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Abstract

Genetic linkage and linkage disequilibrium analyses, and in general pharmacogenetics, can help
biopharmaceutical research and development in identification of drug targets, disease diagnoses, pre-
diction of efficacy and side-effects of drugs, and prescription of personalized medicine. In this paper
we review two common approaches, regression and variance component methods, for linkage and
linkage disequilibrium analyses. Combined linkage and linkage disequilibrium analysis will be dis-
cussed. In addition, we will also review the endophenotype approach to mapping complex disorders

such as alcoholism.

INTRODUCTION

Genetic mapping of human traits (phenotypes) aims to
identify chromosomal regions that contain genes affect-
ing traits of interest and especially genes that affect
human susceptibility to particular diseases. There are
many single-gene diseases (e.g., Huntington’s disease)
that are caused by a change of a single gene. There are
also many polygenic diseases resulting from the com-
bined action of alleles of more than one gene (e.g., heart
disease and diabetes). A great deal of attention has been
focused on identifying disease genes in order that they
may be used for disease diagnoses, personalized treat-
ment, and the prediction of treatment outcomes.
Pharmacogenetics can aid biopharmaceutical research
and development in many ways. First, it is applied in
diagnosis of disease. An important example is prenatal
genetic screening, such as amniocentesis for the Down
syndrome and newborn genetic screening for inherited
metabolic disorders. Second, it is applied in drug efficacy
prediction. A typical clinical trial would have a third
or more patients who do not respond to the test drug.
By identifying the genes that are associated with drug
response, it is possible to improve drug response
rates in clinical trials by selecting targeted patient popula-
tions. See Ref.!!! for a list of genes that have been signifi-
cantly associated with drug response. Third, similar to

predicting drug efficacy, it is applied in side effects pre-
diction of a drug (common side effects in clinical trials
and/or rare side effects of marketed drug). Fourth, it
would be applied in market expansion in the sense of
identifying patients who are currently unsuited to the
drug but potentially responsive to the drug when dosage
or formula is selected based on their genotypes. Finally,
clinical, genetic, and molecular phenotypes can be inte-
grated to identify drug targets.

In this article we will describe the basic concepts of
and commonly used methods in genetic mapping
[linkage and linkage disequilibrium (LD) analysis] of
quantitative trait loci (QTL). Interested readers can
go through the references cited here or elsewhere for
more information on mapping QTL. Classical linkage
analysis is described in section “Classical Linkage
Analysis,”” and it can be used to construct a genetic
map according to the distances between marker pairs.
The idea of linkage and LD analysis is to scan the
genome to detect the correlation between phenotype
and the markers. Two commonly used methods used
for linkage and LD analysis, regression and variance-
component methods, are described in section “Mapping
QTL.” Section “Genetics of Complex Diseases: The
Endophenotype Approach’ describes some of our
work on mapping QTL of neurological and psychiatric
disorders. The last section is devoted to discussion.
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CLASSICAL LINKAGE ANALYSIS

Chromosomes are long strands of deoxyribonucleic
acid (DNA) made up of four bases or nucleotides:
A (adenine), C (cytosine), T (thymine), and G (gua-
nine). Each individual has 23 pairs of chromosomes.
Each chromosome pair has a paternal homologue (a
copy carried by the sperm) and a maternal homologue
(a copy carried by the egg). Genes are basic units of
inheritance (short segments of DNA) and act as if lin-
early arranged at field places (loci) on a chromosome
transmitted in the gametes from parent to offspring.
It is now believed that the human genome has around
20,000-25,000 genes. A genetic marker is a segment of
DNA with an identifiable physical location on a chro-
mosome and whose inheritance can be followed. A
marker can be a gene or a group of genes, or it can
be some section of DNA with no known function.
One type of marker is a Short Tandem Repeat, which
is a sequence of DNA nucleotides (dinucleotides,
trinucleotides, etc.) that varies among individuals in
terms of how many times the sequence is repeated
(AT, ATAT, ATATAT, etc.). A more recently devel-
oped marker is the single nucleotide polymorphism
(SNP) in which individuals differ in a single nucleotide
at that location (e.g., some individuals have the
sequence ATAGCTA, while others have the sequence
ATAGGTA). Markers are selected that vary among
individuals, i.e., the selected markers are informative.
Because DNA segments that lie near each other on a
chromosome tend to be inherited together, markers
are often used as indirect ways of tracking the inheri-
tance pattern of a gene that has not yet been identified
but whose approximate location is known. An allele is
one of several alternative forms of a marker occupying
the same locus on a particular chromosome. Genotype
data at a marker refer to the maternal and paternal
alleles at the marker.

The process of forming germ cells is called meiosis.
During meiosis, the chromosome pairs are split and the
maternal and paternal homologues recombine (cross-
over), forming two new homologues. This random
shuffling of genetic material is called recombination.
Every germ cell (sperm or egg) contains one homo-
logue from each of the 23 chromosome pairs. During
fertilization, a sperm and an egg combine, and the
paternal and maternal homologues form a full chro-
mosomal set. As a result of crossover, each offspring
will carry genes from all four grandparents. If no cross-
over had occurred, the offspring would have only
inherited genes from two grandparents.

