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IMPORTANCE Major depressive disorder (MDD) and alcohol dependence (AD) are heritable
disorders with significant public health burdens, and they are frequently comorbid. Common
genetic factors that influence the co-occurrence of MDD and AD have been sought in family,
twin, and adoption studies, and results to date have been promising but inconclusive.

OBJECTIVE To examine whether AD and MDD overlap genetically, using a polygenic score
approach.

DESIGN, SETTINGS, AND PARTICIPANTS Association analyses were conducted between MDD
polygenic risk score (PRS) and AD case-control status in European ancestry samples from 4
independent genome-wide association study (GWAS) data sets: the Collaborative Study on
the Genetics of Alcoholism (COGA); the Study of Addiction, Genetics, and Environment
(SAGE); the Yale-Penn genetic study of substance dependence; and the National Health and
Resilience in Veterans Study (NHRVS). Results from a meta-analysis of MDD (9240 patients
with MDD and 9519 controls) from the Psychiatric Genomics Consortium were applied to
calculate PRS at thresholds from P < .05 to P = .99 in each AD GWAS data set.

MAIN OUTCOMES AND MEASURES Association between MDD PRS and AD.

RESULTS Participants analyzed included 788 cases (548 [69.5%] men; mean [SD] age, 38.2
[10.8] years) and 522 controls (151[28.9.%] men; age [SD], 43.9 [11.6] years) from COGA; 631
cases (333 [52.8%] men; age [SD], 35.0 [7.7] years) and 756 controls (260 [34.4%] male; age
[SD]36.1[7.7] years) from SAGE; 2135 cases (1375 [64.4%] men; age [SD], 39.4 [11.5] years)
and 350 controls (126 [36.0%] men; age [SD], 43.5 [13.9] years) from Yale-Penn; and 317
cases (295 [93.1%] men; age [SD], 59.1 [13.1] years) and 1719 controls (1545 [89.9%] men; age
[SD], 64.5 [13.3] years) from NHRVS. Higher MDD PRS was associated with a significantly
increased risk of AD in all samples (COGA: best P = 1.7 x 107®, R? = 0.026; SAGE: best

P =.001, R? = 0.01; Yale-Penn: best P = .035, R? = 0.0018; and NHRVS: best P = .004,

R? = 0.0074), with stronger evidence for association after meta-analysis of the 4 samples
(best P = 3.3 x 107°). In analyses adjusted for MDD status in 3 AD GWAS data sets, similar
patterns of association were observed (COGA: best P = 7.6 x 107°, R? = 0.023; Yale-Penn:
best P = .08, R? = 0.0013; and NHRVS: best P = .006, R? = 0.0072). After recalculating MDD
PRS using MDD GWAS data sets without comorbid MDD-AD cases, significant evidence was
observed for an association between the MDD PRS and AD in the meta-analysis of 3 GWAS
AD samples without MDD cases (best P = .007).

CONCLUSIONS AND RELEVANCE These results suggest that shared genetic susceptibility
contributes modestly to MDD and AD comorbidity. Individuals with elevated polygenic risk
for MDD may also be at risk for AD. Author Affiliations: Author

affiliations are listed at the end of this
article.
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major depressive disorder (MDD) has been studied by

clinicians, epidemiologists, and geneticists for more
than 100 years. Bleuler and Brill' described “alcoholic melan-
cholia,” characterized by brief periods of depression after al-
cohol binges, which could precipitate a suicide attempt. States
of depressed mood associated with both alcohol use and with-
drawal were documented by later researchers,?* while oth-
ers noted that some individuals who increased their drinking
during periods of depression tended to progress to AD.*

More recently, the rate of AD and MDD comorbidity was
assessed in cross-sectional epidemiologic studies. The Na-
tional Comorbidity Study linked AD to 3.7-fold higher odds of
experiencing a major depressive episode in the prior year.® In
the 2012-2013 National Epidemiologic Survey on Alcoholism
and Related Conditions, individuals with a lifetime diagnosis
of MDD had a 1.3-fold increased risk of an alcohol use disorder.®
Furthermore, both the National Comorbidity Study and Epi-
demiological Catchment Area study found that AD worsened
the symptoms of MDD and vice versa,”® which may explain
why people with comorbid AD and MDD are at greater risk for
suicide.>*°1

This pattern of comorbidity has prompted hypotheses re-
garding causal relationships between AD and MDD.® One hy-
pothesis is that AD causes MDD either directly, through alco-
hol’s pharmacologic effects on the brain,'?** or indirectly,
through negative social consequences that increase the risk of
MDD. A second hypothesis is that MDD can lead to AD. Lon-
gitudinal studies!®>'” support an internalizing pathway from
MDD to AD, with some individuals using alcohol to self-
medicate negative mood states.

