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Abstract

Objective: The concept of disinhibition as a behavioral and biological trait has been considered to be involved in the etiology of

alcoholism and its co-existing disorders. The magnitude and functional mapping of event-related potential P3(00) components were

analyzed, in order to examine the possible response inhibition deficits in the offspring of alcoholics.

Methods: The P3 components were compared between 50 offspring of alcoholics (OA) and a matched normal control group (NC) using a

visual Go/NoGo task. The low-resolution electromagnetic tomography (LORETA) was used to analyze the functional brain mapping

between groups.

Results: The results indicated that the OA group manifested decreased P3 amplitude during the NoGo but not the Go condition compared

to the NC group. The voxel-by-voxel analysis in LORETA showed group differences at several brain regions including prefrontal areas

during the processing of NoGo but not Go signals.

Conclusions: The decreased NoGo-P3 suggests that cognitive and neural disinhibition in offspring of alcoholics may serve as a

neurocognitive index for a phenotypic marker in the development of alcoholism and related disorders.

Significance: Dysfunctional neural and response inhibition in the offspring of alcoholics perhaps provides an endophenotypic marker of

risk for the development of alcoholism and related disorders.

q 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Alcoholism is a complex and heterogeneous disorder

with genetic and environmental variability. Genetic vulner-

ability for alcoholism is associated with collective vari-

ations in many different genes, which, along with interaction

with the environment, can cause the risk for the disorder. In

order to understand the risk factors involved in alcoholism,

research has been directed at identifying the characteristic

traits and behaviors (i.e. phenotypes) in affected alcoholics

and their pedigrees. A phenotype generally represents the

observable characteristics of an organism, which are
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the joint product of both genotypic and environmental

influences (Gottesman and Gould, 2003). As the genetic

complexity of alcoholism involves various phenotypes

including electroencephalograms (EEGs), event-related

potentials (ERPs), and event-related oscillations (EROs),

the analysis of such electrophysiological data in alcoholics

and their pedigrees is essential to identify and quantify the

phenotypic markers for alcoholism and other co-existing

disinhibitory disorders (Begleiter and Porjesz, 1990, 1999;

Iacono et al., 2000; Limosin et al., 2000; Porjesz and

Begleiter, 1991; Porjesz et al., 1996, 1998; Reich, 1996).

The ERP techniques offer a unique approach for

assessing the level of brain functioning, as they permit a

non-invasive and simultaneous observation of brain signal-

ing and cognition. Further, the ERP is sensitive to sensory,
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cognitive, and motor aspects of information processing, and

it can be a valuable tool in studying the genetics of

alcoholism (Porjesz and Begleiter, 1991). In the ERP

literature on alcoholism, the reduced P3 amplitude is a

consistent finding that seems to characterize people at risk

for alcoholism and may serve as a phenotypic marker for

alcoholism and related disorders (Begleiter and Porjesz,

1999; Porjesz et al., 1998). Begleiter et al. (1984) reported

that the sons of alcoholic fathers, who had no prior exposure

to alcohol, showed lower P3 amplitudes without an alcohol

challenge. This finding has been replicated in many different

experimental conditions in male as well as female offspring

of alcoholics (Begleiter et al., 1987; Benegal et al., 1995;

Berman et al., 1993; Cohen et al., 1997b; Ehlers et al., 2001,

2003; Hill and Shen, 2002; Hill et al., 1990; Hill and

Steinhauer, 1993; Hill et al., 1995, 2000; O’Connor et al.,

1986, 1987; Porjesz and Begleiter, 1990a; Ramachandran

et al., 1996; Ratsma et al., 2001; Rodriguez Holguin et al.,

1999; Van der Stelt et al., 1998; Whipple et al., 1991).

