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Abstract

Objective: Decomposition of event-related potential (ERP) waveforms using time-frequency representations (TFR’s) is becoming
increasingly common in electrophysiology. The P300 potential is an important component of the ERP waveform and has been used
to study cognition as well as psychiatric disorders such as alcoholism. In this work, we aim to further understand the nature of the
event-related oscillation (ERO) components which form the P300 wave and how these components may be used to differentiate alcoholic
individuals from controls.
Methods: The S-transform decomposition method is used to derive TFR’s from single trial and trial-averaged ERP data acquired during
a visual oddball task. These TFR’s are averaged within time and frequency windows to provide ERO measures for further investigation.
ERO measures are compared with conventional ERP amplitude measures using correlation analyses. Statistical analyses was performed
with MANOVA and stepwise logistic regressions to contrast an age-matched sample of control (N = 100) and alcoholic male subjects
(N = 100).
Results: The results indicate that the P300 waveform, elicited using infrequent salient stimuli, is composed of frontal h and posterior d
activations. The frontal h activation does not closely correspond to any of the conventional ERP components and is therefore best ana-
lyzed using spectral methods. Between group comparisons and group predictions indicate that the d and h band ERO’s, which underlie
the P300, show deficits in the alcoholic group. Additionally, each band contributes unique information to discriminate between the
groups.
Conclusions: ERO measures which underlie and compose the P300 wave provide additional information to that offered by conventional
ERP amplitude measures, and serve as useful genetic markers in the study of alcoholism.
Significance: Studying the ERP waveform using time-frequency analysis methods opens new avenues of research in electrophysiology
which may lead to a better understanding of cognitive processes, lead to improved clinical diagnoses, and provide phenotypes/endophe-
notypes for genetic analyses.
� 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

The P300 response is a well known and well studied phe-
nomenon which represents an important correlate of higher
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cognitive brain processing. This response is defined as a
positive electric potential deflection elicited approximately
300–500 ms following the occurrence of infrequent salient
stimuli during an oddball paradigm. The P300 potential
has been proposed to reflect attentional resource alloca-
tion, context updating (Donchin and Coles, 1988; Polich
and Herbst, 2000) and context closure (Verlerger, 1988).
The amplitude of the P300 has been associated with levels
gy. Published by Elsevier Ireland Ltd. All rights reserved.
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of central nervous system inhibition, whereby inhibition of
irrelevant networks accompanies excitation of the function-
ally relevant networks (Elbert and Rockstroh, 1987; Bir-
baumer et al., 1990; Fell et al., 1997). The P300 potential,
therefore, represents an important measure of central ner-
vous system processing of stimulus information.

In addition to providing a measure of cognitive behav-
ior, the P300 amplitude is known to have clinical relevance
(Polich and Herbst, 2000). For example, the visual P3b
component, which corresponds to the P300 response with
a maximal posterior distribution, shows reduced amplitude
in individuals diagnosed with alcoholism (Porjesz and
Begleiter, 1996; Porjesz et al., 1998). Similar effects have
been observed in abstinent alcoholics (Porjesz and Begleit-
er, 1985) and in the offspring of alcoholics who can be con-
sidered at high risk to develop alcoholism (Begleiter et al.,
1984; Porjesz and Begleiter, 1990; Berman et al., 1993; Hill
and Steinhauer, 1993; Steinhauer and Hill, 1993; Rama-
chandran et al., 1996; van der Stelt, 1999). Therefore, in
addition to the P300 amplitude having predictive capacity,
it also has value as an index of vulnerability of alcoholism
(Polich et al., 1994). These findings, along with evidence
that the P300 amplitude is up to 60% heritable (O’Connor
et al., 1994; Van Beijsterveldt and Boomsma, 1994; Van
Beijsterveldt, 1996; Katsanis et al., 1997; Almasy et al.,
1999), has led to utilization of the P300 amplitude as an
endophenotype of the risk to develop alcoholism (and
related disorders) and led to its use in genetic studies aimed
at identifying risk alleles of alcoholism.

Increasing importance is now placed on the study of
scalp-recorded neuroelectric oscillations in neurophysiolo-
gy (Pfurtscheller and Lopes da Silva, 1999; Varela et al.,
2001; Freeman, 2004a,b). This interest has stemmed from
a recognition that different oscillatory responses may be
attributed to different functional responses such as memory
and integrative functions (Basar et al., 2001c). The form of
these oscillations is expected to vary widely and research
aimed at understanding how these forms might relate to
the various cognitive functions is ongoing. For instance,
there is increasing evidence to indicate that oscillations
within specific frequency bands, ranging from d (1–3 Hz)
to c (>28 Hz), are related to specific cognitive functions
(Basar-Eroglu et al., 1996a; Basar et al., 1997, 1999,
2000, 2001c; Klimesch et al., 1997a, 2001; Schurmann
et al., 1997; Schurmann and Basar, 1999; Doppelmayr
et al., 2000; Sakowitz et al., 2000; Kolev et al., 2001; Rohm
et al., 2001; Schurmann et al., 2001; Sauseng et al., 2002).
We can expect that subtle cognitive responses will depend
on the details regarding the timing of these oscillatory
responses, their transitory nature, the spatial distribution
of the oscillatory generators, phase synchronization,
inter-frequency relations and other dynamic properties.
Consequently, the application of new analytic methods in
the study of these oscillations may reveal new insights into
cognitive functioning. However, it is still an open question
as to what extent evoked potentials are a result of stimulus
generated modulations of ongoing oscillatory activity and
of stimulus generated impulses superimposed on ongoing
activity. Our methodology, based on the analysis of oscilla-
tions, is an alternative method of describing the character-
istics of the recorded signals; its results are not dependent
on the exact neurophysiological causes of the measured
scalp activity, and thus not dependent on the answer to
the question about the nature of evoked potentials. The
oscillations described here are those of a mathematical
character implicit in any time-frequency analysis; to what
extent they correspond to neurophysiological oscillations
is not determinable from the data discussed here.

The application of time and frequency domain methods
to the ERP has led to rich representations of the oscillatory
components of these highly non-stationary waveforms and
the analysis of both the time and frequency components of
the ERP may contribute to a better neurophysiological
understanding of stimulus-related brain functioning. Using
such analysis methodologies, a number of authors have
suggested that the P300 component is primarily formed
by transient oscillatory events in the d and h frequency
bands (Basar-Eroglu et al., 1992; Kolev et al., 1997; Yorda-
nova et al., 2000, 2003; Schurmann et al., 2001). In a sim-
ilar way the earlier arriving ERP components such as the
N100, P200 and N200 have been shown to be primarily
composed of high h and a band oscillations (Klimesch,
1999; Klimesch et al., 2004; Gruber et al., 2005).