A third hypothesis, that shared genetic factors predis-
pose to both AD and MDD, has had mixed support.*-818-20
A longitudinal study of Finnish twins showed a shared ge-
netic liability between alcohol use and depressive symptoms
across adolescence.?! Researchers from the Collaborative Study
on the Genetics of Alcoholism (COGA)?? reported aggrega-
tion of MDD in relatives of probands with AD, whether or not
the proband had MDD or the relative had AD. Other family stud-
ies have also suggested a genetic link between AD and MDD,
including both sex-specific effects and environmental influ-
ences on their comorbidity.?>-2°

Molecular genetic studies have implicated specific ge-
nomic regions and genes for both AD and MDD risk. Linkage
analysis by COGA identified a region on chromosome 1 asso-
ciated with both MDD and AD.?® Candidate gene studies re-
ported a number of genes possibly underlying both disor-
ders, including CHRM2,%728 SLC6A4,%°:*° COMT,*"*? and
DRD2,3334 although other studies failed to replicate these
associations.?>® Genome-wide association studies (GWASs)
have produced significant findings for both AD3*°-*! and
MDD, *?2 although not for comorbid AD-MDD.**

In the present study, we examined whether AD and MDD
overlap genetically using polygenic risk scores (PRSs),*>4¢
which are quantitative measures of the cumulative effects of
common genetic variations across the genome on risk for a dis-
order. Using PRSs derived from a Psychiatric Genomics Con-
sortium (PGC) meta-analysis of MDD,*” we tested whether PRSs

T he association between alcohol dependence (AD) and
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Key Points

Question Do major depressive disorder and alcohol dependence
share common genetic risk variants?

Findings In this cohort study of 4 independent samples of 3871
individuals with alcohol dependence and 3347 individuals serving
as controls, elevated polygenic risk for major depressive disorder
also conveyed a significant increase in risk for alcohol dependence.

Meaning Common polygenic risk contributes to susceptibility to
both major depressive disorder and alcohol dependence.

for MDD were associated with AD case-control status in samples
from 4 independent GWAS data sets: (1) COGA; (2) the Study
of Addiction, Genetics, and Environment (SAGE); (3) the Yale-
Penn genetic study of substance dependence; and (4) the Na-
tional Health and Resilience in Veterans Study (NHRVS).

Methods

AD GWAS Data Sets

Basic information on the AD GWAS data sets is summarized
in Table 1. All participants in the COGA, Yale-Penn, and NHRVS
studies gave informed consent for participation, and all pro-
cedures and protocols used in each sample were approved by
the institutional review board at the relevant institution. Par-
ticipants received financial compensation. COGA involved mul-
tiple centers in the United States: Indiana University; State Uni-
versity of New York Health Science Center, Brooklyn; University
of Connecticut; University of lowa; University of California, San
Diego; Washington University; and Howard University. The in-
stitutional review boards of all of these participating institu-
tions approved the study. The Yale-Penn study was approved
by the Yale University Human Investigation Committee. The
NHRYVS procedures were approved by the human subjects sub-
committee of the Veterans Affairs (VA) Connecticut Health-
care System and the VA Office of Research and Development.

COGA

Samples were drawn from an ongoing, family-based study of
AD including participants from 6 sites across the United
States.*® Patient cases had a lifetime diagnosis of AD by
DSM-IV criteria. Individuals serving as controls had con-
sumed alcohol but did not meet criteria for AD, alcohol
abuse, or other substance use disorders in their lifetime.
A sample of 1945 participants from COGA was genotyped
(lllumina HumanlM microarray; Illumina). After data quality
control, 1310 European American individuals (788 with AD
and 522 controls) were included.

