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Opicid receptors and their endogenous peptide ligands play important roles in the reward and
reinforcement of drugs such as heroin, cocaine, and alcohol. The binding of dynorphins to
the x-opicid receptor has been shown to produce aversive states, which may prevent the
development of reinforcement. We genotyped SNPs throughout OPRKT, encoding the x-opioid
receptor, and PDYN, which encodes its ligand prodynorphin, in a group of 1860 European
American individuals from 219 multiplex aleohol dependent families. Family-based analyses
demonstrated associations between alcohol dependence and multiple SNPs in the promoter
and 3’ end of PDYN, and in intron 2 of OPRKT. Haplotype analyses further supported the
association of PDYN. Thus, variations in the genes encoding both the x-opioid receptor and its
ligand, OPRKT and PDYN, are associated with the risk for alcohol dependence; this makes
biological sense as variations in either should affect signaling through the «-opioid system.
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Introeduction

Opioids function as nevrotransmitters or neuro-
modulatars regulating many brain functions,
including psychomotor stimulation, reward and
reinforcement, mood and homeostatic adaptive pro-
cesses like drinking, eating and thermeregulation.*™
The opioid system appears to play an important role
in the reward system by influencing dopamine release
in the nucleus accumbens.® There are three major
groups of endogenous opioid peptides {dynorphins,
endorphins and enkephalins) and three correspond-
ing opioid receptors, x-opioid receptor (KOR),
u-opioid receptor (MOR) and d-opioid receptor
(DOR).” Stimulation of MOR and DOR in mouse brain
increases the release of dopamine in the nucleus
accumbens, whereas stimulation of KOR reduces the
release of dopamine and generates aversive states.* !
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Alcoholism (alcohol dependence) is a commoen
complex genetic disease. Both twin and adoption
studies show a strong heritable component involved
in the risk for alcoholism.?*® The lack of a clear
pattern of inheritance suggests that multiple genes
contribute to the risk for alcoholism. Several genes
have already been identified by the Collaborative
Study on the Genetics of Alcoholism (COGA),
including GABRA2,***®* GABR(G3,"® CHRM2*%' and
hTAS2R16.** Each of these genes has a modest effect
on the risk for alcohol dependence and it appears
likely that additional genes contribute to the genetic
susceptibility for alcohol dependence.

There is evidence that the opioid system is
involved in the vulnerability to various drug
addictions, including alcoholism,**% Naltrexone, a
nonselective opicid receptor antagonist, decreases
sthanol consumption in human alcoholics.%#7
Nalirexone-treated alcohol-dependent subjects have
lower levels of craving before and during ethanol
self-administration compared to placebo-treated sub-
jects.?® Nonalcoholic offspring with a family history
of alcohol dependence have greater adrenocorticotro-
pin (ACTH) and cortisol responses to opioid receptor



blockade induced by naloxone than do nonalecholic
offspring without a family history of alcohol depen-
dance.®*" Treatment with buprenorphine, a partial
agonist-antagonist of opioid receptors, in combination
with naloxone, effectively reduces withdrawal symp-
toms in opioid-dependent individuals.™ Evidence
from animal models also suggests a possible relation-
ship hetween the opioid system and alcohol pre-
ference.ﬂii-:"i

The dynerphin/KOR system may serve as a novel
target for therapeutic treatment of alcohol and drug
dependence. A selective KOR agonist U50,488H
attenuates voluntary ethanol intake in rats.*® Blocking
the KOR in wild-type C57BL/6 mice with nor-
binaltorphimine (nor-BNI), a w-receptor-specific
aitagonist, increases alcohol self-administration.®
Similarly, the endogenous KOR agonist dynorphin
A (1-17) attenuates the eocaine-induced increases in
dopamine levels in C57BL/6 mice brain, and this
effect can be blocked by preinjection with the
antagonist nor-BNL* GPRK1 knockont mice demon-
strate an increased ethanol-evoked dopamine re-
sponse in the nucleus accumbens™ and show less
oral aleohol self-administration than wild-type
mice.*"

The OPRK1 gene is located on human chromosome.
8, The 22kb OPRK! gene contains four exons,
including a newly identified exen that encodes the
5 untranslated region.***' Yuferov ef al.** suggested
possible association of a coding SNP (G36T) in exon 2
with opiate addiction. Loh et al*® genotyped three
OPRK1 coding SNPs, G36T, C459T and AB43G, in 307
Taiwanese Han subjects, but found no association
between the SNPs and alcohol dependence.

