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Genome-wide association study of alcohol
consumption and use disorder in 274,424
individuals from multiple populations
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Alcohol consumption level and alcohol use disorder (AUD) diagnosis are moderately heri-

table traits. We conduct genome-wide association studies of these traits using longitudinal

Alcohol Use Disorder Identification Test-Consumption (AUDIT-C) scores and AUD diag-

noses in a multi-ancestry Million Veteran Program sample (N= 274,424). We identify 18

genome-wide significant loci: 5 associated with both traits, 8 associated with AUDIT-C only,

and 5 associated with AUD diagnosis only. Polygenic Risk Scores (PRS) for both traits are

associated with alcohol-related disorders in two independent samples. Although a significant

genetic correlation reflects the overlap between the traits, genetic correlations for 188 non-

alcohol-related traits differ significantly for the two traits, as do the phenotypes associated

with the traits’ PRS. Cell type group partitioning heritability enrichment analyses also dif-

ferentiate the two traits. We conclude that, although heavy drinking is a key risk factor for

AUD, it is not a sufficient cause of the disorder.
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Excessive alcohol consumption is associated with a host of
adverse medical, psychiatric, and social consequences.
Globally, in 2012, about 3.3 million or 5.9% of all deaths,

139 million disability-adjusted life years, and 5.1% of the burden
of disease and injury were attributable to alcohol consumption,
with the magnitude of harm determined by the volume of alcohol
consumed and the drinking pattern1. Regular heavy drinking is
the major risk factor for the development of an alcohol use dis-
order (AUD), a chronic, relapsing condition characterized by
impaired control over drinking2. Independent of AUD, heavy
drinking has a multitude of adverse medical consequences.
Identifying factors that contribute to drinking level and AUD risk
could advance efforts to prevent, identify, and treat both medical
and psychiatric problems related to alcohol.

Many different alcohol-related phenotypes have been used to
investigate genetic risk, including formal diagnoses, such as
alcohol dependence [e.g., based on the Diagnostic and Statistical
Manual of Mental Disorders, 4th edition (DSM-IV)3] and
screening tests that measure alcohol consumption and alcohol-
related problems [e.g., the Alcohol Use Disorders Identification
Test (AUDIT)]. The AUDIT, a 10-item, self-reported test
developed by the World Health Organization as a screen for
hazardous and harmful drinking4,5 has been used for genome-
wide association studies (GWASs) both as a total score6–8 and as
the AUDIT-Consumption (AUDIT-C) and AUDIT-Problems
(AUDIT-P) sub-scores8. The three-item AUDIT-C measures the
frequency and quantity of usual drinking and the frequency of
binge drinking, while the 7-item AUDIT-P measures alcohol-
related problems.

Twin and adoption studies have shown that half of the risk of
alcohol dependence, a subtype of AUD, is heritable9. The single-
nucleotide polymorphism (SNP) heritability of alcohol depen-
dence in a family-based, European-American (EA) sample was
16%10 and 22% in an unrelated African-American (AA) sam-
ple11. In the meta-analysis of data from the UK Biobank (UKBB)
and 23andMe, the SNP heritability of the total AUDIT was
estimated to be 12%, while for the AUDIT-C and AUDIT-P it
was 11% and 9%, respectively).

In 12 GWASs of alcohol dependence (most of which used a
binary DSM-IV diagnosis3) published between 2009 and 2014
(ref. 12), the only consistent genome-wide significant (GWS)
findings were for SNPs in genes encoding the alcohol metabo-
lizing enzymes. Similarly, in a recent meta-analysis of 14,904
individuals with alcohol dependence and 37,944 controls, which
was stratified by genetic ancestry (European, N= 46,568; African;
N= 6280), the only GWS findings were two independent ADH1B
variants. In addition, there were significant genetic correlations
seen with 17 phenotypes, including psychiatric (e.g., schizo-
phrenia, depression), substance use (e.g., smoking and cannabis
use), social (e.g., socio-economic deprivation), and behavioral
(e.g., educational attainment) traits13.

Alcohol-metabolizing enzyme genes have also been associated
with mean or maximal alcohol consumption levels, potential
intermediate phenotypes for alcohol dependence14–19. In a meta-
analysis of GWASs (N > 105,000 European subjects), KLB was
associated with alcohol consumption20. A GWAS of alcohol
consumption in the UK Biobank sample21 identified GWS asso-
ciations at 14 loci (8 independent), including three alcohol-
metabolizing genes on chromosome 4 (ADH1B, ADH1C, and
ADH5), an intergenic SNP on chromosome 4, and KLB, repli-
cating the prior meta-analytic findings. Risk genes identified in
this study included GCKR, CADM2, and FAM69C.

A GWAS of the AUDIT in nearly 8000 individuals failed to
identify any GWS loci6. A GWAS of the AUDIT from 23andMe
in 20,328 European ancestry participants also failed to yield GWS
results7, although meta-analysis of the AUDIT in the UKBB and

23andMe samples identified 10 associated risk loci, including
associations to JCAD and SLC39A13 (ref. 8). In addition to the
total AUDIT-C score, the meta-analysis included GWASs for the
AUDIT-C and AUDIT-P, which showed significantly different
patterns of association across a number of traits, including psy-
chiatric disorders. Specifically, the direction of genetic correla-
tions between schizophrenia, major depressive disorder, and
obesity (among others) was negative for AUDIT-C and positive
for AUDIT-P.

In the present study, we evaluate the independent and over-
lapping genetic contributions to AUDIT-C and AUD in a single
large multi-ancestry sample from the Million Veteran Program
(MVP)22. Large-scale biobanks such as the MVP offer the
potential to link genes to health-related traits documented in the
electronic health record (EHR) with greater statistical power than
can ordinarily be achieved in prospective studies23. Such dis-
coveries improve our understanding of the etiology and patho-
physiology of complex diseases and their prevention and
treatment. To that end, we use a common data source—long-
itudinal repeated measures of alcohol-related traits from the
national Veterans Health Administration (VHA) EHR—to obtain
the mean, age-adjusted AUDIT-C score and International Clas-
sification of Diseases (ICD) alcohol-related diagnosis codes over
more than 11 years of care24. We then conduct a GWAS of each
trait followed by downstream analysis of the findings in which we
construct Polygenic Risk Scores (PRS) for both traits and show
that they are associated with alcohol-related disorders in two
independent samples. The availability of data on alcohol con-
sumption from the AUDIT-C and a formal diagnosis of AUD
from the EHR enables us to examine the relationship between
these key alcohol-related traits in a single, well-phenotyped
sample and to compare the findings for these traits more sys-
tematically than has previously been possible.

Results
Principal components analysis. We differentiated participants
genetically into five populations (see Methods, Supplementary
Fig. 1) and removed outliers. There was a high degree of con-
cordance (Supplementary Fig. 2) between the genetically defined
populations and the self-reported groups for European Amer-
icans (EAs, 95.6% were self-reported Non-Hispanic white) and
African Americans (AAs, 94.5% were self-reported Non-Hispanic
black). Concordance ranged from 53.1% to 81.6% in the other
three population groups.