This reduction in P3 amplitude is not only observed in

alcoholism, but for a spectrum of disinhibitory disorders,

such as conduct disorder (CD), attention-deficit hyperactiv-

ity disorder (ADHD), oppositional defiant disorder (ODD),

and antisocial personality disorder (ASPD) (e.g. Bauer

et al., 1994; Carlson et al., 1999; Iacono et al., 2002; Justus

et al., 2001; Kiehl et al., 1999, 2000; Kim et al., 2001). In

recent years, alcohol/drug dependence is considered to be

part of the disinhibitory/externalizing spectrum (Kendler

et al., 2003) as these disorders co-exist in their clinical

presentation, and share similar electrophysiological indices

(i.e. reduced P3 amplitude) (Bauer, 2001; Kuperman et al.,

2001; Lewis and Bucholz, 1991; Myers et al., 1995; Reebye

et al., 1995; Sher and Trull, 1994). Further, it has been

suggested that the production of P3, irrespective of the task

and modality, is associated with widespread cortical

inhibition (Coenen, 1995; Elbert and Rockstroh, 1987;

Nash and Fernandez, 1996; Nash and Williams, 1982;

Roberts et al., 1994; Rockstroh et al., 1992; Tomberg and

Desmedt, 1998; Woodward et al., 1991), and hence the low

P3 amplitude would indicate a state of disinhibition

(Begleiter and Porjesz, 1999; Iacono et al., 2002; McGue

et al., 2001). Genetically mediated CNS disinhibition as

indexed by such electrophysiological anomalies formed the

core of the model for alcoholism as proposed by Begleiter

and Porjesz (1999).

It has been suggested that the electrophysiological

features, especially the ERP components, during a

Go/NoGo task could provide direct measures of frontal

inhibitory control and thus could serve as biological markers

for cognitive and/or neural disinhibition in several disorders

including alcoholism (Bokura et al., 2001; Eimer, 1993;

Falkenstein et al., 1999, 1995; Filipovic et al., 2000;

Kamarajan et al., in press; Kok, 1986; Kopp et al., 1996;

Schroger, 1993; Yamanaka et al., 2002). The ERP studies of

the Go/NoGo paradigm mainly focus on the NoGo

condition, as it involves active inhibition of prepared
responses, whereas the Go condition accounts for the

response execution processes. These studies have identified

two major markers (during the NoGo condition) for

response inhibition: (1) the N2, a negative deflection with

a frontocentral maximum around 200–300 ms, and (2) the

NoGo-P3, an augmented positive-going peak usually

peaking between 300 and 600 ms (Eimer, 1993; Jodo and

Inoue, 1990; Jodo and Kayama, 1992; Kopp et al., 1996;

Pfefferbaum et al., 1985). This anteriorly distributed NoGo-

P3 has markedly reduced amplitude in alcoholic subjects

(Cohen et al., 1997a; Kamarajan et al., in press) as well as in

individuals at high risk to develop alcoholism (Cohen et al.,

1997b), indicating impaired inhibitory control in such

populations.

Although these electrophysiological signatures contain

valid functional information in the time domain, they do not

provide adequate spatial resolution. In other words, one

fundamental limitation of these extracranial measurements

of EEG/ERPs is that they do not contain sufficient

information on the three-dimensional (3D) distribution of

neuronal electric activity (Pascual-Marqui et al., 2002).

Therefore, the localization of one or more generators of

these brain potentials (i.e. the inverse problem) is possible

only by using additional (neuroanatomical) constraints

(Luck and Girelli, 1998; Winterer and Goldman, 2003).

The recently developed method of low resolution electro-

magnetic tomography (LORETA) (Pascual-Marqui et al.,

2002) overcomes these problems by incorporating the

neurophysiological observations that measurable EEG-

fields on the scalp reflect synchronized neuronal mass

activity while close but opposing sources produce no scalp

EEG. Therefore, combining ERP mapping with LORETA

can characterize the type, timing, and source configuration

of neural processing. LORETA has been applied to study

different task-related cognitive processing in normal sub-

jects (Bokura et al., 2001; Hamm et al., 2002; Schairer et al.,

2001; ) and in various disorders (Berg et al., 2001; Brandeis

et al., 2002; Gallinat et al., 2002; van Leeuwen et al., 1998)

including alcoholism (Prabhu et al., 2001; Saletu et al.,

2002). Further, this method has also been employed to

examine the phenotype–genotype relationship of gene

variants in association with event-related activity (Winterer

et al., 2000).

In our laboratory, using ERP measures of a Go/NoGo

paradigm, we demonstrated that alcoholics as well as

individuals who were at high risk for alcoholism showed

impairments in response inhibition as well as response

production (Cohen et al., 1997a,b; Kamarajan et al., in press).

