiride increases P300 in

low-amplitude subjects and decreases it in high-amplitude

subjects (Takeshita and Ogura, 1994). (3) Pharmacological

studies have demonstrated dopaminergic mediation of

P300 amplitude and latency (Hansenne et al., 1995;

Wang et al., 2000). (4) Children at elevated risk for

alcoholism evince dopamine-related genetic differences

associated with P300 amplitude deficits (Hill et al., 1998).

P300 amplitude from individuals at risk for alcoholism may

therefore vary as a function of dopamine levels and contribute

to an ‘endophenotype of alcoholism’ (Hesslebrock et al.,

2001).

The attentional operations engaged during P300 gener-

ation have been hypothesized to reflect similar mechanisms

in a manner that could vary systematically across individ-

uals and risk-groups (Polich, 2003; Reese and Polich, 2003).

Moreover, tobacco smoking is likely to stem from genetic

influences (Carmelli et al., 1992; Comings et al., 2001;

Hughes, 1986), with the propensity to use tobacco related to
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alcohol consumption in HR subjects and alcoholism

development (Drobes, 2002; Friedman et al., 1991; Madden

et al., 1995; Torabi et al., 1993). These observations imply

that individuals vary with respect to their responsiveness to

nicotine, and that P300 amplitude reduction in smokers

occurs regardless of alcoholism risk diagnosis (Anokhin

et al., 2000; Carlson et al., 2002; Iacono et al., 2002). Given

dopaminergic system activation with nicotine intake (Koob,

1992; Watkins et al., 2000), it is reasonable to suppose that

P300 differences between low- and high-risk disorder

groups may reflect a predisposition for dopamine deficits

that encourages drug use stemming from underlying or

concomitant psychopathology (Bauer and Hesselbrock,

1999a,b; Carlson et al., 1999; Costa et al., 2000; Finn

et al., 1997; Hill et al., 2000). Although speculative, the

present P300 findings point toward a fundamental deficit in

dopaminergic brain mechanisms (Anokhin et al., 2000;

Begleiter et al., 1998; Hill et al., 1998, 2001; Jeon and

Polich, 2003).

4.3. Hemispheric P300 differences

Young adult HR subjects produced smaller P300

amplitudes than LR subjects over the left compared to

right frontal and central electrodes. Smoking subjects

demonstrated smaller P300 hemispheric differences relative

to non-smokers across alcoholism risk categories. P300

amplitude right hemisphere superiority in normals has been

reported previously (Alexander et al., 1995, 1996), with the

implication that P300 generation may be initiated in right

frontal areas (Polich et al., 1997). In addition, left-handers

produce larger P300 components compared to right-handed

individuals over the frontal and central electrodes—findings

consistent with corpus callosal size differences between

handedness groups (Alexander and Polich, 1997; Polich and

Hoffman, 1998). How P300 amplitude hemispheric differ-

ences effects may be related to risk-for-alcoholism and

tobacco smoking is uncertain, although reliable left hemi-

sphere deficits in patients with schizophrenia are well

documented (Jeon and Polich, 2001). A connection among

these factors also has been suggested by a recent PET study

that found left relative to right hemisphere blood flow

decreased as nicotine dose level increased (Rose et al.,

2003). Whether similar hemispheric effects can be related

directly to alcoholism risk and smoking history has yet to be

determined, but intriguing hints have emerged (cf. Haarer

and Polich, 2000; Hill et al., 2001).

5. Conclusion

Young adults genetically at high-risk for alcoholism can

demonstrate smaller P300 amplitudes compared to their

low-risk counterparts. These effects appear to be moderated

by tobacco smoking, such that non-smoking individuals are

less likely to reflect P300 alcoholism risk-group differences

than smoking subjects. The influence of smoking status on

P300 may originate from genetic influences that govern

ERP generation. Thus, the present results suggest that it is

important to account for tobacco smoking history when

assessing P300 across subject group categories.
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