The exact mechanism of ERP formation through super-
position of the component oscillations is still a matter of
debate. The two main competing models of ERP formation
within the oscillatory framework, are amplitude modula-
tion, in which the ERP amplitude is modulated at a single
trial level, or partial phase resetting, in which the phase of
ongoing oscillations is reset following the stimulus presen-
tation and amplitude enhancement occurs through trial
averaging (Makeig et al., 2002; Penny et al., 2002). Recent
data indicate that the phase resetting model is more impor-
tant in the formation of early evoked components, such as
the N100 (Makeig et al., 2002; Gruber et al., 2005);
whereas, amplitude modulation has greater importance
for the generation of the later ERP components, such as
the P300 (Fell et al., 2004; Shah et al., 2004). However,
these views are still subject to controversy (Yeung et al.,
2004; Kirschfeld, 2005; Makinen et al., 2005). Regardless
of the exact mechanisms underlying the formation of event
related responses, the application of time-frequency analy-
sis methods to EEG/ERP activity offers the ability to
uniquely characterize these signals.

The major goal of this work is to represent P300
response in terms of the summation of oscillatory compo-
nents, as elicited by salient stimuli during a visual oddball
paradigm, to determine the characteristics of these compo-
nents and show how they differ between alcoholic and con-
trol populations. This requires an understanding of the
ERO measures themselves and how they relate to the con-
ventional ERP amplitude measures. In Section 3.1 we
examine the nature of the P300 wave and its frequency
composition, consisting primarily of frontal h band
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oscillatory activity and posterior d band activity. This leads
to the analysis in Section 3.2 which is designed to investi-
gate whether the ERO subcomponents of the P300 can dif-
ferentiate the alcoholic group from the control group in a
similar way to the P300 amplitude, i.e. with alcoholic indi-
viduals having less power than controls. Finally, logistic
regression analyses, provided in Section 3.2, are designed
to investigate if the multiple ERO subcomponents of the
P300 offer unique and independent discriminatory
information.

2. Methods

2.1. Subjects

The experimental subjects chosen for analysis were 100
alcoholic males with an age-range of 18–47 years
(30.1 ± 5.3 years), and 100 age-matched normal male vol-
unteers (29.6 ± 5.7 years) who served as controls. Alcohol-
ics were diagnosed according to DSM IV criteria for
alcohol dependence and were recruited from Kings County
Hospital, New York. Prior to testing, they had been detox-
ified in a 30-day treatment program and none of the sub-
jects was in the withdrawal phase. Controls were
recruited either through notices posted in the SUNY
Health Science Center, New York, or through newspaper
advertisements. Only healthy volunteers without any per-
sonal and/or family history of major medical or psychiatric
disorders and substance-related addictive illnesses were
selected as control subjects. As an initial screening proce-
dure, all the participants filled out a questionnaire contain-
ing details of personal and family history for medical,
psychiatric and addictive disorders. However, alcoholic
subjects with past history of psychiatric disorders and with
comorbid diagnoses of substance use were also included in
this study. The clinical data were obtained using the Bard/
Porjesz adult alcoholism battery, a semi-structured clinical
assessment schedule based on DSM IV criteria for the eval-
uation of clinical details of alcohol dependence and alco-
hol-related medical problems. Subjects were requested to
abstain from alcohol and other central nervous system
(CNS)-acting substances for 5 days prior to testing. A
questionnaire, documenting drug use (alcohol, marijuana,
cocaine, hallucinogens, methadone, tranquilizer, antide-
pressants, neuroleptics, other prescribed medications, nico-
tine and caffeine) over the previous 5 days prior to testing,
was administered on the day of testing. Further, on the day
of testing, all the subjects underwent a urine screen and
breathalyzer test for the purpose of screening for recent
drug use. Positive findings on these tests would exclude
the subject’s EEG data from any analyses. The Mini Men-
tal State Examination (MMSE) (Folstein et al., 1975) was
used to screen the participants for organicity. The subjects
who had a history of major medical and neurological con-
ditions including head injury, which would account for
organicity, were also excluded from the study. All subjects
had normal or corrected normal vision, and none reported
hearing loss or impairment. An informed consent explain-
ing the scope and methods of the study was also obtained
before conducting the experiment. Experimental proce-
dures and ethical guidelines were in accordance with
approval from the Institutional Review Board (IRB).

2.2. Electrophysiological data acquisition

EEG activity was recorded using a 31-lead electrode cap
(Electro-cap International, Inc.), Eaton, OH that included
19 channels of the 10–20 International System (Fp1, Fp2,
F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4,
P8, O1 and O2) (Jasper, 1958) with 12 additional electrode
locations (AF1, AF2, FC1, FC2, FC5, FC6, CP1, CP2,
CP5, CP6, PO1 and PO2) following the American Electro-
encaphalographic Society (1991). The electrodes were refer-
enced to the nose and the ground electrode was placed on
the forehead. The electrooculogram was recorded with hor-
izontal and vertical leads placed at the outer canthus and
supraorbitally on the left eye. The impedance was main-
tained below 5 kX. The signals were amplified with a gain
of 10,000 by a set of amplifiers (Sensorium, Charlotte,
VT) with bandpass of 0.02–100 Hz. The data were recorded
on a Neuroscan system (Version 4.1) (Compumedics, Inc.,
El Paso, TX) with a sampling rate of 512 Hz. The subjects
were seated in a comfortable, reclining chair located in a
dimly-lit sound-attenuated RF-shielded room (IAC, Indus-
trial Acoustics, Bronx, NY) and were instructed about the
task and response requirements.

2.3. Experiment paradigm

The visual oddball paradigm employed by COGA has
been previously described (Cohen et al., 1994). Three types
of visual stimuli were presented: target (the letter X), non-
target (squares), and novel (a different colored geometric
figure on each trial). The probabilities of occurrence of
the trials were 0.125 for the target trials, 0.75 for non-target
trials and 0.125 for novel trials. Each stimulus shape sub-
tended a visual angle of 2.5�. Stimulus duration was
60 ms, and the interstimulus interval was 1.6 s. Subjects
were requested to respond to the target stimulus by press-
ing a button. Trials with baseline corrected amplitudes
greater than 75 lV were marked as artifact contaminated
and not analyzed further. The subject was presented with
a total of 35 target stimuli, 210 non-target stimuli, and 35
novel stimuli trials. Subjects whose data did not contain
a minimum of 20 artifact free trials in each condition were
not selected for analysis. Fig. 1 summarizes the nature of
the experiment paradigm and ERP data acquired. Fig. 1a
is a representation of the experiment design depicting the
three experiment conditions, the stimuli presentation and
trial durations, subject response requirements and the trial
presentation proportions. Fig. 1b depicts the layout of the
32 channel electrode montage on the scalp. Fig. 1c shows
example grand-mean ERP waveforms elicited by the three
stimuli conditions at the Pz electrode position (midline