GWAS analyses. The GWAS for AUDIT-C (Fig. 1a, Table 1 and
Supplementary Table 1 and Supplementary Data 1) identified 13
independent loci in EAs, 2 in AAs, 1 in LAs (Hispanic and Latino
Americans), and 1 in EAAs (East Asian Americans) (Supple-
mentary Figs. 4, 5). Meta-analysis across the five populations (see
Methods) also yielded 13 independent loci, 5 of which were
previously associated with a self-reported measure of alcohol
consumption: GCKR21, KLB20,21, ADH1B18,21, ADH1C21, and
SLC39A8 (ref. 8). The eight trans-population signals for AUDIT-
C identified here include VRK2 (Vaccinia related kinase 2),
DCLK2 (Doublecortin like kinase 2), ISL1 (ISL LIM Homeobox
1), FTO (Alpha-Ketoglutarate Dependent Dioxygenase), IGF2BP1
(Insulin like growth factor 2 MRNA binding protein 1), PPR1R3B
(Protein phosphatase 1 regulatory subunit 3B), BRAP (BRCA1
associated protein), BAHCC1 (BAH domain and coiled-coil
containing 1), and RBX1 (Ring-box 1). BAHCC1 and RBX1 were
GWS only in the trans-population meta-analysis, the results of
which were driven largely by the findings in EAs, who comprised
73.5% of the total MVP sample.
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The GWAS for AUD (Fig. 1b, Table 2 and Supplementary
Tables 1 and Supplementary Data 2) identified 10 independent
loci in EAs, 2 in AAs, and 2 in LAs (Supplementary Figs. 6, 7).
Meta-analysis across the five populations yielded 10 independent
loci, including 3 previously associated with alcohol dependence25

—ADH1B, ADH1C, and ADH4—and 7 loci not previously
associated with an AUD diagnosis: GCKR, SIX3 (SIX Homeobox
3), SLC39A8, DRD2 (Dopamine Receptor D2: rs4936277 and
rs61902812, which were independent), chr10q25.1 (rs7906104),
and FTO. Five loci were significant in both the AUDIT-C and
AUD GWASs (Supplementary Fig. 8): ADH1B, ADH1C, FTO,
GCKR, and SLC39A8. The trans-population GWS findings for
AUD are also driven largely by the findings in EAs.

The GWAS findings largely reflect male-specific signals due to
the predominantly male sample (Supplementary Table 1). How-
ever, sex-stratified GWAS also identified two female-specific
signals for AUDIT-C (Supplementary Data 3, Supplementary
Figs. 9, 10) and one for AUD (Supplementary Data 4,
Supplementary Figs. 11, 12).

For AUDIT-C, when associations for the seven LD-pruned
GWS SNPs on chromosome 4q23–q24 in EAs are conditioned
on rs1229984, the most significant functional SNP in the
region in that population, the only independent signal (using a
Bonferroni-corrected p value < 0.05) is for rs1229978, near
ADH1C (Supplementary Data 5). For AUD, when associations
for the four LD-pruned GWS SNPs in EAs are conditioned on
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Fig. 1Manhattan plots for age-adjusted mean AUDIT-C score and AUD diagnosis. aManhattan plot of the genome-wide association meta-analysis of AUDIT-C
across all five populations (N= 272,842). b Manhattan plot of the genome-wide association meta-analysis of AUD across five populations (55,584 cases and
218,807 controls). Red lines show the genome-wide significance level (5.0 × 10−8). EA: European American, AA: African American, LA: Hispanic or Latino, EAA:
East Asian American, SAA: South Asian American. Labeled genes at the top of the peaks indicate completely independent signals after conditional analysis in
meta-analysis. Population-specific loci are labeled at the bottom of the circles in the lower part of each figure. []: no genes within 500 kb to the lead SNP
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rs1229984, the only independent signal in that region is for
rs1154433 near ADH1C. In the trans-population meta-analysis,
rs5860563 is independent when conditioned on rs1229984 in
EAs, and on rs2066702 in AAs, the most significant functional
SNP in the region in AAs (Supplementary Data 6).

To elucidate further the genetic differences between AUDIT-C
and AUD, we conducted a GWAS of each phenotype with
the other phenotype as a covariate. A GWAS of AUDIT-C
with AUD as a covariate identified 10 GWS loci in EAs and 2
GWS loci in AAs (Supplementary Data 7). In both EAs and AAs,
all loci overlapped with the GWS findings for AUDIT-C alone. A
GWAS of AUD that included AUDIT-C as a covariate identified
five GWS loci in EAs and one in AAs (Supplementary Data 8).
Among EAs, four of the loci were the same as for AUD, the only
non-overlapping finding being DIO1 (Iodothyronine Deiodinase
1). In AAs, ADH1B remained significant for AUD when
accounting for AUDIT-C, but TSPAN5 did not.

Using a sign test, most SNPs have the same direction of effect
for AUDIT-C and AUD, consistent with the high genetic
correlation between the traits. For SNPs with p value <1 × 10−6

the sign concordance between the two traits is 98.7% in EAs and
100% in the other four, smaller population groups.

Body mass index-adjusted GWAS. Because FTO was GWS for
both AUDIT-C and AUD, we repeated the two GWASs correcting
for body mass index (BMI). Among the top SNPs associated with
AUDIT-C and AUD, most remain GWS after correction for BMI,
though the significance level of some change (Supplementary Data 9,

10). FTO SNPs become only nominally significant for both alcohol-
related traits: the p value for the lead SNP for AUDIT-C, rs9937709,
decreases in significance from 5.53 × 10−14 to 1.42 × 10−5 and for
the lead SNP for AUD, rs11075992, it decreases in significance from
3.22 × 10−10 to 3.02 × 10−5. In contrast, with correction for BMI,
some signals increase, e.g., for rs1260326 in GCKR the p value
increases in significance from p= 2.04 × 10−16 to p= 2.91 × 10−19

for AUDIT-C and from p= 2.27 × 10−13 to p= 1.71 × 10−14 for
AUD. Similarly, rs1229984 in ADH1B increases in significance from
p= 3.62 × 10−133 to p= 9.81 × 10−145 for AUDIT-C and from p=
4.68 × 10−85 to p= 3.85 × 10−89 for AUD.

Gene-based analyses. For AUDIT-C score, gene-based association
analyses identify 31 genes in EAs that are GWS (p < 2.69 × 10−6),
3 in AAs, 1 in LAs, and 2 in EAAs (Supplementary Fig. 13),
including many of the loci in the SNP-based analyses for that trait.
The unique genes in EAs include C4orf17, ZNF512,MTTP, TBCK,
andMCC. For AUDIT-C, the loci that were not GWS in the SNP-
based analyses included EIF4E in AAs, MAP2 in LAs, and LOX
and MYL2 in EAAs.

For AUD, we identify 23 GWS genes in EAs, 5 in AAs, and 1 in
LAs (Supplementary Fig. 14), many of which are GWS loci in the
SNP-based analyses for that trait. For AUD, the loci in EAs that
are not GWS in the SNP-based analyses are KRTCAP3,
TRMT10A, ZNF512, DCLK2, MTTP, and MCC. In AAs, EIF4E,
ADH4, and METAP1 are GWS for AUD, while ADGRB2 is the
only GWS locus in LAs.