The genetic distance between two markers is defined
as the expected number of crossovers between them.
Note that genetic distance is not a measure of the
physical distance between the two markers on a chro-
mosome. Haldane’s model of recombination is that
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crossover occurs according to a Poisson process, lead-
ing to the mapping function

8 = (1 —e?))2

where 6 is the recombination probability between two
markers and x is the genetic distance in Morgans
(expected number of crossovers) between the two
markers. See Ref.? for other mapping functions. With
all distances between marker pairs being computed, a
genetic map can be constructed to show the relative
locations of the markers along the chromosome.
Genetic maps are used in linkage analysis to identify
markers for disease traits. New techniques have pro-
duced dense maps with more markers (e.g., SNPs),
and hence enable fine mapping of disease genes.

MAPPING QTL

A qualitative trait is expressed qualitatively, which
means that the phenotype (what you see) falls into
different categories (e.g., blood types) and is a clear
representation of its genotype. A quantitative trait
shows continuous variation (e.g., height or blood pres-
sure) because the trait is under the influence of many
genes. Most of these genes have a small effect on the
total phenotype value. In addition to the genetic effects
associated with the quantitative trait, the phenotype is
directly influenced by environmental factors. This
results in the observed phenotypic variation appearing
continuous in nature. This is further complicated by
gene—gene interactions and gene—environment interac-
tions. The observed phenotype for a quantitative trait
is the sum of all genetic effects across all involved genes
and environmental effects.

Mapping of qualitative and QTL (genes) is used to
study the relation between a phenotypic value and
one or more genetic markers. A large correlation
between a phenotype value and a marker genotype
indicates that the marker is close to a gene that influ-
ences the phenotype. Various statistical models and
methods have been developed to study this correlation.
Some methods are based on pedigree data (linkage
analysis) while other methods are based on population
and pedigree data (association methods). Combined
linkage and association methods have improved statisti-
cal power. We will focus on statistical methods for map-
ping QTL, which are more complicated than mapping
qualitative trait loci. These methods are also applicable
or can be adapted to map qualitative trait loci.

Heritability
The concept of heritability was introduced to quantify

the level of predictability of passage of a biologically
interesting phenotype from parent to offspring.’]
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The phenotype is seen as a function of environment and
genotype. Assuming additive and independent effects of
genes and environment (a simplified model), phenotypic
variance (Vp) of a trait in a population may be expressed
by one component of genetic variance (Vg) and one of
environmental variance (Vg), so that Vp = Vg + Vg

Heritability measures how the genetic contribution to
a trait might vary in a population, and the heritability
coefficient, H?, is given by the ratio of the total genetic
variance to the phenotypic variance: H* = V/Vp. This
is the broad heritability. Another measure, the narrow
heritability, is only based on the additive genetic
variation. We will discuss additive genetic variance and
dominant genetic variance in the next section when we
describe the variance-component model. The heritability
can be used to predict the effects of searching for genes.
It is easier to detect genes determining a trait if herita-
bility of the trait is stronger. But heritability analysis
does not provide any information about the locations
of the contributing genes. This is the purpose of
linkage/LD analysis.

The phenotypic variance (Vp) is observed, but the
genetic variance (Vg) has to be estimated. If genotype
data are available, marker-based methods can be
employed to estimate heritability.*>! Note that heri-
tability can be estimated without knowing genotypes.
To estimate heritability from phenotypes without
genotype data, one would need to make additional
assumptions or focus on specific pairs of relatives so
that phenotype variance is not completely described
by environmental effects. A popular approach is to
use twins!® and assume equal environmental effects.

Linkage Analysis

As QTL are unknown, linkage analysis studies the
coinheritance of phenotypes and marker genotypes
within families. One expects relatives who have similar
phenotypes to have similar genotypes at marker loci
close to genetic loci that influence the trait, while mark-
ers at distant loci behave stochastically according to
the rules of Mendelian inheritance. We will review two
of the most commonly used methods and their exten-
sions: Haseman—Elston regression” and variance-
component model. !

Two genes are identical by descent (IBD) if one is a
copy of the other or if both are physical copies of the
same ancestral gene. Thus a parent and a child always
share one allele IBD at each locus. Two siblings can
share 0, 1, or 2 alleles IBD at each locus with probabil-
ities 1/4, 1/2, and 1/4, respectively. For a distant pair
of relatives in a complex pedigree, it is impossible to
enumerate all the possibilities of allele sharing and all
the breeding types, to calculate the allele sharing IBD
probabilities between the pair. It is even more difficult
for multipoint analysis. Statistical methods have been
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developed to estimate the allele sharing IBD proba-
bilities between any pair of a pedigree.**!% Some
methods are deterministic while most are stochastic
(Monte Carlo techniques).