Dynorphins ave derived proteclytically from pro-
dynerphin, which is encoded by PD¥N.** Dynorphins
bind selectively to the KOR, encoded by OPRK1.%4-¢
The human PDYN gene containg four exons, covering
15.3kb on chromosome 20. Variatien in FDYN has
been studied for its role in addiction to opiates,
cocaine and alcohol. A 68-hp repeat variant located
about 1.5kb upstream of the promoter region was
identified in the initial sequencing of the gene.*® The
level of gene expression appeared to be affected by the
number of copies of the 68-bp repeats.*”** Langer
alleles appear to increase gene expression while the
shorter alleles appear to decrease expression. Longer
alleles may be protective against cocaine addiction;
alleles containing three or four copies of the repeat
were more common in control subjects than in
cocaine-addicted subjects.®” Geijer et al*® identified
a GC/AT base pair exchange 301bp upstrearmm of
the exon 1intron 1 boundary of PDYN, but found
no association of the variant with aleoholism in a
Scandinavian population.

Based on the biological evidence noted above, we
hypothesized that genstic differences in the x-opioid
systern may be linked te differences in the risk for
alcoholism. The present study is designed to test that
hypothesis in a large sample of families selected for
the presence of multiple alcoholic members.
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Materials and methods

Sample and phenolype

The Collaborative Study on the Genetics of Alcohol-
ism (COGA) is a multi-site study recruiting families at
six centers across the US: Indiana University, State
University of New York Downstate Medical Center,
University of Connecticut, University of Iowa, Uni-
versity of California/San Diego, and Washington
University, St Louis. The institutional review boards
of all participating institutions approved the study.
The ascertainment and assessment of this sample
has previously been described.f®** Briefly, probands
were Identified through alcohol treatment programs;
families with at least three first-degree relatives with
alcohol dependence participated in the genetic part of
this study. A sample of 1860 European American
individuals from 219 alcohelic families was used in
this study.

Phenotypic diagnoses weré based on interview
data from the Semi-Structured Assessment for the
Genetics of Alcoholism (SSAGA). % Alcoholism was
defined as meeting criteria for both DSM-IIIR alcohol
dependence™ and Feighner definition of alcohol-
ism.*® As a component of the genstic risk might be
common to other drugs, individuals who did not meet
criteria for alcoholism but did meset criteria for
dependence on an. illicit drug (marijuana, cocaine,
stimulant, sedative or opioid) were defined as
unknown rather than unaffected.

SNP selection and genotyping

SNPs distributed throughout the OPRK? and PDYN
genes and extending to the 5 and 3 flanking regions
were selected from public databases, primarily dbSNP
(http://www.ncbi.nlm.nih.gov/SNP/). Al the time
SNPs were selected, allele {requencies were
not usually available. To determine allele frequencies,
SNPs were genotyped in two sets of samples,
each consisting of 40 unrelated individuals from the
Coriell European- and African-American diversity
samples. SNPs with greater than 10% heterozygo-
sity were preferentially genotyped: all genotyped
SNPs were in Hardy-Weinberg equilibrium in both
test populations. Most SNPs were located in non-
coding regions of the genes, Key SNPs encoding
PDYN and OPRK1 coding variants and the
PDYN promoter variants were genotyped regardless
of their minor allele frequency (Tables 1 and 2).
Locations of the SNPs were determined from the
annotations in the NCBI human genome assembly
Build 35.1.

Genotyping was done using a modified single
nucleotide extension reaction with allele detection
by mass spectrometry (Sequenom MassArray system;
Sequenom, San Diego, CA, USA). The success rate of
all genotypes was 95% or higher. All SNP genotypes
were checked for Mendelian inheritance using the
program PEDCHECK.®® Marker allele frequencies and
heterozygosities were computed in tha COGA sample
using the program USERM13, part of the MENDEL
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Table 1 PDYN SNPs: minor allele frequency and as§ociation with alcohol dependence