Table 1 Genome-wide significant associations for AUDIT-C in the trans-population meta-analysis

rsID Chr:posa A1/A2 Geneb EAF N Z-score P_EA P_AA P_LA P_EAA P_SAA Effect P_ meta

rs1260326 2:27730940 C/T GCKRc 0.652 270,226 8.22 1.74 × 10−16 0.110 0.067 0.987 0.739 +++++ 2.04 × 10−16

rs2683616 2:58035555 A/G VRK2d 0.624 211,399 6.22 1.80 × 10−9 NA 0.060 0.487 NA +?+−? 4.95 × 10−10

rs12639940 4:39420981 A/G KLBc 0.613 194,761 5.93 3.45 × 10−9 NA NA 0.626 NA +??+? 3.06 × 10−9

rs1229984 4:100239319 C/T ADH1Bc 0.970 272,358 24.56 4.83 × 10−102 1.31 × 10−19 4.40 × 10−16 9.05 × 10−3 NA ++++? 3.62 × 10−133

rs142783062 4:100270960 D/I ADH1Cc 0.345 271,444 9.82 2.04 × 10−14 4.75 × 10−7 4.90 × 10−4 0.019 0.779 +++++ 9.50 × 10−23

rs13107325 4:103188709 C/T SLC39A8c 0.937 270,248 11.45 1.43 × 10−25 1.07 × 10−4 2.23 × 10−3 NA NA +++?? 2.24 × 10−30

rs4423856 4:150984857 T/C DCLK2d 0.796 212,444 5.66 3.60 × 10−8 NA 0.289 0.574 0.144 +?+++ 1.48 × 10−8

rs2961816 5:50443691 A/C ISL1d 0.683 260,828 5.74 1.24 × 10−7 0.021 0.641 0.932 0.137 +++++ 9.75 × 10−9

rs4841132 8:9183596 A/G PPP1R3Bd 0.101 276,763 5.46 2.75 × 10−6 6.59 × 10−3 0.226 NA 0.148 −−−?+ 3.62 × 10−8

rs62033408 16:53827962 A/G FTOc 0.678 270,067 9.08 2.20 × 10−15 4.78 × 10−5 0.229 0.177 0.027 +++++ 1.11 × 10−19

rs9902512 17:47094274 C/G IGF2BP1c 0.664 207,229 -5.81 3.81 × 10−8 NA 0.055 0.782 NA −?−−? 6.24 × 10−9

rs142997686 17:79419159 D/I BAHCC1c 0.384 211,314 5.84 1.77 × 10−9 NA 0.944 0.434 0.840 +?−+− 5.39 × 10−9

rs75723348 22:41420679 T/G RBX1d 0.736 275,328 5.55 2.97 × 10−7 0.063 0.072 0.536 0.579 +++++ 1.11 × 10−8

The loci shown represent completely independent signals after conditioning analyses
A1 effect allele, A2 other allele, EAF effective allele frequency, EA European American, AA African American, LA Latino American, EAA East Asian American, SAA South Asian American
aHuman Genome hg19 assembly
bGene nearest to the lead SNP
cProtein-coding gene contains the lead SNP
dProtein-coding gene nearest to the lead SNP

Table 2 Genome-wide significant associations for AUD in the trans-population meta-analysis

rsID Chr:posa A1/A2 Geneb EAF N Z-score P_EA P_AA P_LA P_EAA P_SAA Effect P_ meta

rs1260326 2:27730940 C/T GCKRc 0.651 271,763 7.33 1.44 × 10−16 0.679 0.778 0.830 0.820 +++−+ 2.27 × 10−13

rs540606 2:45138507 A/G SIX3d 0.409 213,336 -6.49 2.84 × 10−10 NA 0.175 0.411 NA −?−−? 8.58 × 10−11

rs5860563 4:100047157 D/I ADH4c 0.722 277,270 -6.21 7.63 × 10−5 9.85 × 10−7 0.035 NA 0.412 −−−?+ 1.12 × 10−9

rs1229984 4:100239319 C/T ADH1Bc 0.969 273,904 19.54 4.51 × 10−74 4.18 × 10−5 5.81 × 10−17 0.032 NA ++++? 4.68 × 10−85

rs1612735 4:100258007 T/C ADH1Cc 0.656 271,471 -8.86 1.75 × 10−14 6.42 × 10−5 0.022 0.938 0.054 −−−++ 7.90 × 10−19

rs13107325 4:103188709 C/T SLC39A8c 0.937 271,784 7.60 2.73 × 10−14 0.064 0.363 NA NA +++?? 2.97 × 10−14

rs7906104 10:110497101 T/C 0.271 275,977 -5.98 3.15 × 10−7 8.72 × 10−3 0.357 0.195 0.106 −−−−− 3.17 × 10−9

rs61902812 11:113374420 A/C DRD2d 0.306 276,977 -5.59 4.99 × 10−6 0.025 0.015 0.220 0.931 −−−−− 2.44 × 10−8

rs4936277e 11:113431960 A/G DRD2d 0.599 274,128 7.44 2.85 × 10−11 0.073 4.36 × 10−4 0.200 0.357 +++++ 1.01 × 10−13

rs1421085 16:53800954 T/C FTOc 0.670 274,340 6.69 3.26 × 10−10 0.024 0.525 0.332 0.018 +++++ 2.17 × 10−11

The loci shown represent completely independent signals after conditioning analyses
A1 effect allele, A2 other allele, EAF effective allele frequency, EA European American, AA African American, LA Latino American, EAA East Asian American, SAA South Asian Americans
aHuman Genome hg19 assembly
bGene nearest to the lead SNP
cProtein-coding gene contains the lead SNP
dProtein-coding gene nearest to the lead SNP
eDifferent signal than rs61902812
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Pathway and biological enrichment analyses. Using Functional
Mapping and Annotation (FUMA)26 software to investigate the
pathway or biological process enrichment with summary statistics
as input and false discovery rate (FDR) correction for multiple
testing, we find multiple reactome and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways that are significantly
enriched for AUDIT-C (Supplementary Data 11, Supplementary
Fig. 15) and AUD (Supplementary Data 12, Supplementary
Fig. 16) in each population. The most significant pathway is
reactome ethanol oxidation for both traits in both EAs and AAs.
Multiple GO biological processes are enriched for AUDIT-C
(Supplementary Data 13, Supplementary Fig. 17) and AUD
(Supplementary Data 14, Supplementary Fig. 18), including
ethanol and alcohol metabolism. Enrichments for chemical and

genetic perturbation gene sets and for the GWAS catalog for both
traits are shown in Supplementary Data 15–18 and Supplemen-
tary Figs. 19–22.

Heritability estimates. We use linkage disequilibrium score
regression (LDSC)27 (see Methods) to estimate SNP-based her-
itability (h2 SNP) in EAs and AAs, where sample sizes are large
enough to provide robust estimates for each trait (Fig. 2a). For
AUDIT-C, the h2 SNP is 0.068 (s.e.= 0.005) in EAs: 0.068 (s.e.=
0.005) in males and 0.099 (s.e.= 0.037) in females. In AAs, the h2
SNP is 0.062 (s.e.= 0.016): 0.058 (s.e.= 0.018) in males. For AUD,
the h2 SNP is 0.056 (s.e.= 0.004) in EAs: 0.054 (s.e.= 0.004) in
males and 0.110 (s.e.= 0.038) in females. The h2 SNP for AUD is
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Fig. 2 Heritability estimate, partitioning enrichments of heritability, and genetic correlation analyses using LD score regression. a SNP-based heritability for
AUDIT-C and AUD in the three populations and sex-stratified samples adequate in size for the analysis. b Partitioned heritability enrichment of cell type
groups for AUDIT-C and AUD. Ten cell types tested were corrected for multiple testing. The black dashed line is the cutoff for Bonferroni-corrected
significance. The gray dashed line is the cutoff for FDR < 0.05. c Genetic correlations with other traits. Data from 714 publicly available datasets (221
published and 493 unpublished from UK Biobank) were tested and corrected for multiple comparisons. The significantly correlated traits presented are for
published data. Black lines are the cutoff for Bonferroni-corrected significance, with asterisks showing traits significant after correction. The traits are
grouped into different categories and sorted by the genetic correlations with AUDIT-C (upper panel) or AUD (lower panel). CNS central nervous system,
ADHD attention deficit hyperactivity disorder, MDD major depressive disorder
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0.100 (s.e.= 0.022) in AAs: 0.104 (s.e.= 0.023) in males. Robust
estimates of h2 SNP are unavailable in AA and LA females due to
the small sample size.