Fig. 1. Illustration of the visual event-related experiment design, setup and grand mean data. A pictorial representation of the experiment design is given
in (a) which depicts the three trial conditions (target, non-target and novel), the trial presentation proportions, trial lengths and the response requirements.
The 31 electrode scalp locations are shown in (b); the analysis presented here has focused on data from the Fz, Cz and Pz electrode sites. Grand mean event
related waveforms are depicted in (c) for the Pz electrode (posterior midline) and the three experiment conditions. These grand mean waveforms were
calculated using data from 100 control subjects. The target condition elicits the largest amplitude P300 event-related potential which is absent during the
non-target condition.
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posterior) and highlights the character of the event-related
P300 wave which has its largest amplitude during the target
condition. Target condition common stimulus single trial
data from each subject were processed for analysis using
the S-transform time-frequency representation (TFR).
Additionally, ERP amplitude values were evaluated for
each subject by ‘peak-picking’ the low-pass filtered
(16 Hz) and baseline corrected trial-averaged event-related
waveforms using a semi-automatic peak-picking program.
The user of the program selected the appropriate time-win-
dows for the peaks, and the program picked the extremum
in the window; visual inspection allowed the user to adjust
for ambiguities and ensure consistency between the peaks
in different channels. Amplitudes were obtained for the
N100, P200, N200 and P300 event-related components
(cf. Fig. 4a). Waveforms that were ambiguous or artifact
contaminated were omitted from the analysis. The compo-
nents were analyzed in a within-group correlation analysis
with ERO derived measures and between-group analysis of
variance.

2.4. Time-frequency representation using the S-transform

Typical biological signals such as ERP responses are
non-stationary in character, i.e., the statistical properties
of the time-series vary as a function of time. This means
that traditional methods of time-series analysis such as
autoregressive methods and spectral analysis obtained via
the Fourier transform are not readily applicable since they
assume signal stationarity. In recent years attempts to
address these problems have been made using methods of
analysis based on time-frequency representations (TFR’s)
of the signals. Some commonly applied TFR methods
include the short-time Fourier transform (STFT); Cohen’s
class of generalized time-frequency distributions (GTFD)
such as the Wigner-Ville distribution (WD); and the con-
tinuous wavelet transform (CWT). These methods provide
a two-dimensional representation of the one-dimensional
time-series which describes the signals local oscillatory
behavior. These representations are redundant indicating
that the points in the two-dimensional space are not inde-
pendent. Each of these techniques offers differing strengths
and weaknesses (Mitra and Pesaran, 1999).

In this work, we have applied a recently developed TFR
technique termed the S-transform (Stockwell et al., 1996)
to obtain estimates of localized power of the ERP time-se-
ries. The S-transform can be thought of as a generalization
of the STFT (Gabor, 1946) and an extension to the CWT.
The S-transform generates a time-frequency representation
(TFR) of a signal by integrating the signal at each time
point with a series of windowed harmonics of various fre-
quencies as follows:

ST ðt; f Þ ¼
Z 1

�1
hðsÞ jf jffiffiffiffiffiffi

2p
p e�

ðt�sÞ2f 2

2 e�i2pf sds;

where h (s)is the time-domain signal, f is frequency, t is a
translation parameter, the first exponential is the window
function, and the second exponential is the harmonic func-
tion. The S-transform TFR is computed by shifting the win-
dow function down the signal in time across a range of
frequencies. The window function is Gaussian with 1/f2 var-
iance and scales in width according to the examined frequen-
cy. This inverse dependence of the width of the Gaussian
window with frequency provides the frequency-dependent
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resolution (multiresolution). In effect the S-transform is a
method of spectral localization with similarities to the con-
tinuous wavelet transform except using the concept of fre-
quency instead of scale. The instantaneous amplitude
(amplitude envelope) of the complex-valued S-transform
TFR may be calculated by taking the absolute value |ST(t,
f )|, the S-transform power is the square of the amplitude,
while the absolutely referenced local phase information
can be obtained using arctanðI½ST ðt; f Þ�= R½ST ðt; f Þ�Þ.

The S-transform derived measures used in the analysis
presented here were obtained from the single trial and tri-
al-averaged response. To obtain an estimate of event related
total power response, EROTOT (stimulus onset phase locked
plus non-phase locked oscillations), the squared instanta-
neous amplitudes (power) of the S-transform TFR were
averaged across single trials for each individual. To obtain
an estimate of event related phase-locked power response,
EROEVK, the S-transform TFR power matrix was calculated
for the averaged event-related response (single trial data
averaged after alignment to the stimulus onset) per individu-
al. Fig. 2 illustrates the calculation of the total and evoked
response TFR power data for a single individual. The total
power response, EROTOT, enhances events that occur in a
similar time range as related to the stimulus onset and irre-
spective of their phase relations. The evoked response,
EROEVK, enhances events which are phase-locked to the
stimulus and reduces all other energy, including events which
are subject to trial-to-trial temporal jitter. Fig. 3 depicts
examples of grand-averaged TFR’s of the visual oddball trial
data calculated using Pz electrode data from 100 control sub-
jects. The data are z-scored within each frequency and across
ig. 2. Depiction of the event related oscillation (ERO) calculation methodology. Two types of ERO measure are obtained using the S-transform time-
equency representation (TFR): evoked power ERO (EROEVK) and total power (EROTOT). The EROEVK measure is calculated within a subject from the
ial-averaged ERP response. Given enough trials this response will include only energy which is phase-locked to the stimulus onset since non-phase locked
scillations will be minimized by destructive interference. The EROTOT measure is calculated by averaging the S-transform TFR’s of individual trials per
bject. Since the EROTOT measure involves averaging of the amplitude envelope data (absolute value of the TFR) energy which is loosely time-locked to
e stimulus onset will survive the averaging process. Time-frequency ERO values are obtained from the TFR’s by averaging within windows specified in
able 1.
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experiment trial type separately for each ERO measure type.
It is evident from the TFR’s shown in Fig. 3 that most energy
is elicited in the first 700 ms after stimulus presentation. Also,
the target and novel conditions evoke increased post-stimu-
lus power in the lower frequency bands (<15 Hz) as com-
pared to the non-target condition (the corresponding ERP
waveforms are given in Fig. 1c). The EROTOT representa-
tion, when compared to the EROEVK data, show greater
amounts of energy occurring throughout the trial period at
both high and low frequencies. This reflects the inclusion
of energy which is not phase locked to the stimulus onset
in the EROTOT measure (total power response).