We also studied brain oscillations during the Go/NoGo task,

and found that alcoholics had lower band power in delta and

theta activity during a NoGo condition, indicating poor

inhibitory mechanisms (Kamarajan et al., 2004). In the

present study, along with ERPs, spatial–anatomical mapping

using LORETA has been implemented in order to study the

inhibitory processes in the offspring of alcoholics (OA) as

compared to normal controls (NC). Moreover, as the genetics
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of alcoholism is strongly associated with the concept of

disinhibition (Begleiter and Porjesz, 1999), the present study

is an attempt to elucidate the magnitude, temporal and spatial

characteristics of the ERP features related to response

inhibition in both groups. We hypothesized that if the OA

group showed processing dysfunctions associated with

response inhibition, this could possibly reflect cognitive

and neural disinhibition as a risk marker for the development

of alcoholism. We also expected that the functional imaging

(through LORETA) would exhibit a lower activation in OA

subjects in several brain regions (including frontal lobes)

during response inhibition.
2. Methods

2.1. Subjects

A sample of 50 offspring of alcoholics (OA) consisting of

29 males and 21 females with an age-range of 18–25 years

(MeanZ20.72; SDZ2.06), and 50 normal controls (NC)

matched for age (MeanZ20.34; SDZ1.93), gender, and

education were selected. All subjects were right-handed

and were recruited through newspaper advertisements and

notices. The OA subjects had at least one of their biological
Fig. 1. Illustration of Go/NoGo task, showing (1) Correct response for the Go cond

responses for the NoGo condition.
parents diagnosed to have alcohol dependence. The initial

screening was done using a questionnaire that included the

details of alcohol and drug use, medical and psychiatric

histories of the subject and his/her relatives. The individuals

with major medical, neurological, and psychiatric con-

ditions inclusive of alcohol/drug dependence, and/or with

concurrent psychotropic medications were excluded from

the study. However, the OA subjects with concurrent or past

history of externalizing disorders (such as CD, ASPD,

ODD, ADHD) were included in the study. All the subjects

were screened for organicity (gross brain damage), using the

Mini Mental State Examination (MMSE; Folstein et al.,

1975). The subjects were also excluded for their recent (i.e.

past few days) drug/alcohol use, based on Breath-analyzer

and urine screen. No subjects had hearing or visual

impairments. Informed consent was obtained from each

individual, and the experimental procedures and ethical

guidelines were in accordance with the Institutional Review

Board (IRB).

2.2. Experimental paradigm

The experimental paradigm is identical to our previous

studies (Kamarajan et al., 2004, in press). The stimulus

features of the Go/NoGo task are illustrated in Fig. 1.
ition, (2) Incorrect response for the Go condition, and (3) Correct/incorrect



Fig. 2. Regional grouping of electrodes: (1) Frontal, (2) Central, (3)

Parietal, (4) Occipital, (5) Left-temporal, and (6) Right-temporal. The

representative channels in each region are highlighted.
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There were 3 visual stimuli in the task: (i) a cross (fixation

stimulus), (ii) a circle (Go or NoGo stimulus), and (iii) a

dollar sign (reinforcement sign). These stimuli subtended

a visual angle of approximately 18, and were presented on a

computer monitor. The Go and NoGo stimuli were always

preceded by a fixation stimulus that appeared at the center of

the monitor. The circles that appeared at the top right and

bottom left corners served as Go stimuli, to which the

subjects had to respond by pressing a button as quickly as

possible. The NoGo stimuli, to which the subjects were

asked to withhold their response, appeared at the top left and

bottom right corners. The dollar-sign appeared whenever

there was a correct button-press response to indicate a

reward. The probabilities of occurrence of Go and NoGo

stimuli were equal (50/50), and the order of these stimuli

was randomized.