If linkage exists between a trait locus and a marker,
then alleles sharing IBD at the two loci are correlated.
The Haseman and Elston!! method (H-E method) is
derived for sib pairs and for regressing the squared
sib-pair trait phenotype difference on the proportion of
alleles the sibs are estimated to share IBD at a marker
locus. Let y;; and y,; be the normalized phenotype
values of the jth sib pair such that the population mean
is zero. Let 7; be the estimated proportion of alleles the
Jjth sib pair shared IBD at a marker locus. The slope
from the regression line

Gy — y)° = Bo + WP + ¢

indicates whether a linkage exists between the trait
locus and the marker locus. The intercept f, is of no
particular interest, and ¢; is the residual. The slope
is negatively proportional to the genetic part of the
phenotype variance. If f§ is negative then there exists
linkage between a trait locus and the marker locus,
because it correlates similarity at a trait locus with
similarity at the marker locus (sharing more alleles
IBD makes the phenotype difference between the sib
pair smaller). For each marker on a genetic map, one
can carry out the regression and find out which mark-
ers are statistically significantly linked to the trait loci.
The trait loci are close to these chromosome locations.
With more dense maps available because of advanced
technology, one can do two sweeps to save computa-
tional time: The first sweep is on a relatively sparse
map to find the rough locations of the trait loci, and
the second sweep is on all the available markers in a
neighborhood of those rough locations. Note that this
is a multitest problem, but the p-values are not adjusted.

Extensions of the H-E method have been developed
to increase statistical power. Wright!'!! pointed out
that sib-pair QTL linkage information is not fully uti-
lized by considering only phenotype differences of
sib pairs. Further information can be obtained from
phenotype sums of sib pairs. Sham and Purcell® pro-
posed a combined H-E method. This method regresses
a linear combination of (yi; + y2,)° and (y1; — y))°
on mj, the estimated proportion of alleles shared IBD
at a marker locus by sib pairs. Elston et al.l'® intro-
duced an improved H-E method which regresses the
products of the sib phenotypes, y;; y,; on the esti-
mated proportion of alleles shared IBD. Olson and
Wijsman'” extended the H-E method for use with
general pedigrees, considering (y;; — yzj)2 for all
relative pairs. These H-E methods typically use the
Wald statistic based on the SE from ordinary least
squares.




For the variance-component model,*® the pheno-
type values of a pedigree are assumed to follow a mul-
tivariate normal distribution. Let ¥; = (3;1, yi2» --.)
be the phenotypes of the ith pedigree. If there are n
trait loci influencing the trait, then the variance-
component model can be written as

n
Yk = p+ xaf + Z + Vi t oGk (1)
=1

where p is the grand mean, x; is a vector of covariates
(e.g., age, gender), B represents fixed effects corre-
sponding to the covariates, y,; is the effect of the jth
QTL, and ¢; represents a random environmental
deviation. Assume y;;; and &; are uncorrelated random
variables with mean 0 and variance o2 and o2, respec-
tively. With both additive and dominant effects,
o} = ok + o}, where o7; is the additive genetic var-
iance and aéj is the dominant genetic variance. The
variance of y; is

n
2 _ 2 2
(;'y—EO'j+ae
j=1

and the phenotype covariance between a pair of
relatives indexed by k and m is

COV(yix, yim) = ElOi — B)0im — )]

n

2 2
E I”kmjaaj + Kkmj“dj]
=

where 7,,; is the proportion of alleles shared IBD at
the jth QTL by the relative pair and ., is the jth
QTL-specific probability of the pair of relatives sharing
two alleles IBD. Both 7,,; and «g.; can be estimated
from genetic marker data.

To search for the QTL that influence the phenotype
values, one would focus on one QTL at a time. If we
focus on the jth QTL, then model (1) can be written as

Vie = b+ xaB + yu; + 8 + e

where g, represents the random genetic effect by all
QTL other than the jth QTL. The covariance between
a pair of relatives indexed by k and m is then

COV(Yit, Yim) = TmjO2; + Kimjos; + 20xm0s
+ 5km63 (2)

where O, = E[mm;)/2 is the expected kinship coeffi-
cient over the genome and Op, = E[kim;] is the
expected probability of sharing two alleles IBD.

The variance-component model uses likelihood
ratios to test significance of each marker. Let
A=Y — (up...) — [(x, xi.-..)f] be the cen-
tered phenotype values of the ith pedigree and Q; be
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its covariance matrix at the jth QTL with elements
given by Eq. (2). Assume Y; follows a multivariate nor-
mal distribution. The log-likelihood of the ith pedigree
with ¢ individuals at the jth QTL is

ln Li(/“’ ﬁa azﬁ O%j) Gé) GczilYi, (xi17 Xi2y - ))

ot 1 | R
= 21n(27t) 2In(]Q,|) 2AiQi A, (3)

If there are N pedigrees, then the log-likelihood of
all pedigrees is simply the sum of the log-likelihood
for each pedigree. Likelihood estimation results in con-
sistent parameter estimates even when multivariate
normality assumption is violated.®! Simulations con-
firm the consistency of variance-component estimates
of genetic effect size.l'”!

LOD Score

If the jth QTL in formula (2) does not contribute to
the trait under study, then Eq. (2) becomes a reduced
model

COV(Yit, Yim) = 20pn02 + Sim0s (4)
and the log-likelihood (3) is reduced to

l-nLi(.u'a ﬁ) Gé: O'é'Y;', (xilaxiZa o ))

t 1 . | R
= —5 Q) — 3 (Qf]) - A@)7'A  (5)

where Q] is a covariance matrix at the jth QTL with
elements given by Eq. (4). If there are N pedigrees,
then the log-likelihood of all pedigrees for the reduced
model is the sum of the log-likelihood for each
pedigree.