Average values were calculated for analysis from the S-
transform power TFR within time-frequency regions of
interest (TFROI’s) (Lachaux et al., 2003) specified by five
frequency band ranges and four time intervals given in
Table 1. These frequency windows have been selected
based on the well known ‘natural frequencies’ of brain
rhythms (i.e., d, h, a, b and c) which have been related in
the literature to various cognitive functions and brain
states (Basar et al., 2000). Specification of the time win-
dows and further sub-windowing of the frequency bands
was based on visual inspection of grand mean TFR data
and the spatial distribution of grand mean ERO estimates
over the scalp. The average time-frequency power values
are then obtained using:

EROTOT=EVK ¼ hTFRTFROIi

¼ 1

ðtmax � tminÞðfmax � fminÞ
Xtmax

tmin

Xfmax

fmin

jST ðt; f Þj2;



Fig. 3. Grand mean S-transform ERO time-frequency power representations of the three visual oddball experiment trial conditions (target, novel and
non-target) using data from the Pz electrode of the control subjects (N = 100). The EROEVK measure is depicted in (a) while the alternative EROTOT

measure is provided in (b). The data has been z-scored prior to plotting to allow comparison of high-frequency low-power energy with low-frequency
higher-power energy. The z-scores were calculated within each ERO measure type and within each single frequency level but across each experiment
condition. This form of scaling allows comparison of power, at each frequency-band, across condition and within each ERO measure.
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where the ERO value is either the total response (EROTOT)
or the evoked response (EROEVK) depending on the type of
S-transform TFR matrix. This ERO calculation methodol-
ogy is illustrated in Fig. 2 and is based on similar previous-
ly published methods (Tallon-Baudry and Bertrand, 1999).
Code to calculate the S-transform TFR of one-dimensional
signals has been made freely available by its author (Stock-
well et al., 1996) and is available at http://www.co-
ra.nwra.com/~stockwell.
Table 1
ERO time-frequency regions of interest (TFROI) used for data analysis

ERO bands Min. frequency (Hz) Max. frequ

d1 (1–2 Hz) 1 <2.5
d2 (3–3 Hz) 2.5 <3.5
h1 (4–5 Hz) 4 <5.5
h2 (6–7 Hz) 6 <7.5
a (8–12 Hz) 8 < 11.5

Mean power values were extracted using the S-transform time-frequency repr
These TFROI were defined using visual inspection of grand-mean data as dis
2.5. Statistical analysis

A number of statistical techniques have been implement-
ed to examine and explore the nature of ERO power values
estimated from the target condition trial data (infrequent
salient visual stimuli). These methods are briefly discussed
in this section. The first part of the results section concen-
trates wholly on the control sample of data and is aimed at
providing some understanding on the nature of
ency (Hz) Min. time (ms) Min. time (ms)

300 700
300 700
200 500
200 400
100 300

esentation (TFR) within time and frequency ranges outlined in the table.
cussed in the methods section.

http://www.cora.nwra.com/~stockwell
http://www.cora.nwra.com/~stockwell
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low-frequency ERO measures which are evoked following
stimulus presentation. In particular we apply correlation
analysis to examine the extent of similarities between the
derived ERO measures with traditional ERP amplitude
‘peak-pick’ values corresponding to the N100, P200, N200
and P300 event related potentials. The Pearson correlation
coefficient was used to test the significance of the observed
correlation coefficients. Since these tests, and subsequent
between-group parametric tests assume the data is Gaussian,
tests of normality were performed on the ERO and ERP
amplitude data using the one-sample Kolmogorov–Smirnov
test. It was found that the N100, P200 and N200 ERP ampli-
tudes were normally distributed without need for transfor-
mation, however, the P300 ERP amplitude and ERO
measures required log transformation to achieve normality.

Since the P300 ‘wave’ is relevant in the study of alcohol-
ism and related disorders we use the S-transform time-fre-
quency method to obtain time-local power spectra, at the
mean P300 peak latency, to estimate the approximate rela-
tive contributions of the low frequency components to the
P300 wave. The multi-resolution property of the S-trans-
form allows the time-local power spectra to simultaneously
capture high frequency short-time (local) energy as well as
low frequency long-time (broad) energy; therefore, use of
the S-transform time-local power spectrum allows an esti-
mate of the relative contributions of transient evoked low
frequency oscillations which compose the P300 wave. This
feature of the S-transform, along with the ability to invert
the S-transform time-local Fourier spectrum coefficients
into one-dimensional time-local time series, leads to the
notion of time-time analysis using the TT-transform (Pinn-
egar and Mansinha, 2003).

The second and main part of the results section deals
with between-group comparisons of the S-transform
derived ERO data and ERP amplitudes using target condi-
tion trials of the visual oddball paradigm. Initial tests of
group differences were applied to three midline electrodes
(Fz, Cz and Pz) using multivariate analysis of variance
(MANOVA). These three electrodes were chosen for statis-
tical analysis since examination of the spatial distributions
of h and d band ERO data indicate maximal power is
observed both in the fronto-central or parieto-central loca-
tions and along the midline. MANOVA tests are applied
since in the first stage of the analyses we are interested in
determining which frequency band and/or ERP compo-
nents may act as useful predictors of the alcoholic status.
Also, MANOVA is an appropriate test since measures
derived from the scalp electrodes are expected to be highly
correlated in part due to the effects of volume conduction
in cerebrospinal fluid, skull and scalp (Nunez, 1981).
Group differences were assessed using the Pillai-Bartlett
trace to evaluate an F-value and corresponding significance
level. MANOVA tests were applied to evoked power ERO
(EROEVK) and total power ERO (EROTOT) data for each
frequency band (see Table 1) separately (d1, d2, h1, h2 and
a) and for each ERP component separately (N100, P200,
N200 and P300). Since the control and alcoholic subjects
were age and gender matched these data were not added
as covariates in the statistical model.

Frequency bands and ERP amplitudes, identified using
MANOVA, which predict subject group status are further
analyzed using stepwise logistic regression analysis in
which we model the group variable using multiple frequen-
cy ERO data and ERP data from the three midline elec-
trode locations simultaneously. The logistic regression
models were iteratively adjusted by adding and dropping
terms to determine the ‘best’ and most parsimonious model
using Akaike’s Information Criterion (AIC). The AIC
measure penalizes the residual sum of squares by two times
the number of parameters in the model multiplied by the
residual mean square of the initial model. All p-values
are provided without correction for multiple testing since
the work presented here is intended to be exploratory in
nature.

3. Results

The focus of the data analysis is twofold. Firstly, we are
interested in providing additional understanding of the nat-
ure of ERO components which underlie and comprise the
ERP components, and in particular the P300 wave since
this amplitude of the P300 components is known to be
reduced in alcoholics (Section 3.1). The second part of
the analysis section (Section 3.2) deals with assessing the
usefulness of the ERO measures analyzed in Section 3.2
as predictors of group classification of the control and alco-
holic subjects. The group-wise analysis presented in Section
3.2 leads to the development and assessment of a ‘best pre-
dictor’ of alcoholism diagnosis using a combination of
ERO measures which compose the P300 wave.