SAGE

Samples were selected from 3 studies: COGA, the Family Study
of Cocaine Dependence, and the Collaborative Genetic Study
of Nicotine Dependence. Full details are available elsewhere.*°
Alcohol dependence was defined based on DSM-IV criteria.
Controls were individuals without a lifetime diagnosis of de-
pendence on any substance. A total of 4316 samples were geno-
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Table 1. Sample Demographics

No. (%)
Characteristic COGA SAGE Yale-Penn NHRVS
AD 788 631 2135 317
Men 548 (69.5) 333 (52.8) 1375 (64.4) 295 (93.1)
Age, mean (SD), y 38.2 (10.8) 35.0 (7.7) 39.4 (11.5) 59.1 (13.1) Abbreviations: AD, alcohol
MDD 149 (18.9) NA 414 (19.4) 111 (35.0) dependence; COGA, Collaborative
o 527 756 350 1719 Study on 'the Genetic; ofAIcohoIism;
MDD, major depressive disorder;
Men 151 (28.9) 260 (34.4) 126 (36.0) 1545 (89.9) NA., not available; NHRVS, National
Age, mean (SD), y 43.9 (11.6) 36.1(7.7) 43.5 (13.9) 64.5 (13.3) Health and Resilience in Veterans
MDD 65 (12.5) NA 22 (6.3) 180 (10.5) Study; SAGE, Study of Addiction,

Genetics, and Environment.

typed (lllumina HumanlM microarray). After quality control
and excluding participants overlapping with COGA, 1387 Eu-
ropean American individuals (631 with AD and 756 controls)
were retained for analysis.

Yale-Penn

The Yale-Penn samples included individuals recruited for ge-
netic studies of cocaine dependence, opioid dependence, and
AD, as described previously.>®->! Alcohol dependence was de-
fined using DSM-IV criteria. Control participants did not meet
the DSM-IV criteria for lifetime AD or other substance use dis-
orders. DNA samples from 9459 individuals were genotyped
using 1 of 2 platforms: (1) the Illumina HumanOmnil Quad, ver-
sion 1.0 microarray containing 988 306 autosomal single-
nucleotide polymorphisms (SNPs) or (2) the Illumina In-
finium Human Core Exome microarray, containing 265 919
exome-focused SNPs and approximately 240 000 tagging
SNPs. Genome-wide association studies quality control and im-
putation were conducted for the merged GWAS samples based
on a common set of autosomal SNPs (230 447). After quality
control, the final analysis included 2485 European American
individuals (2135 with AD and 350 controls).

NHRVS

The NHRVS data set included US military veterans who par-
ticipated in a nationally representative cohort study in 2011.°%>3
Alcohol dependence was assessed according to DSM-IV diag-
nostic criteria. Controls were defined as individuals without
lifetime AD or other substance dependence. A total of 2825
samples were genotyped with the Infinium PsychArray, ver-
sion 1.1. After quality control, 2036 European American indi-
viduals (317 AD and 1719 controls) were retained for analysis.

GWAS Quality Control

Each GWAS data set was cleaned via PLINK, version 1.07 be-
fore analysis.>* Samples and SNPs were excluded based on pre-
determined quality control metrics, including sample call rate
of 95% or less, SNP call rate of 95% or less, minor allele fre-
quency of 0.01 or less in controls, and P values for Hardy-
Weinberg equilibrium tests <107 for controls. We estimated
the genome-wide identity by descent sharing between all pairs
of participants to detect duplicates (individuals genotyped
twice within 1 sample or individuals in 1 sample also included
in another) and then randomly removed 1 duplicate from each
pair. We used EIGENSOFT, version 6.1.3°° to compute princi-
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pal components for each GWAS data set using pruned SNPs in
low linkage disequilibrium (r2<0.2). Outliers, defined as par-
ticipants with ancestry at least 3 SDs from the mean on 1 of the
2 largest principal components, were removed. After quality
control, there were 843188 (COGA), 837142 (SAGE), 220 554
(Yale-Penn), and 287 923 (NHRVS) autosomal SNPs retained.
To ensure that sample overlap did not contribute to inflated
estimates of genetic overlap between AD and MDD, A meta
statistics were calculated. The A meta is a statistic that uses
effect size concordance to detect sample overlap or
heterogeneity.>® All A meta values were larger than 1 (1.02<A
meta <1.06), indicating no significant overlap between AD and
PGC MDD samples.