The hypothesis of no effect of jth QTL can be tested
by likelihood ratio test. To this end, we calculate the
logarithm of the odds (to the base 10) (LOD) score

~

L;
LOD = —log;y=
£10 7

Here L is the likelihood of full model (3) with param-
eters estimated by maximum-likelihood method, and
L. is the likelihood of reduced model (5) with param-
eters estimated by maximum-likelihood method.

It is typical to interpret a LOD score above 3 as evi-
dence of linkage. Roughly speaking, a LOD score of
3 corresponds to a p-value of 0.0001. This is much
more stringent than the usual significance level of 0.05
and is for controlling the false positive rate when per-
forming multiple tests. To find a chromosome location
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(marker) close to a QTL, we need to scan the genome
at many markers.

IBD Estimation

Both H-E and variance-component methods rely on
IBD sharing probabilities between relatives within a
pedigree, but it is impossible to obtain IBD sharing
probabilities directly at QTL. Many statistical methods
have been developed to estimate IBD allele sharing at
QTL from genetic marker data. The idea is that if a
QTL is close to a marker, then recombination between
the QTL and the marker is rare. Consequently, IBD
allele sharing is almost identical at the QTL and the
marker. More accurate estimate of IBD allele sharing
at a QTL can be obtained by using multiple markers
in the vicinity of the QTL.

Davis et al ' proposed an algorithm to calculate IBD
probabilities for complicated pedigrees when there is no
missing genetic marker information. The method of
Fulker, Cherny, and Gardon!'lisa multipoint estimation
of IBD allele sharing for sib pairs, and Almasy and Blan-
gero!¥ extend this multipoint approach to arbitrary pairs
in a pedigree. Jung, Fan, and Jin'® estimate IBD allele
sharing at a QTL by a linear combination of IBD allele
sharing at multiple markers in the vicinity of the QTL.

LD and Fine Mapping

Linkage analysis is a pedigree-based method that relies
on the phenomena of recombination (each chromo-
some that an offspring receives from a parent consists
of segments derived from both grandparents). In prac-
tice, one can only obtain DNA samples from a few
generations of a pedigree. It is unlikely to observe
recombination events between two closely linked mark-
ers from pedigree data. Therefore linkage analysis has
limited resolution and is usually not able to localize
genes within 1.0cM.["!

As a complement to linkage analysis, association
mapping or LD mapping is a population-based analy-
sis and offers an approach for obtaining more precise
location of disease genes—the so-called fine mapping.
LD refers to the statistical dependence of alleles at dif-
ferent loci, i.e., P(AB) # P(A)P(B). A frequently used
measure is the correlation coefficient A% Usually
fine mapping uses dense markers of SNP. A SNP gives
rise to two alleles. Consider two biallelic loci with
alleles A and a at one locus and alleles B and b at
the other, where labeling is arbitrary. Let 74, 7., 7g,
and m, be the allele frequencies, and let map, 74p,
Tap, and 7,y be the four haplotype frequencies. Then

AZ = (nAB - ’RZATCB)Z/(TCAnaﬂ:Bnb)
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A Chi-square test can be constructed to test the
hypothesis of independence between marker pairs.**!
Note that linkage always implies association, but asso-
ciation (correlation) between two markers does not
necessarily imply linkage, because the correlation
could be because of population stratification. So asso-
ciation mapping has high resolution but with a high
false positive rate. One can use linkage analysis to scan
the genome for markers affecting a trait, and then use
association mapping in the neighborhoods of those
markers for precise locations of the QTL.

For mapping QTL one has to detect correlation
between markers and quantitative traits. Luo, Tao,
and Zeng”!! proposed a likelihood analysis method
to estimate LD between a marker and a QTL using
unrelated individuals in a natural population. With
this maximum-likelihood analysis, the QTL genotypes
are considered as missing data and an expectation-
maximization algorithm is applied to infer the geno-
type information. Then QTL allele frequencies, LD
between the QTL and the marker under consideration,
and QTL effects are estimated simultaneously. Thus
the association analysis does not require pedigree data,
though pedigree information can be used to avoid
bias because of population stratification and to have
additional power.