The experiment consisted of a practice phase and a

recording phase. The practice phase consisted of 20 Go and

NoGo trials, respectively. The subjects were instructed to

press a button as quickly as possible whenever they saw a

circle in either the top right or bottom left corner. A

feedback signal (i.e. a beep) was given whenever the

subject’s button-press response was wrong; the practice

phase did not accrue any reward. The EEG activity was

recorded only during the recording phase which consisted of

100 trials (50 Go and 50 NoGo stimuli). The appearance of a

dollar sign in this phase indicated a reward of 25 cents for

each correct button-press response, while there was no

feedback signal provided for the incorrect responses. The

total amount gained as reward was not displayed during the

stimulus presentation.1

2.3. EEG data acquisition and signal analysis

The subjects were seated in a comfortable, chair located

in a dimly-lit sound-attenuated RF-shielded room (IAC,

Industrial Acoustics, Bronx, NY) in front of the task

computer placed 1 m away. EEG activity was recorded on a

Neuroscan system (Version 4.1) (Neurosoft, Inc., El Paso,

TX) using a 61-channel electrode cap (Electro-cap Inter-

national, Inc., Eaton, OH), which included 19 electrodes of

the 10–20 International System and 42 additional electrode

sites (Electrode Position Nomenclature, American Electro-

encephalographic Association, 1991) as shown in Fig. 2.

The electrodes were referenced to the tip of the nose and the

ground electrode was at the forehead (frontal midline). A

supraorbital vertical lead and a horizontal lead on the

external canthus of the left eye recorded the eye movements.

Electrode impedance was maintained below 5 kU. The EEG

signals were recorded continuously with a bandpass at 0.02–

100 Hz and amplified 10,000 times using a set of amplifiers
1 However, based on ethical considerations, the subjects received the full

amount (without deductions for incorrect responses) at the end of the

experiment, although they were not informed of this while performing the

experiment.
(Sensorium, Charlotte, VT). The data consisted of sampling

rates of either 256 or 512 Hz, and were resampled at 256 Hz

during the signal analysis for the sake of uniformity.

The continuous EEG was segmented into epochs of

100 ms pre-stimulus to 750 ms post-stimulus after digital

low-pass filtering at 32 Hz. All segments exceeding G
75 mV threshold were rejected as artifacts. After excluding

the trials with eye-movement, the averaged segments for

each individual were screened visually for further artifact

rejection. Only the trials with correct response (button

press) for the Go condition and correct inhibition (no button

press) for the NoGo condition were averaged. Using a semi-

automatic peak-picking program, the P3 amplitude was

measured as the voltage difference from the pre-stimulus

baseline to the largest positive going peak in the latency

window 300–600 ms after stimulus onset. A minimum of 20

trials was available for each subject in both conditions. The

statistical analyses were performed on the P3 amplitude and

latency data that were derived separately for Go and NoGo

conditions for each subject.
2.4. Statistical analyses

All 61 electrodes were grouped into 6 scalp regions for

the statistical analyses as shown in Fig. 2. The behavioral

data were analyzed using t test. Initially, the Repeated

Measures Analysis of Variance (RMANOVA) was per-

formed by having regions, electrodes, and task condition

as within-subject variables and group and gender as

between-subject variables. Only 6 representative electrodes
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from each of the regions were taken into analysis (Fig. 2).

As a second stage of analysis, the Multivariate Analysis of

Variance (MANOVA) for between groups was performed

for each of the regions separately by including all the

electrodes of the specific region. The Bonferroni correction

for multiple comparisons was implemented by adjusting the

resulting P values.
2.5. LORETA analyses

The LORETA is a functional imaging method based on

certain electrophysiological and neuroanatomical con-

straints (Pascual-Marqui, 1999; Pascual-Marqui et al.,

2002). The cortex has been modeled as a collection of

volume elements (voxels) in the digitized Talairach atlas

provided by the Brain Imaging Center, Montreal Neuro-

logical Institute (MNI). The LORETA algorithm solves the

inverse problem by assuming related orientations and

strengths of neighboring neuronal sources (represented by

adjacent voxels). LORETA has been identified as an

efficient tool for functional mapping, since it is consistent

with physiology and capable of correct localization

(Pascual-Marqui et al., 2002). Along with a comprehensive

experimental validation, independent validation of the

localization properties of LORETA has been replicated by

Yao and He (2001) and by Phillips et al. (2002). The version

of LORETA employed here to study the current density and

source localization (of the generators of ERP components)

was made available at http://www.unizh.ch/keyinst/New-

LORETA/LORETA01.htm.