SNP number SNP_ID Chromoseme position® SNP location" MAF Alcoho! dependence!
1 rs6045784 1964663 Downstrearn 0.11 0.02
2 rs2235749 1907939 JUTR 0.27 0.007
3 rs910080 1908226 FIUTR 0.26 0.02
4 rs10485703 1808313 JUTR 0.11 0.03
3 rst045819 1909134 H200, exon 4 0.11 0.007
6 rs6035222 1911413 Intron 3 (.12 0.01
7 rs2179617 1914169 Intren 2 0.14 0.27
i) rs1418038 1914947 Intron 2 G.14 0.20
9 rs6043868 1915278 Intron 2 G.26 0.03

10 181883723 1916843 Intron 2 0.09 0.81

11 82235751 1917934 Intron 2 0.25 .09

12 82235756 1919060 Intron 2 0.09 0.82

13 rs2281285 1920460 Intron 2 0.15 0.19

14 6045912 1922008 Introm 1 0.25 .15

15 rs1997794 1922858 Promoter 0.36 0,004

16 rs3830064 1923679 Promater 0.16 0.18

17 rs10854244 1925045 Upstream 0.25 0.02

18 rs6 1368667 1826301 Upstream 0.15 0,10

“Chromosome positions are based on NCBI Human Genome Assembly vs 35.1.

bThe gene is transcribed in the opposite direction.
“Minor allele frequency in European Americans.

“P.value of UNPHASED avg-PDT statistic for agsociation between the SNPs and alechol dependence. Significantly associated

SNPs are shiown in bald.

Table 2 OPAK? SNPs: miner dllele frequency and association with alechaol dependence

SNP number SNP_ID Chromosome posifion® SNP location® MAF Alcehol dependence?
1 rs963549 54 304 377 FUTR 0.14 0.46
2 13702764 54 304 710 A281, exon 4 0.09 0.53
3 rs7815824 54 310023 5153, exon 3 0.04 0.12
4 rs987917 54314 931 Intron 2 0.27 0.03
6 rsG473797 54 315 535 Intren 2 0.22 0.05
6 rs12548098 54318008 Intron 2 0.16 0.01
7 rs16918931 54318029 Intron 2 0.08 0.08
8 rs7826614 54319979 Intron 2 0.16 0.08
9 rs16918941 54323 255 Intron 2 0.08 0.04

10 rsG885606 54 323 669 Intron 2 0,49 0.007

11 rsG982096 54323978 Intron 2 0.08 0.66

12 rs1061660 54326115 P12, exon 2 0.08 0.25

13 r53808627 54 327 355 Promoter 0.21 0.63

“Chiomosome positions are based on NCBI Human Genome Assembly vs 35.1.
®The gens is transcribed in the opposite direction. The SNP location in the promoter, exon 1 and exon 2 of OPRK? is hased on

Yuferov ef al¥
“Minor allele frequency in European Americans.

4P-valug of UNPHASED avg-PDT statistic for association between the SNPs and alcohol dependence. Significantly associated

8NPs are shown in bold,

linkage computer programs.® Only SNPs with a
minimal allele frequency of 4% (Tables 1 and 2} were
included in subsequent analyses.

Resequencing

To determine if there were any additional coding
variations within the two genes, all exons of OPRK1?
and PDYN were sequenced in 16 individuals. For
each gene, eight individuals with the high-risk
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haplotype and eight individuals with the low-risk
haplotype were chosen based on the tag SNPs from
the most significant haplotype block of each gene;
four of the individuals were sequenced for both genes.

Sequencing was performed using the ABI PRISM
3100 Genstic Analyzer capillary DNA sequencer with
Big Dye chemistry (Applied Biosystems). The sequen-

cing covered the exons plus approximately 200bp

flanking intronic regions on each side, plus 1.1-1.6 kb



upstream and 600-900bp downstream. A tctal of 12
new SNPs were found, seven in OPRKT and five in
PDYN. These were submitted to dbSNP (see Electro-
nic-Database Information).