Imputation

Following the best practice guidelines of IMPUTE2, version
2.3.2,°” we imputed 1000 Genomes variants into each GWAS
sample. Prephasing was first performed with SHAPEIT, ver-
sion 2.790°8 to infer haplotypes for samples based on autoso-
mal SNPs with minor allele frequency greater than 0.01. Im-
putation was carried out on prephased haplotypes using
IMPUTE2 against reference data from the 1000 Genomes Phase
lintegrated variant set for all GWAS data except for the NHRVS
and Yale-Penn samples, which were imputed against the 1000
Genomes Phase 3 haplotype reference. After postimputation
(SNP missing rate <0.05, minor allele frequency >0.05, impu-
tation quality score >0.5, and Hardy-Weinberg equilibrium
>107°), 5960232 (COGA), 5955937 (SAGE), 7 049 271 (Yale-
Penn), and 7 055726 (NHRVS) autosomal variants were re-
tained. Imputed SNPs were used for calculating the PRS, as de-
scribed below.

Polygenic Score Analysis

Each PRS was calculated as a weighted sum of reference alleles
across independent SNPs on a genome-wide scale. Weights
were log,, (odds ratio) of SNPs estimated from a meta-
analysis of MDD GWASs (9240 MDD cases and 9519 controls
of European ancestry) from the PGC.*” Summary results for
1235109 autosomal SNPs were downloaded from the PGC web-
site (https://www.med.unc.edu/pgc/). Downloaded SNPs were
pruned using P value-informed clumping in PLINK, with a
cutoff of 72 = 0.2 within a 200-kilobase window. Polygenic risk
scores were calculated for each AD GWAS sample using the
PLINK score option, based on sets of pruned SNPs at successive
Pvalue thresholds (<.05 to <.99).
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Table 2. Meta-analysis of Associations Between MDD Polygenic Risk Scores and AD

Adjusting for MDD in AD Samples

No Yes

Thresholds B SE P Value B SE P Value

P<.05 0.075 0.016 2.8x10°° 0.064 0.017 13x10™*
P<.10 0.075 0.016 3.1x107° 0.061 0.017 25x107*
P<.20 0.084 0.016 1.0x 1077 0.070 0.017 2.0x107°
P< .30 0.088 0.016 2.6x1078 0.074 0.017 8.4x107°
P < .40 0.095 0.016 3.3x107° 0.079 0.017 3.3x107°
P<.50 0.094 0.016 3.5x107° 0.080 0.017 2.5x107°
P<.60 0.094 0.016 4.2 x107° 0.079 0.017 3.4x10°°
P<.70 0.095 0.016 3.8x107° 0.079 0.017 3.2x10°°
P < .80 0.093 0.016 6.5 x 1077 0.078 0.017 4.4x107°
P<.90 0.094 0.016 5.3 x107° 0.079 0.017 3.7 x10°®
P<.99 0.094 0.016 5.3x107° 0.079 0.017 3.7x107°

Abbreviations: AD, alcohol dependence; MDD, major depressive disorder.

We used GEMMA, version 0.96 software>® to evaluate as-
sociations between the PRS and AD in a mixed-model frame-
work accounting for related samples and cryptic relation-
ships. Association analyses were corrected for age, sex, and the
top 10 principal components to control for population strati-
fication. Each PRS was scaled from O to 2 so that association
strength was comparable across GWAS data sets and P value
thresholds. To combine association evidence across samples,
we carried out meta-analysis based on effect size and SE using
METAL.®° The portion of the variance in AD case-control sta-
tus explained by the PRS was assessed by the Nagelkerke
pseudo R?,%>%® which was derived from the difference be-
tween the maximum likelihood of the null model (principal
components + covariates) and the full model (principal com-
ponents + covariates + PRSs).

We conducted 2 additional analyses to further evaluate
bidirectional relationships between MDD and AD: (1) to
determine whether the association of the PRS with AD was
driven by comorbid MDD cases in AD GWAS data sets, we
repeated the analyses adjusting for MDD status in the 3 AD
GWAS data sets (COGA, NHRVS, and Yale-Penn) for which
MDD status was available; and (2) to examine whether the
association of the PRS with AD was driven by comorbid AD
cases in MDD PGC data sets, we recalculated the MDD PRS
for AD GWAS data sets using weights from meta-analysis of
2 MDD GWAS data sets (Genetics of Recurrent Early-Onset
Depression [GenRED]-I, 860 MDD cases and 1636 controls;
and GenRED-II, 1145 MDD cases and 930 controls) for which
comorbid MDD-AD cases could be excluded. Details of
GenRED GWASs are available elsewhere.®! Both data sets
were imputed into 1000 Genomes Phase 3 variants using
imputation procedures described above. GEMMA was used
for association testing of MDD with each SNP, followed by
meta-analysis of the 2 imputed data sets using METAL.
Meta-analysis results were used to recalculate the PRS for
each AD GWAS data set. We then performed association tests
between recalculated PRS and AD case-control status in 3 AD
GWAS samples (COGA, Yale-Penn, and NHRVS) excluding
MDD cases.