In the analysis of stratified heritability enrichment using
LDSC28 (see Methods), several cell line functional enrichments
were significant (FDR < 0.05) for AUDIT-C (Supplementary
Data 19) and AUD (Supplementary Data 20). Cell type group
partitioning heritability enrichment analyses indicated that
central nervous system (CNS) was the most significant cell type
for AUDIT-C (Fig. 2b, upper panel; Supplementary Data 21) and
the only significant cell type for AUD (Fig. 2b, bottom panel;
Supplementary Data 22). Enrichments for AUDIT-C were also
detected for cardiovascular, adrenal or pancreatic, skeletal muscle,
other, and liver cell types in descending order of significance. We
also tested the heritability enrichments using data from gene
expression and chromatin to identity disease-related tissues or
cell types29 (Supplementary Data 23–32). We found a few
epigenetic features in brain tissues—e.g., H3K4me1, H3K4me3,
and DNase—that were significantly enriched for each trait.

Genetic correlations. We estimated the genetic correlation (rg)
between different datasets or populations using LDSC30. The rg
between AUDIT-C and AUD was 0.522 (s.e.= 0.038, p= 2.40 ×
10−42) in EAs and 0.930 (s.e.= 0.122, p= 1.85 × 10−14) in AAs
(Supplementary Data 33). The rg between EA males and EA
females was 0.815 (s.e.= 0.156, p= 1.69 × 10−7) for AUDIT-C
and 0.833 (s.e.= 0.142, p= 4.16 × 10−9) for AUD.

After Bonferroni correction, 179 traits or diseases were
genetically correlated with AUDIT-C (Fig. 2c, upper panel;
Supplementary Data 34). AUDIT-C was positively genetically
correlated with lipids (e.g., HDL cholesterol concentration: rg=
0.361, p= 3.39 × 10−8), reproductive traits (e.g., age at menarche:
0.190, p= 4.20 × 10−8), and years of education (rg= 0.248, p=
1.40 × 10−16) and negatively correlated with anthropometric (e.g.,
BMI: rg=−0.350, p= 3.25 × 10−19), cardiometabolic (e.g., cor-
onary artery disease: rg=−0.212, p= 8.28 × 10−8), glycemic (e.g.,
Type 2 diabetes: rg=−0.273, p= 2.34 × 10−7), lipid (e.g.,
triglyceride concentration: rg=−0.325, p= 1.29 × 10−10), and
psychiatric (e.g., major depressive disorder (MDD) (rg=−0.216,
p= 7.72 × 10−8) traits. After correction, 111 traits or diseases
were genetically associated with AUD (Fig. 2c bottom panel;
Supplementary Data 35), including positive genetic correlations
with sleep disturbance (e.g., insomnia: rg= 0.280, p= 7.43 ×
10−6), ever having smoked (rg= 0.581, p= 9.19 × 10−20), and
multiple psychiatric disorders (e.g., alcohol dependence: rg=
0.965, p= 1.21 × 10−10; MDD: rg= 0.406, p= 2.19 × 10−20), and
negative genetic correlations with aging-related factors (e.g.,
mother’s age at death: rg=−0.390, p= 8.09 × 10−8), intelligence
(rg=−0.226, p= 6.79 × 10−8), years of education (rg=−0.263,
p= 2.88 × 10−15), and quitting smoking (rg=−0.517, p= 1.12 ×
10−5).

We tested the difference between genetic correlations for
AUDIT-C and AUD using a two-tailed z-test. After correction for
714 tested traits, the genetic correlations for 188 traits showed
significant differences between the two alcohol-related traits
(Supplementary Data 36). We explored trait and disease
associations for AUDIT-C-adjusted for AUD and AUD-
adjusted for AUDIT-C, and found that the genetic correlations
between the alcohol-related traits and other phenotypes did not
differ substantially from the unadjusted ones (Supplementary
Data 37, 38). Additionally, we explored genetic correlations
for AUDIT-C-adjusted for BMI (Supplementary Data 39) and
AUD-adjusted for BMI (Supplementary Data 40). Most of the
genetic correlations for AUDIT-C-adjusted for BMI did not differ
substantially from the unadjusted ones, except for

anthropometric traits, where the negative correlation was
attenuated (although still significant). Significant genetic correla-
tions for AUD-adjusted for BMI did not differ substantially from
those for AUD alone. We also explored prior GWAS associations
for the GWS SNPs from AUDIT-C and AUD analyses and found
associations with other phenotypes for five of them (Supplemen-
tary Data 41).

Polygenic Risk Scores. We examined PRS generated from the
AUDIT-C and AUD GWASs in three samples (Supplementary
Figs. 23–26). First, in a hold-out MVP sample of EAs and AAs
(described in Methods), AUDIT-C and AUD PRS were sig-
nificantly associated with both AUDIT-C and AUD phenotypes
(Supplementary Data 42, 43). Lower p value thresholds of
AUDIT-C PRS were associated with AUDIT-C score and AUD
diagnosis codes, with the most significant being 1 × 10−7 (EA
AUDIT-C: β= 0.088, p= 1.43 × 10−44; EA AUD: β= 0.137, p=
3.03 × 10−30; AA AUDIT-C: β= 0.094, p= 2.82 × 10−17; AA
AUD: β= 0.110, p= 1.3 × 10−10). All p value thresholds for AUD
PRS were associated with both AUDIT-C score and AUD diag-
nosis codes, with the most significant being 1 × 10−7 for EAs
(AUDIT-C: β= 0.095, p= 8.98 × 10−51; AUD: β= 0.147, p=
6.02 × 10−34) and 1 × 10−7 for AAs (AUDIT-C: β= 0.066, p=
3.69 × 10−9; AUD: β= 0.098, p= 1.09 × 10−9).

Second, in an independent sample from the Penn Medicine
BioBank, AUDIT-C and AUD PRS were significantly associated
with alcohol-related disorders and alcoholism phecodes (see
Methods and Supplementary Data 44 and 45). In EAs, higher
AUDIT-C risk scores significantly increased the likelihood of
alcohol-related disorders and alcoholism at multiple p value
thresholds, with the most significant being 1 × 10−7 (β= 0.278,
p= 0.0013) and 1 × 10−6 (β= 0.245, p= 0.0074), respectively. In
AAs, at a p value threshold of 1 × 10−7, AUDIT-C risk scores
were non-significantly associated with risk of alcohol-related
disorders (β= 0.210, p= 0.064) but significantly associated with
alcoholism (β= 0.400, p= 0.0051). In both populations, AUD
risk scores were significantly associated with both alcohol-related
disorders and alcoholism. In EAs, the most significant p value
threshold was 1 × 10−4 (alcohol-related disorders: β= 0.254, p=
0.0006; alcoholism: β= 0.229, p= 0.0062), while in AAs, the
most significant p value threshold was 1 × 10−6 (alcohol-
related disorders: β= 0.306, p= 0.006; alcoholism: β= 0.440,
p= 0.0007).