Statistical unalyses

To ensure that the SNP density was sufficient to
evaluale the evidence of association between each of
the genes and substance dependence, the program
HAPLOVIEW® was employed to examine the extént
of linkage disequilibrium between pairs of SNPs as
well as the haplotype block structure within each
gene. Blocks were defined using the eriteria proposed
by Gabriel et al.™ Tag SNPs were selected to capture
haplotypes with frequency of =25%.%

The Pedigree Disequilibrium Test (PDT),*' as
implemented in the program UNPHASED," was used
to test for association in the extended, multiplex
COGA pedigrees. The PDT utilizes data from all
available trios in a family, as well as discordant
sthships. Evidence for association is assessed based

156045784
152235749
reg10880
rs10485703
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on overtransmission of a particular allele to affected
individuals, and greater frequency of the allele in
affected individuals das compared to their unaffected
siblings. The ‘avg-PDT' statistic, which averages the
association statistic across all families, was used to
test for association between the SNPs and alcohol
dependence.®

Association results were compdred to the SNP
disequilibrium pattern of each gene. Haplotypes were
constructed using consecutive sets of three adjacent
SNPsY as well as employing the tag SNPs of the
haplotype blocks containing SNPs associated with
alcohol dependence. PDT analysis results using these
two complementary haplotyping methods were com-
pared to evaluate the pattern of association.

Results

PDYN
Eighteen SNPs were genotyped across PDYN from
4kb upstreamn of the transcripticn initiation site to

eABRIFY
RZ2IET5Y
82235756
R385
186045912

153830054

Bloek 2 (6 4
, 10 1

36

2 kb
—

Figure 1 Gene structure of PDYN and linkage Disequilibrium (DY) between the genotyped SNPs (HAPLOVIEW). The gene
structure is across the top with the untranslated regions in blue/black, coding regions in red/gray, and exons as mumbered.
The direction of transcription is represented by an arrow. Tag SNPs far each haplotype block are underlined. The size of the

gene is indicated at the lower right side.
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3 kb downstream of the 3’ end (Table 1; Figure 1). The
extent of linkage disequilibrium as measured by I/
between pairs of adjacent SNPs ranged from 0.77 to
1.00. The overall coverage for the gene was compared
to the data in HapMap using Tagger.™ Fifteen of the
18 SNPs showed an average r* of 0.95 with 40 SNPs
(MAF > 0.05) in a region of 30 kb; 88% of the HapMap
alleles had r#>0.8 with at least one of our SNPs.
Therefore, the association analyses of the selected
8NPs on PDYN captured a very large fraction of
untested variations for the gene and its immediate
flanking regions. Three haplotype blocks were found
(Figure 1), blocks 1 and 2 were similar to those
defined by HapMap for the CEU population
(www.HapMap.com). Block 3, identified in our data,
appeared to be part of block 2 in the HapMap data.
There was significant evidence of association
between aleohol dependence and multiple SNPs in
PDYN (Table 1). Assaciation was observed for multi-
ple SNPs in a 7kb region at the 3' end of the gene,
including rs6045819, a synonymeus variation in exon
4, and additional SNPs at the promoter region. The
haplotype constructed from the two SNPs that tag
bock 1 (rs2235749 and rs10485703; Figure 1) pro-
vided further support for the association with alechol
dependence (global #* P=06.008). Haplotype block 2,
tagged by rs1883723, rs2281285 and rs1997794, was
also significantly associated (global P-value=0.004).
To further examine the association results, haplotypes
were constructed using consecutive sets of 3-SNP
sliding windows; five of six consecutive haplotypes
(P<0.05) in the ¥ region of the gene (Table 3)

Table3 PDYN: haplotype analysis of 3-SNP sliding window
for association of aleohol dependence

3-SNF order Alcohol Overtransmitted
dependence haplotype to
{global P-value)
Alcohol  Nonalcohol
dependence dependence
SNP [1-3] 0.015 CAG TGA
SNP [2-4] 0.010 AGG GAA
SNP [3-5] 0.044 GGG AAA
SNP [4-B] 0.005 GGA AAG
SNP [5-7] 0.065 GAA AGA*
SNP [6-8] 0.027 AAC ——
SNP [7-9] 0.062 ACA* —
SNP [8-10] 0.09 CAT** —
SNP [8-11] 0.08 — ——
SNP [10-12] 0.28 — —
SNP [11-13] 0.37 — —
SNP [12-14] 0.60 — —_
SNP [13.15] 0,031 TGC TGT
SNP [14-18] 0.057 GCA GTA
SNP [15-17] 0.074 CCT** TAA
SNP |16-18] .30 — —_

Individual overtransmitted haplotypes for alcohol depen-
dence are indicated in bold when P<0.05; *P=0.06, and
**P<0.10.
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supported association with alcohol dependence. The
haplotype C-A-G-G-G-A (SNPs 1-6) was overtrans-
mitted (P=0.045) to alcohol-dependent individuals,
while its complementary haplotype T-G-A-A-A-G was
gvertransmitted (P=0.038) to nonalcohol-dependent
individuals (global P=0.075).