JAMA Psychiatry November 2017 Volume 74, Number 11

Positive and Negative Controls

We tested the ability of the PGC-derived MDD PRS to predict
MDD status in 3 AD GWAS data sets (COGA, NHRVS, and Yale-
Penn) for which MDD status was available as a positive con-
trol. Height was similarly tested as a negative control in the
same samples.

. |
Results

Basic sample demographics are reported in Table 1. In the COGA
sample, 18.9% of individuals with AD had MDD and 12.5% of
controls had MDD. In the Yale-Penn sample, 19.4% of those with
AD had MDD and 6.3% of controls had MDD. The NHRVS
sample had the highest rate of comorbid MDD, with 35.0% in
AD cases; the MDD rate in controls was 10.5%. Major depres-
sive disorder status was unavailable for SAGE.

We observed significant associations between the MDD PRS
and AD case-control status across all AD samples at various PRS
Pvalue thresholds (COGA: best P=1.7 x 10, R? = 0.026; SAGE:
best P=.001, R? = 0.01; Yale-Penn: best P = .035, R? = 0.0018;
NHRVS: best P = .004, R? = 0.0074) (eTable 1 in the Supple-
ment). Meta-analysis of the 4 AD samples showed stronger evi-
dence for association with the smallest value (P = 3.3 x 107°;
P value threshold = .4) (Table 2). Regression coefficients (3)
were positive at each PRS P value threshold, suggesting that
an elevated MDD PRSis linked to an increased risk of AD. How-
ever, the proportion of variance in AD explained by the MDD
PRS was small, ranging from R? = 0.0018 in the Yale-Penn
sample to R? = 0.026 in the COGA sample (eTable 1 in the
Supplement and Figure). To investigate potential sex-
specific effects, the same analyses were repeated stratified by
sex. No consistent difference in the strength or significance of
association between MDD PRSs and AD status by sex was ob-
served across the 4 samples (eTable 2 and eFigure in the
Supplement).

We observed similar patterns of association between the
MDD PRSs and AD case-control status when MDD status was
included as a covariate (COGA: best P = 7.6 x 107, R? = 0.023;
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Figure. Association of the Major Depressive Disorder Polygenic Risk Score With Alcohol Dependence (AD)

in 4 Independent Samples
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Yale-Penn

Yale-Penn: best P = .08, R? = 0.0013; and NHRVS: best P = .006,
R?=0.0072) (eTable 3 in the Supplement). Meta-analysis of
the 3 samples strengthened evidence of association with the
smallest P = 2.5 x 107® (Pvalue threshold = .50) (Table 2). The
proportion of variance in AD explained by the MDD PRS was
nearly identical to that of the unadjusted analyses in the cor-
responding samples.

We recalculated the MDD PRSs for AD GWAS samples using
weights derived from 2 MDD GWAS data sets in which comor-
bid MDD-AD cases were excluded. We then tested the new
MDD PRSs with AD case-control status in 3 AD GWAS samples
without MDD cases. The new MDD PRS was nominally signifi-
cantly associated with AD in the COGA sample at a PRS Pvalue
threshold of 0.05 (P = .04) (eTable 4 in the Supplement). We
did not observe significant evidence for association in the Yale-
Penn and NHRVS samples, although the new MDD PRSs tended
to increase AD risk across both samples. Meta-analysis of the
3 AD samples yielded significant evidence for association be-
tween the MDD PRS and AD with the smallest P = .007 (PRS
Pvalue threshold = .20 or .05) (eTable 5 in the Supplement).