Third, in the Yale-Penn study sample25, an independent
sample ascertained for substance use disorders, the PRS of
AUDIT-C and AUD were significantly associated with DSM-IV
alcohol dependence criterion counts (see Methods and Supple-
mentary Data 46, 47). In EAs, all AUDIT-C risk scores were
significantly associated with the criterion count, with the most
significant p value threshold being 1 × 10−7 (β= 1.029, p=
6.67 × 10−13). Similarly, all AUD risk scores were significantly
associated with the criterion count, the most significant p value
threshold being 1 × 10−6 (β= 1.144, p= 1.86 × 10−16). In AAs,
all but one AUDIT-C risk score and all AUD risk scores were
significantly associated with the alcohol dependence criterion
count, the most significant p value threshold being 1 × 10−7

(AUDIT-C: β= 0.829, p= 1.18 × 10−11; AUD: β= 0.502, p=
4.62 × 10−8).

Secondary phenotypic associations. To identify secondary phe-
notypes associated with AUDIT-C or AUD, we performed a
phenome-wide association analysis (PheWAS) of the AUDIT-C
and AUD PRS (p value threshold= 1 × 10−7 and all SNPs) in the
MVP hold-out sample (Supplementary Data 48, 49). In EAs, the
AUDIT-C PRS was significantly associated with an increased risk
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of alcoholic liver damage, and nominally associated with a
decreased risk of hyperglyceridemia. No significant associations
were found for AAs. The AUD PRS was significantly associated
with an increased risk of tobacco use disorder in both EAs and
AAs, and in EAs with multiple psychiatric disorders, including
major depression, bipolar disorder, anxiety, and schizophrenia.

Discussion
We report here a GWAS of two alcohol-related traits in a sample
of 274,424 MVP participants from five population groups—EA,
AA, LA, EAA, and SAA—using two EHR-derived phenotypes:
age-adjusted AUDIT-C score and AUD diagnostic codes. In
addition to the large number of EAs, the study included large
numbers of African-American and Latino-American participants.
Trans-population meta-analyses identified 13 independent GWS
loci for AUDIT-C and 10 independent GWS loci for AUD. For
AUDIT-C, in addition to the loci identified in the SNP-based
analyses, there were 31 GWS genes in EAs, 3 in AAs, 1 in LAs,
and 2 in EAAs. For AUD, in addition to the loci identified in the
SNP analyses, there were 23 GWS genes identified in EAs, 5 in
AAs, and 1 in LAs.

Using both AUDIT-C scores and AUD diagnoses enabled us to
examine the relations between these key alcohol-related traits.
The findings underscore the utility of using an intermediate trait,
such as alcohol consumption, for genetic discovery. Five of the 13
loci associated with AUDIT-C score, a measure of alcohol con-
sumption, including the two most commonly identified alcohol
metabolism genes (ADH1B and ADH1C) and three highly
pleiotropic genes (GCKR, SLC39A8, and FTO), contributed to
AUD risk. Of the 10 loci that were GWS for AUD, half also were
associated with AUDIT-C score, while half were uniquely asso-
ciated with the AUD diagnosis: ADH4, SIX3, a variant on
chr10q25.1 and 2 variants in DRD2.

In addition to multiple overlapping variants for AUDIT-C and
AUD, we found a moderate-to-high genetic correlation between
the traits: 0.522 in EAs and 0.930 in AAs. There are two potential
explanations for the population difference in genetic correlation.
First, it may reflect a bias in the assignment of AUD diagnoses by
clinicians (e.g., in the context of a high AUDIT-C score, clinicians
could be less likely to assign an AUD diagnosis to EAs than AAs,
reducing the genetic correlation). Second, because LD structure in
admixed populations is complex, LD score regression could have
inflated the genetic correlation among AAs, an admixed popu-
lation. Another factor relevant to this difference is the smaller
number of AAs, which despite a higher rg, yielded a larger
standard error. The genetic similarity between these alcohol-
related traits is consistent with twin studies of alcohol dependence
and alcohol consumption31,32. These findings are also consistent
with the PRS analyses in the MVP sample, where both AUDIT-C
and AUD PRS were associated with AUDIT-C and AUD phe-
notypes. Both traits also predicted multiple alcohol-related phe-
notypes in independent datasets, including alcohol dependence
criteria in the Yale-Penn sample. However, there was a smaller
effect of AUDIT-C PRS scores than AUD PRS scores on alcohol-
related disorders and alcohol dependence. This is in line with
findings from the meta-analysis of UKBB and 23andMe data,
where the genetic correlation with alcohol dependence was
nominally greater for AUDIT-P scores (rg= 0.63) than AUDIT-C
scores (rg= 0.33)8.

Despite the significant genetic overlap between the AUDIT-C
and AUD diagnosis, downstream analyses revealed biologically
meaningful points of divergence. The AUDIT-C yielded
some GWS findings that did not overlap with those for AUD,
which reflects genetic independence of the traits. This broadens
our previous observations using SNPs in ADH1B, in which we

validated the AUDIT-C score as an alcohol-related phenotype33.
In that study, after accounting for the effects of AUDIT-C score,
AUD diagnoses accounted for unique variance in the frequency
of ADH1B minor alleles.

Evidence of genetic independence between the two traits was
most striking in the differences between the genetic correlation
analyses. After correction, genetic correlations for 188 traits dif-
fered significantly (some in opposite directions) between AUDIT-
C and AUD. Notably, these included a negative association of
AUDIT-C with anthropometric traits, including BMI; coronary
artery disease; and glycemic traits, including Type 2 diabetes. The
negative genetic correlation with coronary artery disease is con-
sistent with some epidemiological findings that alcohol con-
sumption protects against some forms of cardiovascular disease34.
AUDIT-C was positively genetically correlated with overall health
rating, HDL cholesterol concentration, and years of education,
findings that are consistent with prior literature showing genetic
correlation of these traits with alcohol consumption7,8,21. AUD
was significantly genetically correlated with 111 traits or diseases,
including negative genetic correlations with intelligence, years of
education and quitting smoking, and positive genetic correlations
with insomnia, ever having smoked and most psychiatric dis-
orders, findings that are consistent with phenotypic associations
in the epidemiological literature35–37 and genetic correlations
reported from the UKBB and 23andMe GWASs and their meta-
analysis7,8,21. The opposite genetic correlations seen for some
traits may be driven by low-effect variants, as we find close to
100% consistency in the direction of effect for the most sig-
nificantly associated SNPs for both AUDIT-C and AUD. Further,
in the MVP sample, the AUD PRS was significantly positively
associated with tobacco use and multiple psychiatric disorders,
whereas the AUDIT-C PRS was not. Taken together, these
findings suggest that AUD and alcohol consumption, measured
by AUDIT-C, are related but distinct phenotypes, with AUD
being more closely related to other psychiatric disorders, and
AUDIT-C to some positive health outcomes.

Although the protective effects of moderate drinking are con-
troversial, we found that alcohol consumption in the absence of
genetic risk for AUD may protect from cardiovascular disease,
diabetes mellitus, and major depressive disorder. In contrast,
individuals with genetic risk for AUD are at elevated risk for
some adverse secondary phenotypes, including insomnia, smok-
ing, and other psychiatric disorders. However, individuals who
have had health problems resulting from drinking are more likely
to reduce or stop drinking by middle age or under-report their
alcohol consumption. This offers an alternative explanation for
the opposite genetic associations38, particularly in an older clin-
ical sample in which a large proportion report current abstinence
(reflected in an AUDIT-C score of 0). For this complex set of
genetic associations to be useful in informing clinical recom-
mendations on safe levels of alcohol consumption, it will be
necessary to elucidate the mechanisms underlying these findings.