3.1. ERO time-space-frequency characteristics in the control

group

In this section, we examine the time, frequency and spa-
tial properties of ERO’s extracted from target condition
trials using the control data sample. The results of this
analysis provide greater understanding of the nature of
these oscillations.

3.1.1. Examination of the dynamics of ERO power

Fig. 4 shows an example of grand-mean ERP and
EROEVK data derived from the control sample of subjects
(grand average of data collected from 100 individuals).
Fig. 4a displays the grand mean target-condition ERP
waveform acquired at the Cz electrode position. Included
in Fig. 4a are the contoured spatial distributions (head
plots) of ERP amplitude measures formed by plotting
the averaged amplitudes (averaged across control subjects)
at the respective electrode positions (cf. Fig. 1b). Fig. 4b is
the log-transformed TFR of the ERP waveform depicted
in Fig. 4a in which the TFR distributions corresponding
to the mean-response ERP were averaged across individu-
als. Also shown in Fig. 4b are the contoured spatial distri-



Fig. 4. Comparison of ERP and ERO measures derived from the target condition data of 100 control subjects. The grand mean ERP waveform for the Cz
electrode (central midline) is depicted in (a) along with the grand mean spatial distributions of the target condition ERP components: N100, P200, N200
and P300. The grand-mean S-transform evoked TFR for the Cz electrode is shown in (b) with the grand mean EROEVK spatial distributions for the
TFROI windows given in Table 1. The spatial distribution of the a band ERO has a similar shape to the N100 spatial distribution (the opposing color
gradient is due to the negative ERP amplitude values). Also, the spatial distribution of the lower d band ERO has a similar shape to the P300 spatial
distribution. However, the frontally distributed upper d and theta band ERO data do not have a clear coincidence with the ERP amplitude spatial
distributions. (Blue values in the plots are smaller in magnitude than red values.)
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butions of the average time-frequency power values
(EROEVK) calculated at the TFROI’s defined in Table 1
and plotted at the respective electrode positions. The time
windows used for each of the frequency bands are modi-
fied to encompass the transient peak post-stimulus power
within that frequency band. Hence, the time windows
become tighter and earlier as the frequency bands increase
to reflect the fact that in general the higher frequency
oscillations have peak power earlier in the ERP than low-
er frequencies. At the lowest frequency (d1–2), however,
there is very poor time resolution (one to half a second
resolution); this is an artifact of the Fourier based analysis
method and the time window of 300–700 ms was selected
to encompass the approximate temporal location of the
P300 wave. It is recognized, however, that these window
selections may be suboptimal and may be adjusted for
each electrode position, for each experiment condition,
for different experiment paradigms, and per individual.
Nevertheless, these window selections allow a preliminary
analysis of the general dynamics of ERO’s during the tar-
get condition of the visual oddball experiment.

3.1.2. Comparative analysis of ERP amplitudes and ERO

power

A visual comparison of the spatial distributions of ERP
component amplitudes (Fig. 4a) and ERO’s (Fig. 4b)
reveals close similarity between the spatial distributions
of a ERO powers with the N100 amplitude and lower d
ERO powers (d1–2) with the P300 amplitude. The frontally
distributed theta (h4–5 and h6–7) and upper d (d3–3) ERO’s
do not show a simple correspondence with either of the
ERP amplitude spatial distributions. This suggests that this
Table 2
Pearson’s product moment correlation coefficients (q) describing the relations
amplitudes and evoked event-related oscillation (EROEVK) measures at three el

P3

Fz electrode

d1 (1–2 Hz, 300–700 ms) .742***

d2 (3–3 Hz, 300–700 ms) .636***

h1 (4–5 Hz, 200–500 ms) .606***

h2 (6–7 Hz, 200–400 ms) .558***

a (8–12 Hz, 100–300 ms) .523***

Cz electrode

d1 (1–2 Hz, 300–700 ms) .772***

d2 (3–3 Hz, 300–700 ms) .533***

h1 (4–5 Hz, 200–500 ms) .486***

h2 (6–7 Hz, 200–400 ms) .531***

a (8–12 Hz, 100–300 ms) .446***

Pz electrode

d1 (1–2 Hz, 300–700 ms) .81***

d2 (3–3 Hz, 300–700 ms) .592***

h1 (4–5 Hz, 200–500 ms) .553***

h2 (6–7 Hz, 200–400 ms) .420***

a (8–12 Hz, 100–300 ms) .268**

Post-stimulus mean EROEVK power estimates were calculated using the freque
ERP amplitudes were log transformed to achieve normality. Coefficients denot
denoted with ** are significant at the 0.01 level; coefficients denoted with *** are
multiple testing. Coefficients highlighted in bold denote the largest correlation
frontally distributed ERO activity, which primarily consti-
tutes the early part of the P300 wave as well as the N200
component, cannot be directly quantified using the ERP
amplitude measures. This conclusion is supported by the
correlation analysis (Table 2) of EROEVK power data with
ERP amplitudes estimated from the Fz, Cz and Pz elec-
trodes (frontal, central and parietal midline) within the
control sample of subjects. The correlation results summa-
rized in Table 2 indicate that there is high correlation
between EROEVK lower d power and P300 amplitude with
strongest correlation for the Pz electrode (q=0.81). There is
also indication of moderate to high correlation of EROEVK

lower a power at the Pz electrode with the N100 ERP
amplitude (q = 0.55). The highest correlation for the lower
theta EROEVK power is found to be with the N200 ERP
amplitude at the Cz electrode position (q = 0.45), however,
as shown in Fig. 4a the spatial distribution of these mea-
sures is not similar and therefore they cannot be regarded
as being equivalent. The maximum correlation observed
for the upper h EROEVK power is with the P200 ERP
amplitude at the Fz electrode; although the spatial distribu-
tion of this ERP component is approximately fronto-cen-
trally distributed the correlation coefficient is moderate to
weak (q = 0.36). An important conclusion drawn from
these correlation analyses is that the frontally distributed
h band ERO measure cannot be simply quantified using
traditional ERP amplitude measures.

3.1.3. Decomposition of the P300 waveform

The correlation analysis given in Table 2 reveals moder-
ate correlation between P300 ERP amplitude and EROEVK

h powers (q between 0.4 and 0.6) indicating that the P300
hip between target condition visual oddball event-related potential (ERP)
ectrode positions (Fz, Cz and Pz) using the control subset of data (N = 100)

N2 P2 N1

.136 .198* �.197*

�.354*** �.026 �.211*

�.421*** .113 �.223*

�.236* .363*** �.311**

�.163 .271** �.398***

.028 .112 �.219*

�.397*** �.205* �.332***

�.451*** �.124 �.334***

�.101 .296** �.376***

�.081 .268** �.501***

.035 .052 �.09
�.336*** �.162 �.207*

.291** �.056 �.153
�0.006 .336*** �.339***

�.206* .221* �.55***

ncy specific time windows outlined in Table 1. ERO power data and P300
ed with * are significant at the 0.05 level using a two-tailed test; coefficients
significant at the 0.001 level. P-values are presented without correction for
coefficient for the ERP amplitudes at each electrode location.