Resequencing the 4 PDYN exons uncovered five
new variations in the region (see Electronic-Database
Information). Hawever, none of the new variations
altered amino-acid sequence.

OPRK1

Thirteen SNPs were genotyped across OPRK1, ex-
tending from 800bp into the 5° promoter region to the
3' end (Table 2; Figure 2). Estimates of D' were >0.89
for 92% of the adjacent SNPs. The overall coverage of
the gene was compared to the data in HapMap using
Tagger." Twelve of the 13 SNPs showed an average r*
of 0.94 with 40 SNPs [MAF>0.05) in a region of
30kb; 95% of the HapMap alleles in the region had
#>0.8 with at least one of our SNPs. Thus, the
selected SNPs also captured a very large fraction of
untested variations contained within GPRK1 and its
promoter region. The OPRK? gene resides in two
haplotype blocks, which encompassed 12 SNPs
{Figure 2); SNP 5, rs6473797, was not included in
either block. The haplotype block pattern was similar
to that derived by HapMap for the CEU population
{www.HapMap.com).

There was significant evidence of association
between alcohol dependence and multiple SNPs
across a 9kb region located in intron 2 of OPRK1!
{P-value<0.05; Table 2). None of the three coding
SNPs (rs702764, rs7815824, and rs1051660) demon-
sirated evidence of assoclation (P>0.11). Haplotype
anelyses employing tag SNPs (Figure 2) were not
significant, nor were haplotypes constructed with three
consecutive SNPs.

Resequencing the four OPRK? exons uncovered
seven new variations in the region (see Electronic-
Database [nformation). None of the new variations
altered amino-acid sequence. The only known coding
SNP that alters amino-acid sequence (rs9282808;
Asn374Asp) had zero allele frequency in a sampls
of 40 unrelated European-American samples from
Coriell and was not genotyped.

Discussion

We have demonstrated in a large, family-based study
of Enropean-Americans that variations in both parts
of the x-opioid system, the OPRK? gene that encodes
the receptor and the PDYN gene that encodes its
ligand prodynorphin, are associated with alcohol
dependence. The fact that both receptor and its ligand
are associated makes biological sense, as variations in
either should affect the overall level of signaling
through the system.

For both OPBKi1 and PDYN the evidence for
association was from SNPs that did not change the
encoded protein (Tables 1 and 2). In neither ease did
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Figure 2 Gene structure of OPRKY and linkage Disequilibrium (I)') between the genotyped SNPs (HAPLOVIEW). The gene
structure is across the top with the untranslated regions in blue/black, coding regions in red/gray, and exons as numbered.
Exons 1 and 2 are based on Yuferov et al® The direction of transcription is represented by an arrow. Tag SNPs for each
haplotype block are underlined. The size of the gene is indicated at the lower right side.

resequencing of individuals with high- and low-risk
haplotypes reveal additional coding variations, sug-
gesting that it is differences in some aspect of gene
regulation that contribuite to the risk for alcoholism.
The strongest association in PDYN came from SNPs in
the ¥ region, including exons 3 and 4, as well as two
miarkers at the 5 premoter region. The strongest
association in OPRKI was with multiple SNPs in
intron 2. In PDYN, analyses of haplotypes provided
additienal consistent evidence of association with
alcohol dependence. In contrast, haplotype analyses
in OPRK1 did not yield further support for associa-
tion. There are several possible explanations for these
differing results, For example, the variation(s) asso-
ciated with alcohol dependence in PDYN may have a

single ancestral origin while the variation(s) in
OPRK1 associated with alcohol dependence may
have multiple ancestral origins. In the former in-
stance, haplotypic analyses would provide greater
genetic information while in the latter case, they
would not,

In a study among the Taiwanese Han population,**
no association between alcoholism and OPRK1 was
detected; the study examined only the three synon-
ymous variations in the coding region (G36T,
rs1051660; C459T, rs7815824; AB843G, rs702764).
Our results for these three markers were also negative
(Table 2). However, we hypothesized that regulatory
variations were likely to influence complex genetic
diseases, so we genotyped many more SNPs to ensure
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coverage throughout OPRK1, including the promoter
and intronic regions. We found the strongest associa-
tion was in intron 2.