Both phenotypes showed cell type-specific enrichments for
CNS. Other relevant cell types for AUDIT-C, but not for AUD,
included cardiovascular, adrenal or pancreas, liver, and muscu-
loskeletal. Thus, although heavy drinking is prerequisite to the
development of AUD, the latter is a polygenic disorder and
variation in genes expressed in the CNS (e.g., DRD2) may be
necessary for individuals who drink heavily to develop AUD. As a
binary trait, AUD provided less statistical power to identify
genetic variation than the ordinal AUDIT-C score, but the mul-
tiple GWS findings unique to AUD argue against that as an
explanation for the non-overlapping GWS findings for the two
traits.

The VHA EHR provided a rich source of phenotypic data.
These included mean age-adjusted AUDIT-C scores, which are

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09480-8 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1499 | https://doi.org/10.1038/s41467-019-09480-8 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


more stable than measures at a single point in time (more likely
reflecting traits rather than states) and contrast with meta-
analytic studies that may use phenotypes reflecting the lowest-
common denominator among the studies comprising the sample.
However, our analyses were limited by our reliance on the
AUDIT-C, which includes only the first 3 of the 10 AUDIT items.
We also obtained cumulative AUD diagnoses, which are also
more informative than assessments obtained at a single time
point. Because the diagnosis of AUD is based on features other
than alcohol consumption per se2,5, use of the AUD diagnosis
from the EHR augmented the information provided by the
AUDIT-C phenotype. Although EHR diagnostic data are het-
erogeneous, large-scale biobanks such as the MVP yield greater
statistical power to link genes to health-related traits repeatedly
documented over time in the EHR than can ordinarily be
achieved in prospective studies23, justifying the lower resolution
of EHR data. However, because the MVP sample is pre-
dominantly comprised of EA males, statistical power was limited
in both the GWAS and the post-GWAS analyses of other
populations and some female samples. Future studies with larger
sample sizes are needed to identify additional variation con-
tributing to these alcohol-related traits and to elucidate their
interrelationship.

The SNP heritability of our GWASs was lower than that seen
in the meta-analysis of the UKBB and 23andMe data8. For the
AUDIT-C, the estimated SNP heritability was 0.068 in EAs (0.068
in males and 0.099 in females) and 0.062 in AAs. For AUD, the
estimated SNP heritability was 0.056 in EAs (0.054 in males and
0.110 in females) and 0.100 in AAs. These estimates may reflect
the lower number of SNPs tested in our sample compared with
the meta-analysis of UKBB and 23andMe data. The nominally
higher SNP heritability in females than males could be due to the
substantially smaller size of the female subsample. Alternatively,
women could have a higher liability-threshold and therefore a
higher burden of risk variants. Because our study sample was
predominantly male, we do not have adequate statistical power to
evaluate these hypotheses. Although we found no significant
difference in PRS between males and females, because of
the substantially smaller number of women in MVP, there is
much less power for the PRS in this subgroup and for comparing
the PRS by sex.

Despite these limitations, the large, diverse, and similarly
ascertained sample enabled us to identify multiple GWS findings
for both AUDIT-C score and AUD diagnosis, and thereby to help
elucidate the relationship between drinking level and AUD risk.
The large sample provided high power for PRS analyses in other
samples, as demonstrated here in the Penn Medicine Biobank and
Yale-Penn samples. The genetic differences between the two
alcohol-related traits and the observed opposite genetic correla-
tions between them point to potentially important differences in
comorbidity and prognosis. Our findings underscore the need to
identify the functional effects of the risk variants, especially where
they diverge by trait, to elucidate the nature of the trait-related
differences. Focusing on variants linked to AUD, but not AUDIT-
C, could identify targets for the development of medications to
treat the disorder, while variation in AUDIT-C could help in
developing interventions to reduce drinking and thereby prevent
the morbidity associated with it. The findings reported here could
also help to identify individuals at high risk of AUD through the
use of PRS. This effort could be augmented using knowledge of
the full set of phenotypes that associate with AUD through the
use of genetic correlations and PheWASs.

Methods
Data collection. The MVP is an observational cohort study and biobank supported
by the U.S. Department of Veterans Affairs (VA). Phenotypic data were collected

from MVP participants using questionnaires and the VA EHR and a blood sample
was obtained for genetic analysis.

Ethics statement: The Central Veterans Affairs Institutional Review Board (IRB)
and site-specific IRBs approved the MVP study. All relevant ethical regulations for
work with human subjects were followed in the conduct of the study and informed
consent was obtained from all participants.

Phenotypes. AUDIT-C scores and AUD diagnostic codes were obtained from the
VA EHR. The AUDIT-C comprises the first three items of the AUDIT and
measures typical quantity (item 1) and frequency (item 2) of drinking and fre-
quency of heavy or binge drinking (item 3). The AUDIT-C is a mandatory annual
assessment for all veterans seen in primary care. Our analyses used AUDIT-C data
collected from 1 October 2007 to 23 February 2017. We validated the phenotype in
a sample of 1851 participants from the Veterans Aging Cohort Study33, in which
we found a highly significant association of AUDIT-C scores with the plasma
concentration of phosphatidylethanol, a direct, quantitative biomarker that is
correlated with the level of alcohol consumption. In the AA part of this sample
(n= 1503), the AUDIT-C score was highly significantly associated with rs2066702,
a missense (Arg369Cys) polymorphism of ADH1B, the minor allele of which is
common in that population and has been associated with alcohol dependence25.
We also examined AUDIT-C scores in 167,721 MVP participants (57,677 AAs and
110,044 EAs)24, comparing the association of AUDIT-C scores and AUD diagnoses
with the frequency of the minor allele of rs2066702 in AAs and rs1229984
(Arg48His) in EAs. Both polymorphisms exert large effects on alcohol metabo-
lism39 and are among the genetic variants associated most consistently with
alcohol-related traits in both AAs and EAs8,12,18. In both populations, we found a
stronger association between age-adjusted mean AUDIT-C score and ADH1B
minor allele frequency than between AUD diagnostic codes and the frequency of
the minor alleles24. However, because AUD diagnoses accounted for unique var-
iance in the frequency of the minor alleles in both populations, we concluded that
the two phenotypes, although correlated, are distinct traits. Thus, in the present
study, we used GWAS to examine these traits separately and to adjust for the
effects of AUD in the AUDIT-C GWAS and the effects of AUDIT-C in the GWAS
of AUD.

We calculated the age-adjusted mean AUDIT-C value24 for each participant
using age 50 as the reference point and down-weighting scores for individuals
younger than 50 and up-weighting scores for individuals older than 50. The age-
adjusted mean AUDIT-C was computed using a sample of 495,178 participants
with data on age and AUDIT-C, of whom 272,842 had genetic data and were
included in the AUDIT-C genetic analyses.

The principal classes of alcohol-related disorders in the ICD are alcohol abuse
and alcohol dependence. We used ICD-9 codes 303.X (dependence) and
305–305.03 (abuse) and ICD-10 codes F10.1 (abuse) and F10.2 (dependence) to
identify subjects diagnosed with either of these disorders, as suggested previously40

(see Supplementary Table 2). Participants with at least one inpatient or two
outpatient alcohol-related ICD-9/10 codes (N= 274,391) from 2000 to 2018 were
assigned a diagnosis of AUD, an approach that has been shown to yield greater
specificity of ICD codes than chart review41.

Genotyping and imputation. MVP GWAS genotyping was performed using an
Affymetrix Axiom Biobank Array with 686,693 markers. Subjects or SNPs with
genotype call rate <0.9 or high heterozygosity were removed, leaving
353,948 subjects and 657,459 SNPs for imputation22.