Initially, the voxel-based (2394 voxels per time frame

with a spatial resolution of 7 mm) data were created from

the ERP data from 61 scalp electrodes for a single time

frame that corresponded to the peak value of P3 in each

group for both Go and NoGo conditions. The current density

(at each voxel) was computed as a linear, weighted sum of

the scalp electric potentials scaled to amperes per square

meter (A/m2). The current density data created for each of

the individuals in both groups were statistically analyzed

using the built-in voxelwise independent t tests with 5000

permutations and corrected for multiple comparisons

(Holmes et al., 1996). The voxels with significant

differences (P!0.01) between NC and OA groups were

identified in terms of specific brain regions and Brodmann
Table 1

The performance scores between NC and OA group

Variable NC OA

Mean SD Mean

MMSE score 28.74 1.94 28.10

Reaction time 301.69 27.89 311.68

Error (Go) 4.56 2.49 6.04

Error (NoGo) 1.70 1.59 1.94

Error (Total) 6.26 2.97 7.98
areas (BA) as provided at http://www.unizh.ch/keyinst/

NewLORETA/Software/Software.htm.
3. Results

The focus of the current study is to compare ERP features

in NC and OA subjects. Therefore, we report the statistical

as well as LORETA results only for between-group

comparisons.
3.1. Behavioral data

The behavioral performance scores between NC and OA

have been shown in Table 1. It was observed that the

subjects in OA group tended to commit more errors and

have longer reaction times than subjects in the NC group,

that approached significance (P!0.10) on both measures.
3.2. ERP data

The Go/NoGo paradigm used in the present study

elicited robust P3 components and also yielded significant

statistical differences between groups. Other components of

the ERP waveforms (i.e. N1, P2, and N2) did not elicit

observable differences and hence were not analyzed. All 61

electrodes were included in the analyses. The RMANOVA

model included 2 conditions (Go and NoGo), 6 regions and

6 representative electrodes (Fig. 2) as within-subject factors,

and group and gender as between-subject factors. It was

found that Group main effect (FZ36.09; PZ0.0000) and

Group!Condition interaction (FZ13.278; PZ0.0004)

were significant. However, the Gender main effect (FZ
1.092; PZ0.2985), the Gender!Group interaction (FZ
0.481; PZ0.4896), and the Gender!Condition interaction

(FZ0.318; PZ0.5744) were not significant. Further,

significant main and interaction effects were also observed

in Region (FZ98.19; PZ0.0000), Electrode (FZ41.96;

PZ0.0000), Group!Region (FZ3.33; PZ0.0083),

Group!Electrode (FZ2.81; PZ0.0208), Condition!
Region (FZ56.70; PZ0.0000), Condition!Electrode

(FZ38.50; PZ0.0000), Region!Electrode (FZ27.56;

PZ0.0000), Condition!Region!Electrode (FZ19.83;

PZ0.0000). Other interactions were not significant. There

were no significant differences observed in P3 latency.
t value P value

SD

2.04 1.608 0.111

31.35 K1.683 0.096

5.07 K1.852 0.067

1.77 K0.713 0.477

5.45 K1.958 0.053

http://www.unizh.ch/keyinst/NewLORETA/LORETA01.htm
http://www.unizh.ch/keyinst/NewLORETA/LORETA01.htm
http://www.unizh.ch/keyinst/NewLORETA/Software/Software.htm
http://www.unizh.ch/keyinst/NewLORETA/Software/Software.htm


Fig. 3. The ERP waveforms of NC versus OA groups during NoGo and Go

conditions.
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The ERP waveforms and the topography of P3 amplitude

in NC and OA groups during NoGo as well as Go conditions

are illustrated in Figs. 3 and 4 respectively. In the NoGo

condition, the maximum amplitude was observed in

the central region, whereas the Go condition showed a
Fig. 4. The spatial distribution of ERP amplitudes (in mV) at 3 time intervals o
parietal maximum. The region-wise analysis (of MANOVA)

showed that the OA group had significantly lower amplitudes

in each region during the NoGo but not in Go condition

(Table 2). The post-hoc comparison (adjusted for multiple

comparisons) between NC and OA groups showed that the

significance was more robust in the NoGo condition as

compared to Go condition for each of the electrodes (Fig. 5).