Association studies can also be regarded as identity
by state (IBS) analysis. Two alleles are IBS if they are
of the same type but are not necessarily pure copies.
Two individuals sharing alleles IBS at a marker are
not necessarily sharing alleles IBD. The regression
and variance-component methods can be applied to
both pedigree data and population data using allele
sharing IBS. LD between an SNP and a QTL can be
achieved by incorporation of the mean effects model
as a measured covariate® 2" with likelihood
approach. Consider a QTL with alleles A and a that
contribute to the phenotype y. There are three geno-
types, G = AA, Aa, and aa, at the SNP. Because the
contribution of the SNP to trait y depends on the
genotype G, the mean of the trait E(y) will depend
on the genotype G as well. Assuming additive effects
of SNP alleles, the mean of the trait can be modeled as

E(y|G) = ¢ + BNa

where N, is the number of A alleles corresponding to
genotype G, and f is the regression coefficient describ-
ing the strength of the influence of the genotype on the
trait.?! Tt is possible to test whether the phenotypic
mean differs between individuals with different geno-
types by comparing the likelihood of a model with
genotype-specific trait means to that of a model with
equal means for all genotypes.
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Combined Linkage and LD Analysis

Family pedigree data can be used for both linkage and
LD analysis, and population data can be used in LD
analysis. Combined linkage and LD mapping would
allow the use of both pedigree and population data,
reduce the false positive linkage because of the use of
pedigree allele sharing IBD information, and at the
same time allow the use of more dense maps (e.g.,
SNPs) for fine mapping because of LD analysis. Com-
bined linkage and LD analysis will have more power in
detecting QTL.

Almasy et al.?! proposed an approach to use allele
sharing IBS information between unrelated individuals
to augment the linkage information obtained from
allele sharing IBD among relatives. This is an exten-
sion of the variance-component method for linkage
analysis of Almasy and Blangero.”! Fulker et al.*®
proposed a combined linkage and LD analysis using
sib pairs. Their likelihood approach models linkage
parameters in the covariance structure while they
model LD parameters on the means of the phenotype.
The idea is that population stratification will influence
sib-pair means of the phenotype but not sib-pair differ-
ences. So modeling the gene effect differently for pair
means and pair differences will reduce spurious LD.
Fan and Xiong®" proposed a two-point method based
on variance-component models. In their model, link-
age information is contained in the variance—
covariance matrix based on family data, and the LD
information is contained in the mean parameter based
on both family pedigree and population data.

Software

The literature on linkage and LD analysis is very rich,
and software has been developed for QTL mapping in
abundance. The webpage http://www.nslij-genetics.
org/soft/ has a comprehensive list of software for
genetic linkage analysis, marker mapping, LD map-
ping, and pedigree drawing. Selecting an analysis
method and software depends on the experimental
design (twin study, sib-pair data, general pedigree, nat-
ural population, etc.).

Regression and variance-component methods are
commonly used for QTL mapping. The H-E regres-
sion method using sib-pair data is available in GENE-
HUNTER, and the regression method is extended to
general pedigree data in Multipoint Engine for Rapid
Likelihood INference (MERLIN). The variance-
component method is available in GENEHUNTER,
MERLIN, and Sequential Oligogenic Linkage Analy-
sis Routines (SOLAR). We have been using SOLARM™
for combined linkage and LD mapping of QTL of
psychiatric disorders. Variance-component methods
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are more powerful than regression methods but with
more restricted assumptions such as normality of the
phenotypes. SOLAR is robust in phenotype distribu-
tion and it has a s-distribution option.

GENETICS OF COMPLEX DISEASES: THE
ENDOPHENOTYPE APPROACH

Linkage analysis techniques have been successfully
utilized to locate genes of rare Mendelian diseases;
however, these methods have had only marginal suc-
cess in locating genes associated with more common
complex (non-Mendelian) disorders such as neurologi-
cal and psychiatric diseases. Some of the reasons for
these difficulties include the disorders resulting from
small effects of many genes (polygenic disorders),
incomplete or low penetrance, clinical and genetic het-
erogeneity, the presence of phenocopies, and diagnosis
uncertainty. However, some recent successes have
resulted from the use of methods, which efficiently uti-
lize full pedigree structures in extended pedigrees, and
which employ QTL underlying disease phenotypes
(endophenotypes or intermediate phenotypes).l*”
These quantitative biological markers serve as covari-
ates that correlate with the main trait of interest (diag-
nosis) and serve to better define that trait or its
underlying genetic mechanism.*® Endophenotypes
therefore represent the genetic liability of the disorder
among non-affected relatives of affected individuals.

To qualify as an endophenotype of a disorder, the
trait in question must meet a number of criteria:

1. The trait must be present in affected individuals
and correlate with diagnosis and severity of
disease or age of onset.

2. The trait must reflect susceptibility and not be
the consequence of transient states.

3. The trait must be present in unaffected relatives
of affected controls with levels significantly
higher than in random controls.

4. The trait must be heritable.

Here we provide a brief overview of work being
undertaken as part of the Collaborative Study on the
Genetics of Alcoholism (COGA) project. The over-
arching goal of COGA is to identify genes that affect
the susceptibility to develop alcohol dependence and
related phenotypes. The gene mapping strategy
employed by COGA integrates quantitative endophe-
notypes derived from human electroencephalogram
(EEG) recording along with extensive psychiatric diag-
nostic tools. This methodology has resulted in the iden-
tification of several susceptibility genes, two of which
are summarized here.
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The COGA

Alcoholism is a complex disease influenced by underly-
ing biological susceptibility factors, by environmental
factors, and by complex interactions among genes
and between genes and the environment. Since its
inception COGA has carefully ascertained and
assessed a large sample of densely affected alcoholic
families, a sample of less densely affected families,
and a sample of comparison families unselected for
psychiatric status. This task was conducted to obtain
highly informative families and to obtain reasonable
power for genetic analyses. A unique approach taken
by COGA is the adoption of neuroelectric measures
as quantitative endophenotypes to the study of genetic
risk for the development of alcoholism and related dis-
orders. Inherent in this approach is the ability to study
neuroelectric phenomenon as phenotypes of cognition,
which has the potential to elucidate the genetic under-
pinnings of human brain oscillations.