K.A. Jones et al. / Clinical Neurophysiology 117 (2006) 2128–2143 2137
wave amplitude is to an extent dependent upon the magni-
tude of the earlier arriving theta band oscillations. This fits
the view that P300 responses are primarily the outcome of
oscillatory changes in d and h oscillations during stimulus
processing and therefore these rhythms form the P300 wave
(Stampfer and Basar, 1985; Basar-Eroglu and Basar, 1991;
Yordanova and Kolev, 1996; Demiralp et al., 1999). As dis-
cussed in the methods section the S-transform provides
time-local power spectra which may be used to quantify
the proportions of the oscillatory components which influ-
ence the time-series at that time point. Fig. 5 shows the
time-local spectral decomposition of the P300 wave esti-
mated using the S-transform data at the grand-mean
P300 peak latency (430 ms). Fig. 5e displays the relative
proportions of frequencies in the 1 to 7 Hz range (d and
h bands) for the Fz, Cz and Pz electrodes (normalized to
add to 100 % within this frequency range). The relative
proportions of d and h band oscillations composing the
P300 wave are also shown in Fig. 5e. These values indicate
that the proportions vary according to electrode position in
Fig. 5. Decomposition of the grand mean P300 wave into its constituent lo
spectrum. An example grand mean ERO waveform is depicted in (a) for the Pz
pictorial representation of the ERP waveform S-transform TFR is shown in (b
the average P300 peak latency is plotted in (c). The inverse transform of the tim
The time-local power spectrum is used to derive single frequency spectral power
proportions of these local spectral powers are plotted in (e).
a similar pattern as suggested in previous reports (Karakas
et al., 2000); with approximately equal proportions at the
frontal electrode site and higher d proportions at the pos-
terior location. It is also evident from Fig. 5e that the fron-
to-parietal power distribution varies with frequency.
Oscillations below 3 Hz have maximum power distribution
in the posterior electrodes, whereas oscillations 3 Hz and
greater show maximal power in the frontal electrodes; this
effect is also evident from the ERO head plots of Fig. 4b
and supports the notion of a multiple loci of oscillatory
activity comprising the P300 wave (and the earlier N200
component), i.e., frontal h and posterior d.

3.2. Between group analyses

3.2.1. MANOVA analysis of ERP amplitude and ERO

power

Results of the MANOVA analyses are provided in
Table 3; in these analyses the log transformed ERO power
and ERP amplitude dependent variables (from the Fz, Cz
w frequency oscillations using the S-transform derived time-local power
electrode and calculated from the control subject dataset (100 subjects). A
). The time-local power spectrum extracted from the S-transform TFR at

e-local Fourier spectrum results in the time-local time-series depicted in (d).
s which are relevant to the shape of the P300 wave at that time. The relative



Table 3
Results of MANOVA statistical tests of group significance using log transformed EROEVK, EROTOT and ERP amplitude data (log transformed P300
amplitude)

Model: log (Fz), log(Cz), log (Pz) � Group (N = 200, df = 196)

df Pillai-Bartlett trace F-value

EROEVK

d1 (1–2 Hz, 300–700 ms) 1 0.167 13.0***

d2 (3–3 Hz, 300–700 ms) 1 0.102 (0.074) 7.5*** (5.2**)
h1 (4–5 Hz, 200–500 ms) 1 0.113 (0.099) 8.3*** (7.2***)
h2 (6–7 Hz, 200–400 ms) 1 0.069 (0.097) 4.8** (7.0***)
a (8–12 Hz, 100–300 ms) 1 0.027 (0.037) 1.8 (2.5)

EROTOT

d1 (1–2 Hz, 300–700 ms) 1 0.103 7.5***

d2 (3–3 Hz, 300–700 ms) 1 0.076 (0.07) 5.4** (4.9**)
h1 (4–5 Hz, 200–500 ms) 1 0.146 (0.13) 11.1*** (9.8***)
h2 (6–7 Hz, 200–400 ms) 1 0.063 (0.1) 4.4** (7.34***)
a (8–12 Hz, 100–300 ms) 1 0.002 (0.03) 1.0 (1.9)

ERP amplitude

P300 1 0.127 9.6***

Model: Fz, Cz, Pz � Group (N = 200, df = 196)

ERP amplitude

N100 1 0.023 1.6
P200 1 0.047 3.2*

N200 1 0.027 1.8

Pillai-Bartlett trace and F-values in brackets indicate ERO model results using baseline corrected data in which mean values extracted from the pre-
stimulus region of the TFR data are subtracted from the post-stimulus ERO power estimate data. Baseline correction is not applied to the d1 (1–2 Hz)
ERO data due to the poor temporal resolution afforded by the Stockwell transform at these low frequencies. The Pillai-Bartlett trace is the sum of
explained variances on the discriminant variates and is used to calculate the approximate F-value. F-values denoted with * are significant at the 0.05
p-value level using a two-tailed test; F-values denoted with ** are significant at the 0.01 p-value level; F-values denoted with *** are significant at the 0.001 p-
value level (N=200). P-values are uncorrected for multiple tests. F-values highlighted in bold denote the largest F-values within each ERO measure.

2138 K.A. Jones et al. / Clinical Neurophysiology 117 (2006) 2128–2143
and Pz electrodes) were modeled with group (alcoholic or
control) as the independent variable. Modeling was
applied to each frequency band ERP measure separately
to assess which frequency bands and components act as
discriminators of the group. Alcoholic individuals
revealed significantly less EROEVK and EROTOT power
in the delta (d1–2 and d3–3) and theta (h4–5 and h6–7) bands
but not in the a band. In concordance with previously
published work alcoholic individuals were observed to
manifest lower P300 amplitude. The N100 and N200
amplitudes were not significantly different between the
Table 4
Results of a stepwise logistic regression analysis of d1 and h1 band ERO data a
Pz) as predictor variables

Model: Group � log(Fz) + log(C

df Retained t

EROEVK

d1 (1–2 Hz, 300–700 ms) 1 log(Fz)
h1 (4–5 Hz, 200–500 ms) 1 log(Fz)

EROTOT

d1 (1–2 Hz, 300–700 ms) 1 log (Cz)
h1 (4–5 Hz, 200–500 ms) 1 log(Fz)

ERP amplitude

P300 1 log(Fz)

The stepwise selection of variables is achieved using AIC. For each logistic m
electrode. P-values denoted with *** are significant at the 0.001 p-value level (
groups, whilst the P200 component was marginally signif-
icantly different (with lower amplitudes in the alcoholic
group); however, significance is not retained after Bonfer-
roni correction for multiple testing. The maximum F-val-
ues for each of ERO powers suggests that the d band is
the better discriminator using the EROEVK measure,
whereas the h band is the superior group discriminator
using the EROTOT measure. A similar pattern of results
is observed using ERO data which have been baseline
modified using the baseline ERO time-windows pictured
in Fig. 4b and detailed by results in brackets in Table 3.
nd the P300 ERP amplitude using the three midline electrodes (Fz, Cz and

z) + log(Pz) (N = 200, null df = 198, null deviance = 277.3)

erms Term deviance p-value (v2)

35.0 3.3 · 10�9***

23.8 1.1 · 10�6***

21.0 4.6 · 10�6***

28.8 8.2 · 10�8***

22.8 1.8 · 10�6***

odel examined the most parsimonious model included data from a single
N = 200). P-values are uncorrected for multiple tests.