3.3. LORETA findings

The LORETA images comparing NC and OA groups for

Go and NoGo conditions are illustrated in Figs. 6 and 7.

Statistical analyses revealed that the OA group manifested a

significant (P!0.05) reduction in brain activations in 136

areas (voxels), which also involved 34 specific regions

of bilateral frontal lobes such as bilateral anterior cingulate,

right inferior frontal gyrus, right middle frontal

gyrus, bilateral medial frontal gyri, rectal gyrus (area

11), subcallosal gyrus and left precentral gyrus.

These differences in frontal activity were more evident in

the right than in the left hemisphere. Other brain regions that

showed weaker activations included the bilateral temporal,
f P3 component in NC and OA groups during NoGo and Go conditions.



Table 2

The comparison of P3 amplitude (in mV) between NC and OA groups during the NoGo condition (using MANOVA)

Region NC OA F value (dfZ1, 98) P valuea

Mean SD Mean SD

Frontal 11.04 7.49 5.80 3.66 3.396 0.0006***

Central 10.45 4.34 6.04 2.64 3.639 0.0006***

Parietal 9.68 3.82 5.42 2.62 4.628 0.0002***

Occipital 7.25 3.65 3.78 2.22 5.103 0.0002***

Left-temporal 7.82 4.11 4.00 2.20 6.450 0.0001***

Right-temporal 8.18 3.91 4.32 2.20 8.603 0.0000***

***P! 0.001.
a Bonferroni corrected.

C. Kamarajan et al. / Clinical Neurophysiology 116 (2005) 1049–1061 1055
left parietal, right occipital, limbic, sub-lobar, and hippo-

campal areas. Visual inspection of LORETA images

confirms the findings that OA subjects exhibit reduced

activation in frontal, anterior cingulate and tempero-parietal

regions during the NoGo condition. On the other hand, there

was no significant difference observed in the Go condition in

any of the 2394 voxels at the P3 peak, either in the statistical

analysis or in the qualitative analysis of LORETA images.
Fig. 5. The mean P3 amplitude (in mV) between NC and OA groups during

NoGo and Go trails at FZ, CZ, and PZ electrodes (error bars represent 1

SD). The significance levels represented by star marks are based on

independent t-values corrected for multiple comparisons (*P!0.05;

***P!0.001).
4. Discussion

In the present study, the ERP and current density were

analyzed in NC and OA groups. In the region-wise analysis,

it was found that OA subjects manifested significantly

decreased P3 amplitude in the NoGo but not in the Go

condition. This finding was further confirmed by the

LORETA analyses which revealed that the OA group

exhibited a lower activation during the NoGo (but not Go)

processing at several brain regions, including frontal and

prefrontal areas. These dysfunctions of inhibitory response

control in OA group are explained in terms of cognitive and

neural disinhibition that is perhaps genetically mediated in

causing alcoholism and related disinhibitory disorders.

The discussion of the results focuses around 3 key topics:

(1) P3(00) and cognitive processes in the offspring of

alcoholics and the genetic implications, (2) different

perspectives on the concept of inhibition, and the correlates

of disinhibition (especially the electrophysiological indi-

ces), and (3) the NoGo-P3 as a potential endophenotypic

marker in alcoholism.

4.1. P3 correlates in offspring of alcoholics

Electrophysiological aberrations, using diverse ERP

paradigms, have been widely studied in abstinent alcoholics

(for reviews, Porjesz and Begleiter, 1983, 1985, 1990b, 1993,

1996). Among the ERP features, the component most

frequently studied in alcoholism research is P3(00),

a positive going peak that occurs around 300 ms after the

stimulus onset (e.g. Porjesz and Begleiter, 1993). The finding

that the children of alcoholics have a decreased P3 amplitude

has been widely reported, and a meta-analysis of P3 studies in
high-risk individuals concluded that the P3 can be a useful