COGA has reported several important linkage
findings for the major clinical phenotype, alcohol
dependence, as well as for related clinical features of
alcohol dependence such as smoking, depression, sui-
cidal behavior, and conduct disorder.?*3% A number of
the significant COGA linkage findings for alcoholism
have been consequent to highly significant linkage find-
ings using neuroelectric endophenotypes.*’* These
significant linkage findings have been followed up with
LD studies to identify specific genes within these
regions of linkage.

The Utility of EEG as a Quantitative
Endophenotype

Recording brain electrical activity using scalp electrodes
provides a non-invasive, sensitive measure of brain
function in humans. These neuroelectric phenomena
may be recorded during the continuous EEG when
the subject is at rest, or one may record the time-
specific event-related potentials (ERPs) and event-
related oscillations (EROs) during specific cognitive
tasks. These neuroelectric phenomena represent impor-
tant measurable correlates of human information pro-
cessing and cognition. They represent traits less
complex and more proximal to gene function than either
diagnostic labels or traditional cognitive measures
do.?® The human brain response, as measured by
recording and measuring EEG features, may be utilized
as phenotypes of cognition, and as valuable tools for the
understanding of some complex genetic disorders.**!
Two examples of the use of neuroelectric endophe-
notypes from the COGA project are summarized
below. These neuroelectric measures were obtained
using two types of EEG experiment: eyes closed resting
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EEG and the visual oddball ERP. The neuroelectric
endophenotypes used in the examples have been shown
to adhere to the endophenotype qualification criteria
outlined above. The first example uses resting EEG
band power which has been shown in several studies
to have increased power in alcoholics, offspring of
alcoholics, and high-risk individuals, particularly
during the resting condition.®" Using twin studies,
resting EEG f power has been found to be highly heri-
table with estimates between 80% and 90%.2%! The sec-
ond example uses measures derived from the P300
wave evoked during the visual oddball event-related
experiment; these measures were designed to quantify
the EROs underlying the P300 potential. Several stud-
ies have demonstrated that reduced P300 amplitude is
found in alcoholics and their offspring, and is asso-
ciated with the risk for alcoholismP**¢37! suggesting
that the P300 is a useful endophenotype indexing
familial risk for alcoholism. A P300 amplitude heri-
tability estimate of 60% has been established through
a meta-analysis of five P300 twin studies.*®

Example 1: Spontaneous # Band (16-20 Hz)
EEG Oscillations during the Eyes Closed
Resting State

EEG recordings were obtained with non-invasive scalp
electrodes in the individuals who were awake but eyes
closed. The filtered, artifact-free data were transformed
into horizontal bipolar derivations. EEG absolute
power between 3 and 28 Hz were subdivided into 8
(3.0-7.0Hz), «1 (7.5-9.0Hz), «2 (9.5-12.0Hz), Bl
(12.5-16.0Hz), B2 (16.5-20.0Hz), and B3 (20.5-
28.0Hz). A singular value decomposition procedure?*”!
was utilized to obtain phenotypic data for each of the
six EEG power bands.

Using the EEG-$2 phenotypic data, a variance-
component linkage analysis” revealed significant link-
age on a region of chromosome 4p, with a LOD score
of 5 in alcoholic families (Fig. 1). Furthermore, a
microsatellite marker in GABRB! in the center of
this region showed LD with EEG-$2. A combined
linkage/LD analysis®®® using this marker resulted in
an increased LOD score of 6.5, which equates to an
association p-value of 0.004.%! The estimated disequi-
librium parameter (pq = 0.57) indicated LD between
the GABRBI microsatellite marker and the functional
QTL. In addition, a novel non-parametric multipoint
linkage technique also gave strong evidence for linkage
in this region (P < 1.0 x 107%)using the same EEG-52
phenotype !

These results implicated the GABA 4 gene cluster as
containing the causative functional genetic variants
influencing the phenotype. This cluster includes the
GABRA2, GABRA4, GABRGI, and GABRBI genes.
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Fig. 1 Linkage curve for the 2 band resting eyes closed
EEG phenotypic data on chromosome 4. The maximum
LOD score of the linkage curve is noted near the location
of the GABRBI microsatellite marker and a cluster of
GABA, receptor genes. The dataset consisted of approxi-
mately 1500 individuals from 250 families.

The actions of GABA , receptors are believed to be a
fundamental requirement for the generation of high-
frequency EEG oscillations (f and y band), and block-
ade of these receptors has been observed to result in
the loss of synchronization of these oscillations.™!!
Also, a number of important effects of alcohol are
mediated by GABA transmission,*? making GABA
receptors excellent candidate genes that may affect
the risk of alcoholism.