Imputation was performed with EAGLE2 (ref. 42) to pre-phase each
chromosome and Minimac3 (ref. 43) to impute genotypes with 1000 Genomes
Project phase 3 data44 as the reference panel. Subjects with no demographic
information or whose genotypic and phenotypic sex did not match were removed.
We also removed one subject randomly from each pair of related individuals
(kinship coefficient threshold= 0.0884). A greedy algorithm was implemented for
network-like relationships among three or more individuals, leaving
331,736 subjects for subsequent analyses.

Population differentiation. To differentiate population groups, we performed
principal components analysis (PCA) using common SNPs (MAF > 0.05) shared in
MVP [pruned using linkage disequilibrium (LD) of r2 > 0.2] and the 1000 Genomes
phase 3 reference panels for European (EUR), African (AFR), admixed American
(AMR), East Asian (EAS), and South Asian (SAS) populations using FastPCA in
EIGENSOFT45. We analyzed 80,871 SNPs in MVP and 1000 Genomes for use in
the PCA analyses. The Euclidean distances between each participant and the
centers of the five reference populations (i.e., across all subjects) were calculated
using the first 10 PCs, with each participant assigned to the nearest reference
population. A total of 242,317 EA; 61,762 AA; 15,864 Hispanic and Latino
American (LA); 1565 East Asian American (EAA); and 228 South Asian American
(SAA) subjects were identified. A second PCA (within each group) yielded the first
10 PCs for each. Participants with PC scores >3 standard deviations from the mean
of any of the 10 PCs were removed as outliers, leaving 209,020 EA; 57,340 AA;
14,425 LA; 1410 EAA; and 196 SAA subjects. Within genetically defined popula-
tions, we calculated population-specific imputation INFO scores using SNPTEST
v2 (ref. 46) and retained SNPs with INFO scores >0.7 for association analyses.
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Imputed genotypes with posterior probability ≥0.9 were transferred to best guess.
We removed both genotyped and imputed SNPs with genotype call rates or best
guess rates ≤0.95 and HWE p value ≤ 1 × 10−6 in each population, using different
MAF thresholds to filter SNPs: EA (0.0005), AA (0.001), LA (0.01), EAA (0.05),
and SAA (0.05). The approximate number of SNPs remaining in each population
was EA: 6.8 million, AA: 12.5 million, LA: 5.6 million, EAA: 2.6 million, and SA:
2.6 million.

Genome-wide association analyses. Individuals <22 or > 90 years old and those
with missing AUDIT-C scores were removed from the analyses, leaving 200,680
EAs; 56,495 AAs; 14,112 LAs; 1366 EAAs; and 189 SAAs in the AUDIT-C GWAS
and 202,004 EAs (34,658 cases; 167,346 controls); 56,648 AAs (17,267 cases; 39,381
controls); 14,175 LAs (3449 cases; 10,726 controls); 1374 EAAs (164 cases; 1210
controls); and 190 SAs (44 cases; 144 controls) in the AUD GWAS. We used linear
regression for the GWAS of age-adjusted mean AUDIT-C score and logistic
regression for AUD diagnosis; in both cases age, sex, and the first 10 PCs were
covariates. To evaluate the impact on AUD findings of controlling for AUDIT-C
and the impact on AUDIT-C findings of controlling for AUD, we repeated the
GWAS for AUD with AUDIT-C as a covariate and AUDIT-C with AUD as a
covariate. For both phenotypes, following GWAS in each of the five populations,
the summary statistics were combined within phenotype in trans-population meta-
analyses. SNPs in EAs or those present in at least two populations were meta-
analyzed. Sex-stratified GWAS for both phenotypes were then performed in groups
large enough to permit it—EA, AA, LA, and EAA men and EA, AA, and LA
women—and the data were meta-analyzed within sex and phenotype. All meta-
analyses were performed using a sample-size-weighted scheme that was imple-
mented in METAL47.

To identify independent signals in each population, we performed LD clumping
using PLINK v1.90b4.4 (ref. 48). We identified an index SNP (p < 5 × 10−8) with
the smallest p value in a 500-kb genomic window and r2 < 0.1 with other index
SNPs. Because in EAAs there is extended linkage disequilibrium at the ALDH2
locus, we used a 2500-kb window in that population. In the chr4q23–q24 region,
where we identified multiple apparently independent signals for both AUDIT-C
and AUD, we used conditional associations to differentiate independent signals
from partially overlapping ones.

Gene-based association analysis. Gene-based association analysis was performed
using Multi-marker Analysis of GenoMic Annotation (MAGMA)49, which uses a
multiple regression approach to detect multi-marker effects that account for SNP
p values and LD between markers. We used the default setting (no window around
genes) to consider 18,575 autosomal genes for the analysis, with p < 2.69 × 10−6

(0.05/18,575) considered GWS. For each population, we used the respective
population from the 1000 Genomes Project phase 3 as the LD reference.

Enrichment analyses. Pathway and biological enrichment analyses were per-
formed for each population using the FUMA platform26, with independent sig-
nificant SNPs identified using the default settings. Positional gene mapping
identified genes up to 10 kb from each independent significant SNP. Hypergeo-
metric tests were used to examine the enrichment of prioritized chemical and
genetic perturbation gene sets, canonical pathways, and GO biological processes
(obtained from MsigDB c2), and GWAS-catalog enrichment (obtained from
reported genes from the GWAS-catalog). We report all significantly enriched gene
sets based on an FDR-adjusted p value <0.05.

Heritability and partitioning of heritability. LDSC27 was used to calculate
population-specific LD scores based on 1000 Genomes phase 3 datasets according
to the LDSC tutorial, using SNPs selected from HapMap 3 (ref. 50) after excluding
the major histocompatibility complex (MHC) region (chr6: 26–34Mb); only
ancestry groups with large sample size (N > 10,000) were analyzed using LDSC. Of
note, LDSC could be biased in admixed populations because reference panels are
not provided for AAs and LAs in that application27. We calculated LD scores for
1,215,001 SNPs in EAs; 1,322,841 SNPs in AAs; and 1,243,726 SNPs in LAs. The
LDSC analyses used SNPs with imputation INFO ≥ 0.9 in each population and that
were LD scored in 1000 Genomes. LD score regression intercepts for available
datasets were estimated to distinguish polygenic heritability from inflation. SNP-
based heritability (h2 SNP) was estimated from GWAS summary statistics for both
AUDIT-C and AUD. The sex-specific h2 SNP was also estimated in EA males and
females, AA males, and LA males.

We estimated partitioned h2 SNP using genomic features or functional
categories28 for both AUDIT-C and AUD in the largest dataset, EAs, and then
tested for enrichment of the partitioned h2 SNP in different annotations. First, we
used a baseline model consisting of 53 functional categories, including UCSC gene
models [exons, introns, promotors, untranslated regions (UTRs)], ENCODE
functional annotations51, Roadmap epigenomic annotations52, and FANTOM5
enhancers53. We then analyzed cell type-specific annotations and identified
enrichments of h2 SNP in 10 cell types, including adrenal and pancreas, CNS,
cardiovascular, connective tissue and bone, gastrointestinal, immune and
hematopoietic, kidney, liver, skeletal muscle and other. Gene expression and
chromatin data were also analyzed to identify disease-relevant tissues, cell types,

and tissue-specific epigenetic annotations. We used LDSC to test for enriched
heritability in regions surrounding genes with the highest tissue-specific expression
or with epigenetic marks29. Sources of data that were analyzed included 53 human
tissue or cell type RNA-seq data from the Genotype-Tissue Expression Project
(GTEx)54; 152 human, mouse, or rat tissue or cell type array data from the Franke
lab;55 3 sets of mouse brain cell type array data from Cahoy et al.56; 292 mouse
immune cell type array data from ImmGen57; and 396 human epigenetic
annotations (6 features in 88 primary cell types or tissues) from the Roadmap
Epigenomics Consortium52. In the analysis of each trait in each dataset, we used
FDR < 0.05 to indicate significant enrichment for the h2 SNP.