Table 5
Results of a stepwise logistic regression analysis of combined ERP P300 amplitude data and d1 and h1 band EROEVK and EROTOT data

Combined P300 ERO Model Model: Group � log(Fz-P300) + log(Fz-d1) + log(Fz-h1) (N = 200, null df = 198, null
deviance = 277.3)

df Retained terms Term deviance p-value (v2)

Fz-P300 amplitude and 1 log(Fz-d1) 35.0 3.3 · 10�9***

Fz-d1 (EROEVK) and 1 log(Fz-h1) 14.4 0.00014***

Fz-h1 (EROTOT)

The stepwise selection of variables is achieved using AIC. Two variables are retained after analysis using the logistic regression analysis summarized in
Table 5: d1 band EROEVK data from the Fz electrode (Fz-d1) and h1 band EROTOT data from the Fz electrode (Fz-h1). P-values denoted with *** are
significant at the 0.001 p-value level (N = 200). P-values are uncorrected for multiple tests.
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Due to the poor temporal resolution of the lowest fre-
quencies the baseline modified version of the d1–2 band
is not provided. Also, we note that similar MANOVA
analysis of the baseline region low frequency ERO data
(excluding d band data) did not reveal significant
between-group differences.

3.2.2. Stepwise logistic regression analysis of ERP amplitude
and ERO power

The results of separate stepwise logistic regression anal-
ysis for EROEVK (d1–2 and h4–5), EROTOT (d1–2 and h4–5),
and P300 amplitude data are summarized in Table 4. Each
test incorporates data from a single band or component
amplitude and the three midline electrodes (Fz, Cz and
Pz). Retained terms, corresponding to electrode positions,
for the most parsimonious model in each test are provided
in Table 3. In each case, the most parsimonious model uses
data from a single electrode suggesting that adding data
from the neighboring electrodes does not improve the dis-
criminatory power of the model. The Fz electrode is
retained for all measures except for EROTOT d1–2 power
which selects data from the Cz electrode. The results of
these stepwise logistic regression tests concur with the
MANOVA based tests which suggest that the d band data
provides greater group discrimination using EROEVK while
the h band offers better discrimination using EROTOT data.
In the next section results of a stepwise logistic regression
model are presented using combined ERO and ERP data
as input.

3.2.3. Logistic regression analysis of combined EROEVK d
and EROTOT h powers

Results from the previous MANOVA and logistic
regression analysis suggest that a combination of d
EROEVK and theta EROTOT band measures may offer
increased discriminatory power than the traditional ERP
P300 amplitude measure. To test this possibility a com-
bined stepwise logistic regression model was performed
which included P300 amplitude, EROEVK d and EROTOT

h derived from the Fz electrode. The retained terms for this
model are given in Table 5. The P300 ERP amplitude is not
retained within the most parsimonious model; however,
both h and d band ERO measures are retained indicating
that these ERO measures encompass the P300 amplitude
group effect and that the d and theta band measures offer
unique and independent information in the model. The d
EROEVK measure explains a greater proportion of the
model deviance than the h EROTOT measure; however, a
significant portion of the deviance is explained solely by
the h measure. Fig. 6 depicts the modeled ERO data in
the control and alcoholic groups at the Fz electrode and
the spatial distributions of these measures.

4. Discussion

The present study was designed to examine the useful-
ness of measures derived from the S-transform method of
time-frequency analysis in revealing the components
(ERO’s) which compose the ERP waveform, and the effica-
cy of these measures in discriminating the alcoholic and
control population. It must be emphasized that these com-
ponents do not necessarily represent distinct neurophysio-
logical processes but are a representation of the recorded
scalp signals. The results of these analyses indicate that a
frontally focused h band activity (4–5 Hz) and a posterior
distributed d band activity constitute the P300 ERP wave-
form, with the h component forming the N200 and the ear-
ly part of the P300 wave, and the d component forming the
main part of the P300 wave. Component ERO’s have been
derived from two different signal types, the single-trial sig-
nals, and the averaged signals, resulting in the total power
EROTOT and the evoked EROEVK. The statistical analysis
suggests that the EROTOT measure of the h component is
the better group discriminator than the equivalent
EROEVK measure. The opposite situation is indicated for
the d band component with the EROEVK measure acting
as the better group discriminator. A similar finding is
reported in a study from our laboratory of adolescent off-
spring of alcoholic individuals using the same experiment
paradigm and TFR methodology (Rangaswamy et al.,
2005). In this offspring study, it was reported that high risk
adolescents show power deficiencies in both d and h bands;
however, d band differences were stronger using the
EROEVK measure while h differences were only observed
using the EROTOT measure. One possible interpretation
of the h band findings is related to slight trial-to-trial tem-
poral jitter (variation). Trial-averaging of the ERP wave-
form will diminish imperfectly phase-locked h band
oscillations in the EROEVK measure while the EROTOT

measure will retain this energy and therefore provide a



Fig. 6. Representation of the ERO data used to discriminate the control and alcoholic populations. Lower d band (d1–2) EROEVK data and lower h band
(h4–5) EROTOT data are found to be useful predictors of group membership. Alcoholic subjects are shown to manifest deficient power for these ERO
measures in a similar way to the amplitude deficiencies observed for the P300 ERP component. Illustrations of these power deficits, and the spatial
distributions of the ERO measures, are illustrated.

2140 K.A. Jones et al. / Clinical Neurophysiology 117 (2006) 2128–2143
better estimate of evoked h ERO’s. Trial-to-trial temporal
jitter is less likely to affect the averaging of the lower fre-
quency d band oscillations, due to the lower temporal res-
olution, therefore the EROEVK measure may adequately
represent the d ERO’s. In this case we expect the EROTOT

and EROEVK forms of the d ERO’s to give similar group
differences; however, the EROEVK measure shows stronger
group differences. We speculate that in contrast to the h
ERO measure, where trial-averaging negatively impacts
the measure due of trial-to-trial temporal variation, trial
averaging improves quantification of the delta ERO possi-
bly through suppression of noise in the d frequency band
and/or irrelevant non-phase locked activity.