Subsequent SNP analyses indicated that the
GABRA2 GABA, receptor gene is associated with
both the Diagnostics and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV) diagnosis of
alcohol dependence and the EEG-$2 phenotype
data.®® Thus with the use of the EEG endophenotype,
a gene was found relating central nervous system (CNS)
disinhibition to genetic risk for alcohol dependence
and perhaps related disorders. For the most significant
SNP, individuals with a particular risk genotype had
significantly elevated f power compared to individuals
with other genotypes. An association between the
GABRA2 GABA, receptor gene and diagnosis of
alcohol dependence has recently been replicated in
independent studies.*44

Example 2: Evoked # Band (3-7 Hz) EEG
Oscillations during a Visual Oddball Task

EROs elicited during the target condition of a visual
oddball task were analyzed using the S-transform
time-frequency decomposition method™®! and utilized

Genetic Linkage and Linkage Disequilibrium Analysis

as phenotypes of cognition.?? A time window corre-
sponding to the occurrence of the P300 ERP (300-
700 msec) and frequency windows corresponding to
the § (1-3Hz) and 6 (3-7Hz) bands were used to
derive phenotypes from the single trial evoked
response EEG data. Fig. 2 depicts a grand mean
evoked response potential for a frontal and posterior
scalp electrode (Fig. 2A) with corresponding time-
frequency distributions (Fig. 2B and C). It can be
observed in the head plot insets of Fig. 2B and C that
the 6 band ERO component of the P300 response has a

e
© » ® Ny
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Fig. 2 Illustration of the ERO phenotypes used in the
genetic analysis of visual oddball data. Traditional grand
averaged evoked response potentials are depicted in (A) cor-
responding to target condition data for a frontal (Fz) and
posterior (Pz) electrode. The P300 event is observed as a posi-
tive-going deflection starting approximately 300 msec after
the target stimulus presentation. Time-frequency representa-
tions (TFR) of the target condition data (calculated using the
S-transform) are depicted in (B) for the Fz electrode and (C)
for the Pz electrode. These representations are obtained by
averaging the instantaneous amplitude of the individual trial
TFR data, and hence incorporate both stimulus phase locked
and nonphase locked energy. Mean values calculated from
individual subjects within time-frequency windows of interest
were used as phenotypes in the genetic analysis. The inset
head plots in (B) and (C) illustrate the distribution of these
phenotypic measures across the head averaged within the 8
and ¢ frequency bands and during the “P300”’ poststimulus
time window (300-700msec). (View this art in color at
www.informaworld.com)
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Fig. 3 Linkage curve for the target condition visual evoked
# band oscillation phenotypic data (300-700 msec and 6 band
TFROI) on chromosome 7. The maximum LOD score of the
linkage curve is noted near the location of the cholinergic
muscarinic receptor gene CHRM?2. The dataset consisted of
approximately 1300 individuals from 250 families.

frontocentral distribution on the head, whereas the
& component shows a more posterior distribution.

A genome-wide variance-component linkage analy-
sis of frontal channel # band ERO data revealed signif-
icant linkage (LOD = 3.5) on chromosome 7q at
171cM (Fig. 3). A cholinergic muscarinic receptor
gene, CHRM?2, resides near this locus and is a likely
candidate to account for these linkage findings. The
results of subsequent association analysis of the pheno-
type using SNPs genotyped within and flanking the
CHRM? gene are provided in Table 1. Significant asso-
ciation is observed for SNPs located in the upstream

regulatory regions of the gene. It is hypothesized that
the genetic underpinnings of these EROs and ERPs
are likely to stem from regulatory genes that control
the neurochemical processes of the brain and hence
influence neural function. Significant linkage and asso-
ciation were only obtained for the target and not for
the nontarget condition of the visual evoked response
experiment, suggesting a functional significance asso-
ciated with cognitive processing of the target condition
in the visual oddball paradigm for the CHRM2 gene.??

These findings implicate the possible role of CHRM?2
in the generation and modulation of evoked oscilla-
tions and the evoked response. Muscarinic receptors
influence many effects of acetylcholine in the central
and peripheral nervous system and hence are expected
to have a direct influence on P300 generation.*s! More-
over, the cholinergic muscarinic genes have a major
role in memory and cognition,[‘m and the function of
acetylcholine has been demonstrated with regard to
stimulus signiﬁcance,“sl selective attention,* and P300
generation.’”

Recent evidence from the COGA project indicates
that the CHRM?2 gene is not only related to the EROs
associated with P300, but also clinical diagnosis.
Significant linkage and association were reported for
the CHRM?2 gene with a diagnosis of alcohol depen-
dence and depression.*” Thus genes important for the
expression of the endophenotype (brain oscillations) help
in identification of genes that increase the susceptibility
for risk of alcohol dependence and related disorders.

CONCLUSIONS

A few of the current relevant issues regarding genetic
mapping of complex traits will now be discussed.