The variation GC/AT in the 5' promoter region of
PDYN, reported by Geijer et al.,*® which showed
no evidence of association with alcoholism in the
Scandinavian population, was significantly asso-
ciated with alcoholism in our study {rs1997794;
P=0.004). Bakalkin et al.”® described an 11-nucleo-
tide consensus sequence for NF-«B (GGGGGCTTCT)
located in exon 4 of PDYN, within the coding
sequence of the dynorphin peptide, and found that

the expression of the gene was regulated by binding of

NF-xB to the intragenic sequences. Interestingly, the
synonymous marker rs6045819 in exon 4, which was
significantly associated with alcohol dependence in
cur data (P=0.007), was only 22bp upstream of the
xB-slement; the same SNP was also within several
nucleotides of the initiating Met198 of an N-termin-
ally truncated T2 transcript™ that encodes dynorphin
A and B.

In our sample, there were only 85 individuals who
ware dependent on dne or more 1licit drugs (cocains,
opiate, marijuana, stimulants or sedatives} but who
did not meet criteria for alcohel dependence. There-
fore, there was insufficlent power to test the hypo-
thesis that SNPs in these genes are associated with
illicit drug dependence independent of the associa-
tion observed with aleohol dependence. Adding these
85 individuals to the 869 alcohol-dependent indivi-
duals to analyze a phenotype of dependence on
alcohol or illicit drugs would not substantially change
the results because virtually all of the power in the
sample would still be from the alcohol dependence
phenotype, and therefore such an analysis would
not effectively address issues of general drug
dependence,

Dynorphin primarily modulates KOR responses,
although it also acts through MOR in alcohol and
drug addictions, Significantly higher basal levels of
KOR mRNA were found in alcohol-avoiding mice
(DBA/2) than in alcohol-preferring mice (C57BL/6) in
septum and hypothalamus.® Similar results were
also described in rats: the density of KOR in the
ventromedial hypothalamus was much lower in
alcohol-avoiding AA rats than in alcohol-preferring
ANA rats.* Difference in basal amount of KOR mRNA
could lead to differences in KOR activity and
subsequently to behavioral differences between the
strains of animals in alcchol preferences. The appli-
cation of a KOR-specific agonist 1750,488H dose-
dependently decreased voluntary ethanol intake in
AArat.™ A complete knockout of OPRK1 significantly
reduced alcohol preference and consumption in
mice.®

Alteration of the x-oploid system expression was
further investigated in Withdrawal Seizure-Prone
(WSP) and Withdrawal Seizure-Resistant (WSR)
mice,"® using fn sitv hybridization (ISH) and KOR
autoradiography. FEthanol withdrawal increased
PDYN mRNA in multiple brain regions of WSP, but

Molecular Psychiatry

not WSR mice;®™ basal KOR binding was higher in
WSR mice than in WSP mice. Furthermore, increased
KOR density was shown to be present during ethanol
withdrawal in WSP mice.®® Thus differences in the
k-oploid system might contribute to the selected
differences in ethanol withdrawal severity. This
evidence supports the role of differential expres-
sion of PDYN and its receptor GPBK? in alcohol
dependence.

In summary, we have demonstrated that variations
in the x-opioid system, in genes encoding both the
receptor (OPRK1) and its ligand (PDYN], are asso-
ciated with risk for alcoholism. Association of
variations in both receptor and its ligand makes
biological sense, since hoth should affect the overall
signaling. There is considerable biological evidence
for the involvement of the x-opioid system in
alcohol preference, alcchol intake, and withdrawal.
Genes encoding other opioid receptors and their
endogenous ligands have also been implicated as
playing a role in alcohol dependence, and we are
in the process of conducting further genotyping
and analysis to explore possible association of these
genes.

Electronic-database information

Online Mendelian Inheritance in Man (OMIM):
http:/fwww.nebi nlm,nih.gov/Omim
dbSNP: bttp://www.ncbinlm.nih.gov/SNP

New SNPs submitted

OPRK1 ss# 49785917
as# 49786918
s5# 49785919
s5# 49785920
s5# 49785921
ss# 49785922
se# 49785923

PDYN su# 4497859012
ssi 49785913
ss# 49785914
ss# 49785915

ss# 40785916
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