investigative tool as an index of vulnerability for alcoholism

(Polich et al., 1994). These findings strengthened the view

that P3 amplitude can serve as a phenotypic marker for

alcoholism. The finding of the present study that the OA

group (which also had subjects with co-existing disinhibitory

disorders) displayed significantly lower P3 amplitude as

compared to that of the (age, gender, handedness, and

education matched) NC group is supportive of the notion that

P3 amplitude is an index of genetic vulnerability towards the

development of alcoholism and related disinhibitory dis-

orders. While P3 amplitude of the Go condition is larger in

the NC than OA group, the absence of a significant group

difference in the present paradigm may require further

explanation, as the Go stimulus cannot be equated with the

target stimulus of the Oddball paradigm, where many authors

have reported effects of a family history of alcoholism. There

are several differences between the target stimulus of the

Oddball paradigm and the Go stimulus of the Go/NoGo task

used in this study. In general, the task characteristics and

instructions are different for the Oddball paradigm and the

Go/NoGo task. In the oddball paradigm, attention is directed

to the target stimulus, whereas in the Go/NoGo paradigm



Fig. 6. The LORETA images of 3 orthogonal (axial, saggital, and coronal) views showing the current density (in amperes per square meter, A/m2) during the

peaks of the P3 component in NC and OA groups during the NoGo and Go conditions (NC, normal controls; OA, offspring of alcoholics).
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additional emphasis is placed on inhibiting the NoGo stimuli.

Further, in the oddball paradigm, the standard stimuli act as

passive signals, whereas in the Go/NoGo task, the NoGo

condition involves the active inhibition or suppression of

prepotent/prepared responses. While the stimulus prob-

ability of Go and NoGo stimuli can vary within paradigms,

typically in the ‘oddball’ paradigms the Go (target) is rare

and the NoGo is frequent (standard); in the Go/NoGo task

they are equiprobable or the NoGo is rare and the Go is

frequent. Because probabilities are different, NoGo is more

active in Go/NoGo task than oddball where ‘Go’ is a rare

occurrence.

Our finding on functional mapping (through LORETA)

demonstrated that OA subjects showed less activation only

during the NoGo condition in many brain regions including

the areas of the prefrontal cortices such as anterior

cingulate, orbitofrontal cortex and medial frontal gyri.

This reduced activity was more prominent in the right

hemisphere than in the left. The possible explanations may

include the hypothesis and findings that the right hemi-

sphere is more affected than the left in alcoholics (Ellis and

Oscar-Berman, 1989). Imaging studies (e.g. Konishi et al.,

1999) as well as ERP studies (e.g. Fallgatter et al., 1998)

have shown more prominent right hemispheric activation
during the NoGo condition. Taken together, these findings

suggest that the cognitive dysfunction in high-risk individ-

uals may be attributable to a dysfunctional response

inhibition mechanism which is perhaps genetically

mediated. This finding is also supportive of the prefrontal

network systems model that was proposed to explain the

neuro-cognitive and genetic aspects in the development of

alcoholism (Kamarajan et al., 2004, in press). In an fMRI

study, Rangaswamy et al. (2004) reported that a dysfunc-

tional fronto-parietal circuit may underlie the low P3

responses seen in children of alcoholics. In addition, the

findings of neuropsychological deficits in high risk individ-

uals (Drejer et al., 1985; Knop et al., 1993; Peterson et al.,

1992; Schaeffer et al., 1984; Tarter et al., 1989) may serve as

valid evidence for the hypothesis that the cognitive deficits

may have preceded their alcohol use. Further evidence for

the genetic hypothesis of alcoholism came from the

observation that the cognitive functions of prefrontal lobe

are highly heritable (for a review, Winterer and Goldman,

2003), including that of frontal executive functions (Ando

et al., 2001; Swan and Carmelli, 2002; Winterer and

Goldman, 2003) and attentional networks (Fan et al., 2001;

Fossella et al., 2002). Therefore, it can be suggested that the

findings of the present study are suggestive of strong genetic



Fig. 7. The LORETA images of 3-dimensional views showing the current density (in A/m2) during the peaks of the P3 component in NC and OA groups during

the NoGo and Go conditions (NC, normal controls; OA, offspring of alcoholics; LH, left hemisphere; RH, right hemisphere; bH, both hemispheres; A, anterior;