Table 1 Genetic association p-values (uncorrected) for the frontal electrode visual oddball § phenotype with CHRM2 SNPs

Measured genotype association

Gamete competition

CHRM?2 SNPs (allele frequencies) Additive model—p-value Dominant model—p-value p-Value
81824024 (G: 0.33/T: 0.67) 0.0008*** 0.09 0.007**
1rs2350786 (A: 0.29/G: 0.71) 0.015* 0.11 0.02*
rs8191992 (A: 0.41/T: 0.59) 0.53 0.48 0.14
rs1378650 (C: 0.58/T: 0.42) 0.2 0.68 0.015*

These results were obtained using a Caucasian-only subset of the original data to curtail possible stratification effects. The additive model mea-
sured genotype results (implemented in SOLAR) were obtained using a population-based measured genotype SNP model in which AA SNP geno-
types are coded as —1, Aa genotypes are coded as 0, and aa genotypes are coded as 1. The dominant model measured genotype results were
obtained using a population-based measured genotype SNP model in which AA and aa SNP genotypes are coded as 1 and Aa SNP genotypes
are coded as 0. Age, gender, age-squared, and age by gender were included in the measured genotype models as fixed effects on the phenotype trait
mean. The gamete competition association method (implemented in MENDEL) tests whether transmission of an allele is correlated with higher
(or lower) trait values in the recipient of the allele. Age and gender effects on the quantitative traits were removed by linear regression prior to the
gamete competition analysis.

*p < 0.05.

**p < 0.01.

***p < 0.001.
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One important question is how large a sample size is
required to have a reasonable power to detect link-
age/association if it exists. Pfeiffer and Gail®"! calcu-
lated sample size for population- and family-based
case—control association studies using additive scores
for various choices of marker allele frequencies
(Table 2 in Ref.Pl1)). Olson and Wijsman®? considered
several designs and sample size requirements in detect-
ing LD. The simulation of Ekstrgm®*! shows that the
LOD score with 300 sib pairs is much smaller than
the LOD score with 100 four-sib nuclear families with-
out information on parental genotypes using variance-
component linkage models. This confirms that a
smaller number of larger pedigrees are more informa-
tive than a larger number of smaller pedigrees for link-
age analysis. Multipoint analysis gives increased power
over single-point analysis to map QTL. Similarly, mul-
titrait analysis provides accurate estimates of QTL
positions.” Multitrait methods use multivariate sta-
tistical models (multitrait single-point and multitrait
multipoint). The methods described in section “Map-
ping QTL’’ can be extended to multitrait cases.

Sample size depends on required level of statistical
significance, required power, design, test statistic to
be used, and factors such as magnitude of effect. For
linkage and LD analysis, such factors include the pro-
portion of variance explained by QTL, gene action,
marker heterozygosity, and density. The closed-form
formula for sample size calculations is available in
the literature. For the variance-component model, the
generalized likelihood ratio test has a central Chi-
square distribution under null hypothesis (no genetic
component in phenotype variance) and has a non-
central Chi-square distribution under alternative
hypothesis. For sibship data and the variance-
component model, Sham et al.> derived closed-form
expressions of the non-centrality parameter, is, per
sib pair. A critical value is obtained based on the
required significance level and the central Chi-square
distribution. Then the required total non-centrality,
At, can be calculated based on the required power,
the critical value, and the non-central Chi-square
distribution under alternative hypothesis. The number
of required sib pairs is given by

N = Ir/2s

The non-centrality parameter per sib pair is:

As ~ VE/8 4+ 3V3/16 + VaVp /4
+ TV /64 + 63VE /512 + 45V2V3 /63
+ TVaAVp/16 + 31VA V)
+ V5[3Va/8 + 15V /32 + 9V3V, /8 + 21V, V3 /8]
+ V2[3Vi/8 + 9V3 /16 + 3VaVp /4]

Genetic Linkage and Linkage Disequilibrium Analysis
for linkage analysis
As = (3Va/2 + 5Vp/4)/(Vx + 2Vs)

for association test based on difference between-
sibship means, and

/?.s = (VA/2 -+ 3VD/4)/VN

for association test based on difference within sibship,
where Va, Vp, Vs, and Vy are the additive, dominant,
residual shared, and residual nonshared proportions
of variance. If the association test is based on indivi-
dual differences, then the non-centrality per sib pair
is the sum of the non-centrality parameters per sib pair
of the between-sibships and within-sibship tests. The
critical value is 13.8 for a required significance of
LOD = 3. With this critical value, the total non-
centrality to have 80% power is 20.8. So given Vi,
Vb, Vs, and Vy, one can calculate N, the required
number of sib pairs. Purcell, Cherny, and Shaml®
developed software for sample size calculation, which
is available online (http://pngu.mgh.harvard.edu/
~purcell/gpc/). The closed-form formula of sample
size calculations for a popular association test, the
transmission disequilibrium test that is not discussed
in this article, can be found in Ies.P”!

Finally, it is expected that the future of genetic map-
ping will be influenced by the emerging microarray
technologies. Genotypes and gene expressions of thou-
sands of genes can be obtained simultaneously using
microarrays. This provides huge amounts of data.
Some statistical issues in microarray data analysis are
discussed in Smyth, Yang, and Speed.*®! One of the
biggest issues with such data is that of multiple statis-
tical testing. A possible solution is to use linkage anal-
ysis to locate the approximate locations of QTL and
then use microarray to study genes around those
locations. Linkage/LD analysis methods can also be
extended to microarray data.l®”
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