We tested whether the MDD PRS would predict MDD sta-
tus as a positive control. A significant association was seen in
the Yale-Penn sample (7.6 x 10~%<P < .004) but not in either
COGA or NHRVS, although a trend toward increased MDD risk
was observed in both samples (eTable 6 in the Supplement).
In a meta-analysis, significant associations were seen at all
thresholds (2.5 x 107%<P < .05) (eTable 7 in the Supplement).
Height, our negative control, showed no significant associa-
tion with the MDD PRS in any sample at any P value threshold
(eTable 8 in the Supplement).

|
Discussion

In each independent AD GWAS sample, we found that a higher
MDD PRS was associated with an increased risk for AD, and this
result was even more pronounced in a meta-analysis of the 4
data sets. The same effect was seen in analyses with MDD sta-
tus as a covariate in 3 AD GWAS samples. We also observed
meta-analytic evidence for an association between MDD PRSs
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and AD, using a PRS derived from MDD GWAS data sets with-
out comorbid MDD-AD cases. Our results suggest that the bi-
directional associations between AD and MDD may be par-
tially accounted for by shared genetic factors.

Our study methodology is similar to that of other pub-
lished studies examining the association between AD genetic
risk and AD age of onset®?; between childhood trauma, MDD
geneticrisk, and adult MDD®3; and between schizophrenia ge-
netic risk and cannabis use.®* Consistent with those studies,
the proportion of variance in AD explained by the MDD PRS
in our samples was small, on the order of 1072 to 10>, Similar
effect sizes were seen in our positive control, MDD status.

Although our results do not illuminate the mechanism by
which this shared genetic liability for MDD and AD acts, sev-
eral possibilities are worth investigating in future studies. Anxi-
ety disorders and MDD share genetic liability,?*® and anxi-
ety has been proposed as a significant risk factor linking AD
and MDD via the internalizing pathway.® More broadly, per-
sonality traits, such as neuroticism, disinhibition, and sensa-
tion-seeking, are associated with a range of psychiatric disor-
ders, including anxiety, MDD, and AD, and are potential
mechanisms through which shared AD-MDD polygenic risk
may exert its effects.®® Inclusion of comorbid disorders and per-
sonality trait measures in future studies may help to clarify
these pathways.

The PGC MDD GWAS samples are likely enriched for indi-
viduals with AD, which could drive the associations initially
observed between MDD PRSs and AD. To examine this possi-
bility, we recalculated the MDD PRS using 2 MDD GWAS data
sets without comorbid MDD-AD cases and tested the associa-
tion of the new PRS with AD in AD GWAS samples without MDD
cases. We observed a significant association between this re-
calculated MDD PRS and AD status only in the COGA sample
atathreshold of P < .05 (P = .04), potentially due to the smaller
sample size of this training data set. Nonetheless, meta-
analysis of all samples showed significant associations be-
tween the recalculated MDD PRS and AD, suggesting that the
observed associations are not driven solely by comorbid AD
cases in the PGC MDD GWAS and providing further support for
genetic overlap between MDD and AD.
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Prior family and twin studies?°-2* suggested a role for sex-

specific transmission of shared AD-MDD risk. In post hoc analy-
ses, we examined sex-specific patterns of association be-
tween MDD PRSs and AD risk. We did not find consistent
evidence of sex-specific transmission of shared AD-MDD li-
ability in sex-stratified analyses, although our study was likely
underpowered to detect such an effect given the reduced
sample sizes in sex-specific subgroups.

Limitations

This work should be viewed in light of 2 limitations. First,
MDD GWASs with larger sample sizes will likely improve the pre-
dictive ability of the MDD PRS and thus further refine the asso-
ciations that we observed. Second, further studies are needed
toinvestigate whether the MDD PRS association is specificto AD
or whether it generalizes to substance dependence more broadly.
There is evidence that a large proportion of genetic risk for sub-

Polygenic Risk Score Analysis for Depression and Alcohol Dependence

stance use disorders involves predisposition to addiction
generally,®® and some data have demonstrated that PRSs for psy-
chopathology predict general substance involvement.®”

. |
Conclusions

From a public health standpoint, MDD and AD are individu-
ally and jointly associated with significant morbidity and mor-
tality, so understanding their association is a priority. Our find-
ings suggest that common genetic factors contribute to
MDD-AD comorbidity and that some individuals carry a ge-
netic predisposition for both disorders. The consistency of our
findings across 4 independent samples suggests the feasibil-
ity and value of a meta-analysis of AD and MDD GWAS data sets
to identify specific genetic variations underlying this shared
predisposition.
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