The h band EROTOT group differences reported here
reveal stronger group effects with the frontal (Fz) electrode
when compared to the central (Cz) and posterior (Pz) elec-
trodes. These findings coincide with the observation that
the h ERO is a frontally distributed (c.f Figs. 4b and 6)
and indicate that the maximal group differences occurs at
the location of maximum h ERO. The delta EROEVK mea-
sure, which has a centro-parietal distribution, reveals
strongest group differences also with the frontal electrode
(Fz), although the effect is also significant at the Cz and
Pz electrode locations. These widespread power differences
are in agreement with the concept that lower frequency
oscillations are more widespread and hence involved in
wider range communication between neural assemblies
(von Stein and Sarnthein, 2000). Also, we note that the ref-
erence-dependent nature of the data being examined makes
interpretation of the location of ‘strongest effects’ impre-
cise. Another study which has reported h and d ERO defi-
cits in adult alcoholics used ERP waveforms elicited with a
Go-Nogo task (Kamarajan et al., 2004). This study
employed a matching pursuit algorithm to obtain the
TFR’s of the single trial data which were used to calculate
the h and d band EROTOT measures. For the Go condition
strong d band ERO differences were observed over frontal,
parietal and occipital locations, however, h band differenc-
es were not observed for the Go condition. The Nogo con-
dition revealed strong d and h band ERO differences. The d
band differences were again widespread, whereas the h
band differences were focused in frontal electrode posi-
tions. The widespread nature of the d band ERO effects
and the more frontally localized h band differences are in
good agreement with the results reported here. However,
the strongest differences in the Go-Nogo experiment data
were observed for the Nogo condition which the authors
suggest represents a deficient inhibitory control and infor-
mation-processing mechanism in the alcoholic subjects
(Kamarajan et al., 2004).

Results from the previously discussed studies support
the suggestion that ERO’s can be discerned in a number
of cognitive functions, with time-courses that vary accord-
ing to the required task. In the literature, neural oscillatory
responses have been attributed to various cognitive pro-
cesses. For instance, d responses are considered to mediate
signal detection and decision-making (Basar et al., 1999;
Schurmann et al., 2001), while h rhythms have been attrib-
uted with attention, recognition memory, and episodic
retrieval (Doppelmayr et al., 1998; Gevins et al., 1998;
Basar et al., 2001a; Klimesch et al., 2001). Slow a wave
oscillations have been associated with the attribution of
attentional resources and fast a with semantic memory
and stimulus processing (Klimesch et al., 1994, 1997a,b,
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1998; Basar et al., 1997). Beta and gamma frequency oscil-
lations are regarded as important building blocks of brain
activity and have been attributed to a diverse range of pro-
cesses, including cognitive integrative functions (such as
‘binding’), object representation, selective attention, con-
scious recollection, visual perception and associative learn-
ing (Basar-Eroglu et al., 1996a,b, 2001b; Tallon-Baudry
et al., 1996, 1999; Schurmann et al., 1997; Karakas et al.,
2001; Fell et al., 2003). ERO’s may therefore be utilized
to study specific cognitive effects and also cognitive deficits
within a variety of clinical groups. For example, ERO’s
have been used to study dysfunctions in patients with
schizophrenia and ADHD (Yordanova et al., 2001; Gonz-
alez-Hernandez et al., 2003; Gallinat et al., 2004). In addi-
tion it has become a reasonable prospect to identify genes
which may control and influence EEG oscillations. Genetic
studies can potentially link specific brain neurotransmitter
systems with ERO phenotypes which in turn act as corre-
lates of human information processing and cognitive func-
tion (Porjesz et al., 2004). Such neurogenetic findings can
be expected to help unravel the complex interplay of the
neurochemical and neuroanatomical subsystems which
are relevant to the generation of brain oscillations evoked
under differing cognitive conditions.

It has been demonstrated here that alcoholic subjects
show deficits in ERO powers which contribute to the
P300 wave. Similar deficits have been observed in a high-
risk adolescent population made up from offspring of alco-
holic dependent subjects when compared to an age
matched low-risk population (Rangaswamy et al., 2005).
In addition, h and d band ERO’s elicited using the Go-
Nogo paradigm were observed to be significantly reduced
in the frontal, central and parietal regions for the Nogo
condition in a group of adult high-risk offspring of alcohol-
ics (Kamarajan et al., 2006). These findings indicate that in
a similar way to the P300 amplitude (Begleiter et al., 1984)
the condition of reduced theta and d ERO power may pre-
cede the development of alcoholism and therefore represent
a trait marker for alcoholism.

The methodology and the findings presented in this
paper could be significantly improved upon in many ways.
For instance, calculation of the ‘current source density’ via
the surface Laplacian prior to the S-transform TFR
decomposition would remove the dependence of the refer-
ence electrode. This would allow an easier interpretation of
the spatial location of the band-limited power distributions
and the location of observed group effects. Also, the loca-
tion of the time and frequency windows of interest is static
and has been defined subjectively by visual inspection of
grand-mean TFR plots. Since subjects, trials and electrodes
will show differing ERP patterns, a significant improve-
ment could be expected if these windows were defined
deterministically at a single trial and single electrode level,
per individual. This might be achieved using recently devel-
oped time-frequency PCA methods (Bernat et al., 2005).
Also, we note that our comparative study uses only the
three midline electrodes. These midline electrodes are likely
to be suboptimal for examination of the higher frequency
components. We can therefore expect improved under-
standing of ERP group differences through the inclusion
of all available electrodes.

5. Conclusion

The results presented here support the view that the P300
‘wave’ is composed primarily of frontal h band and poster-
ior d band oscillatory activity. This observation is in accord
with previously published results showing that h and d band
event-related oscillations underlie the ERP waveform at
N200 and P300 latencies and with the notion that these
oscillations comprise a parallel processing system of infor-
mation processing in the brain (Karakas et al., 2000). It is
also shown that the evoked d band oscillatory response,
which has a predominantly posterior locus, has close corre-
spondence to the traditional P300 ERP amplitude measure.
However, the frontal h band component of the P300 wave
does not have an equivalent ERP amplitude measure and
therefore represents novel variable which, in addition to
being an important correlate of frontal lobe function (and
dysfunction), may provide new clinically relevant informa-
tion. In this vein we have demonstrated that both the d
and h band ERO power is reduced in alcoholic subjects
when compared to a group of control subjects. These results
indicate that for the studied population the total power the-
ta ERO contributes additional discriminatory information
to the evoked d ERO measure. This finding emphasizes
the importance of reexamining ERP components in terms
of their underlying ensemble of oscillations since new indi-
ces of cognitive processing may be illuminated.
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