Genetic correlations. We estimated the genetic correlation (rg) between AUDIT-C
and AUD (from MVP), and with other traits in LD Hub58 or from published
studies using LDSC, which is robust to sample overlap30. First, we estimated the rg
between AUDIT-C and AUD using the summary data generated in this study. AAs,
EAs, and LAs were analyzed separately using the corresponding 1000 Genome
phase 3 population as reference. Genetic correlations in EAA and SAA were not
analyzed. The rg between AUDIT-C and AUD was out of bounds because the
h2 SNP did not differ significantly from zero. Then we tested the rg between males
and females within each trait. We estimated the rg for AUDIT-C and AUD with
216 published traits in LD Hub and 493 unpublished traits from the UK Biobank.
We resolved redundancy in phenotypes by manually selecting the published ver-
sion of the phenotype or using the largest sample size. We also calculated the
genetic correlations of both AUDIT-C and AUD with five traits for which GWAS
were recently published or posted, including anorexia nervosa59, alcohol depen-
dence13, attention deficit hyperactivity disorder60, autism spectrum disorder61, and
major depressive disorder (summary data without the 23andMe sample)62,
bringing the total number of tested traits to 714. A Bonferroni correction was
applied separately for AUDIT-C and AUD, and traits with a corrected p value
<0.05 were considered significantly correlated. Because the results were similar
whether the intercept was constrained or not, we present here the original results
without constraint.

Polygenic Risk Scores. To generate PRS from GWAS summary statistics in the
MVP sample, we first conducted a GWAS for AUDIT-C and AUD as above, but
restricted our analysis to two-thirds of the total sample by splitting the total sample
randomly, keeping the number of AUD cases/controls balanced in each part (EA:
N= 139,346, AA: N= 38,226). GWS loci identified from this analysis were the
same as those in the larger sample, but were slightly decreased in significance. PRS
were generated for the remaining EAs (N= 69,674) and AAs (N= 19,114) as the
sum of all variants carried, weighted by the effect size of the variant in the GWAS.
PRS were generated using PLINK2 (ref. 63). We performed p value informed
clumping with a distance threshold of 250 kb and r2= 0.1. Risk scores were cal-
culated for a range of p value thresholds (P ≤ 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4,
1 × 10−3, 0.01, 0.05, 0.5, 1.0). PRS were standardized with mean= 0 and SD= 1.
Logistic regression was used to test for association with AUDIT-C and AUD
phenotypes, with PRS as the independent variable and AUDIT-C or AUD as the
dependent variable, with age, sex, and the first five PCs as covariates.

Population-specific summary statistics from the AUDIT-C and AUD GWAS in
MVP were used to generate PRS in the PMBB, an independent sample. PRS were
generated for EAs (N= 8524) and AAs (N= 2031) as above using the PRSice2
package64 with imputed allele dosage as the target dataset. As recommended in the
software, we performed p value informed clumping with a distance threshold of 250
kb and r2= 0.1. We excluded the MHC region. Risk scores were calculated for a range
of p value thresholds (p ≤ 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, 0.01, 0.05,
0.5, 1.0) and standardized with mean= 0 and SD= 1. To identify individuals with
alcohol-related disorders, we utilized phecodes, a method to aggregate ICD codes65.
First, we extracted ICD-9 and ICD-10 data for 48,610 individuals from the EHR.
To facilitate mapping to phecodes, ICD-10 codes were back converted to ICD-9
using 2017 general equivalency mapping (GEM). The ICD-10 conversions were
combined with the ICD-9 codes to create a dataset with 10,682 unique ICD-9
codes. ICD-9 codes were aggregated to phecodes using the PheWAS R package65 to
create 1812 phecodes. Individuals are considered cases for the phenotype if they
had at least two instances of the phecode, controls if they had no instance of the
phecode, and other/missing if they had one instance or a related phecode. Logistic
regression was used to test the association of the PRS with the alcohol-related
disorders phecode (phecode number 317) and its sub-phenotype, alcoholism
(phecode number 317.1). The analysis was performed in R with PRS as the
independent variable and diagnosis as the dependent variable and age, sex, and the
first 10 PCs as covariates.

We also tested the PRS of AUDIT-C and AUD for DSM-IV alcohol dependence
criterion counts in the Yale-Penn cohort25. There are three phases of the Yale-Penn
sample: phase 1 contains 3110 AAs and 1718 EAs exposed to alcohol; phase 2
contains 1667 AAs and 1689 EAs exposed to alcohol; phase 3 contains 556 AAs and
999 EAs exposed to alcohol. PRS were generated for EAs and AAs in each phase as
described above and risk scores were calculated for a range of p value thresholds
(p ≤ 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, 0.01, 0.05, 0.5, 1.0). Different
from PRS in MVP and PMBB, to correct for the relatedness in the Yale-Penn
subjects, a linear mixed model implemented in GEMMA66 was used to test the
association between PRS score and DSM-IV alcohol dependence criterion counts,
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with age, sex, and the first 10 PCs as covariates. Meta-analyses of data from the three
phases were performed in AAs (N= 5333) and EAs (N= 4406) separately.

Phenome-wide association analysis. To conduct PheWAS, we extracted ICD-9
data from the EHR for 353,323 genotyped veterans. Of these, 277,531 individuals
had two or more separate encounters in the VA Healthcare System in each of the 2
years prior to enrollment in MVP, consisting of 21,209,658 records. ICD-9 codes
were aggregated to phecodes using the PheWAS R package to create 1812 phe-
codes. To improve the specificity of these codes, individuals with at least two
instances of the phecode were considered cases, those with no instance of the
phecode controls, and those with one instance of a phecode or a related phecode as
other. A PheWAS using logistic regression models with either AUDIT-C or AUD
PRS as the independent variable, phecodes as the dependent variables, and age, sex
and the first five PCs as covariates were used to identify secondary phenotypic
associations. A phenome-wide significance threshold of 2.96 × 10−5 was applied to
account for multiple testing.

Secondary GWAS Adjusted for BMI: As described below, for both alcohol-
related traits, we identified a GWS SNP in FTO, variation in which has been
associated with BMI and risk of obesity67. To examine whether BMI confounded
the association with this and other loci and the genetic correlations with other
traits, we repeated the GWAS for AUDIT-C and AUD using BMI as an additional
covariate. Data on BMI were from the MVP baseline survey and the EHR. For
AUDIT-C, 200,092 EAs; 56,239 AAs; 14,029 LAs; 1352 EAAs; and 185 SAAs had
BMI data available. For AUD, 201,320 EAs; 56,347 AAs; 14,075 LAs; 1360 EAAs;
and 186 SAAs had BMI data available. After GWAS, we analyzed the genetic
correlations between BMI-adjusted traits and other publicly available traits (N=
714), with Bonferroni correction for multiple testing.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The full summary-level association data from the meta-analysis for each of the two
alcohol-related traits from this report are available through dbGaP: [https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id= phs001672.v1.p1] (accession
number phs001672.v1.p1). Further information on research design is available in the
Nature Research Reporting Summary linked to this article. All other data are contained
within the article and its supplementary information are available upon reasonable
request from the corresponding author.
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