P, posterior; S, superior; I, inferior; LV, left view; RV, right view; BV, bottom view).
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mediation in predisposing the risk to develop alcoholism, as

evidenced by cognitive and neurophysiological dysfunc-

tions that are elicited by decreased P3 amplitude and weaker

activation of brain areas during response inhibition in OA

subjects.
4.2. Inhibition/disinhibition: concepts and correlates

At the behavioral level, however, inhibitory control

refers to the ability of the organism to withhold a planned

response, to interrupt a response that has been started, to

protect an ongoing activity from interfering activity, and to

delay a response (Rubia et al., 1998). On the other hand,

various neuro-cognitive models suggest that inhibitory

control is subserved by the frontal lobe circuits (Casey

et al., 2001, 2002; Chambers et al., 2003; Giancola and

Moss, 1998; Goldstein and Volkow, 2002; Kamarajan et al.,

2004). However, the central concept of inhibition–exci-

tation shares a parallel with Gray’s theory of Behavioral

Activation and Inhibition systems (BAS and BIS respect-

ively; Gray, 1972, 1987, 1990). The BAS and BIS are

construed as bio-behavioral traits representing the psycho-

biological systems responsible for arousal/inhibition in

humans (Carver and White, 1994; Gray, 1988, 1994), and
are linked to frontal activity levels (Coan and Allen, 2003;

Harmon-Jones and Allen, 1997; Sutton and Davidson, 1997)

and to various forms of child psychopathology (Kooijmans

et al., 2000). Further, Finn et al. (1994) found that the

subjects who are at high-risk to develop alcoholism

had significantly smaller skin conductance responses to

the conditioned stimulus for punishment, possibly reflecting

weak behavioral inhibition system processes.

It has been theorized that disinhibition as a cognitive and

neural construct is involved in predisposing to alcoholism

(Begleiter and Porjesz, 1999) and other disinhibitory

disorders (Iacono et al., 1999, 2002, 2003). It has been

reasoned that the production of P3, irrespective of the task

and modality, is associated with widespread cortical

inhibition (e.g. Nash and Williams, 1982; Roberts et al.,

1994; Tomberg and Desmedt, 1998). Further, the P3

amplitude was found to be significantly decreased in

various externalizing disorders (Kendler et al., 2003) such

as ASPD (Costa et al., 2000; Hesselbrock et al., 1993;

Iacono et al., 2002; Justus et al., 2001; Kiehl et al., 1999,

2000), CD (Bauer and Hesselbrock, 1999a,b, 2003; Iacono

et al., 2002), ADHD (Banaschewski et al., 2003; Jonkman

et al., 1997; Overtoom et al., 1998; Steger et al., 2000; van

der Stelt et al., 2001) and alcohol/drug dependence
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(e.g. Begleiter and Porjesz, 1999; Hill et al., 1999; Iacono et

al., 1999, 2002). Fallgatter and Herrmann (2001) explain

that features of the NoGo-P3 are valid measures of the brain

electrical basis of impulsive behavior and cognitive

response control, and hence the impaired NoGo-P3 may

also indicate ‘emotional disinhibition’. In this context,

alcoholism is considered to be a part of the disinhibitory

spectrum, owing to the suppressed P3 amplitude in

alcoholics and individuals at risk. Our finding that the OA

group showed lower P3 amplitude as well as lower

activation of brain regions including frontal areas during

response inhibition strongly supports the notion that

disinhibition is perhaps the core feature in the predisposition

for the development of alcoholism and other disinhibitory

disorders.

4.3. NoGo-P3 as an endophenotypic marker for alcoholism

An endophenotype-based approach can facilitate

the process of genetic analyses of psychiatric disorders

(Gottesman and Gould, 2003). A heritable biological

endophenotype could identify those individuals at genetic

risk in the absence of overt manifest symptoms (Begleiter

and Porjesz, 1999). By citing evidence, Porjesz et al. (1996,

1998) demonstrated that P3 amplitude meets all the criteria

to be considered as a phenotypic marker for alcoholism.

Since the ERP features and EEG oscillations are highly

heritable (e.g. Begleiter et al., 1998; Porjesz et al., 2002; van

Beijsterveldt et al., 1996, 1998, 2001; Winterer and

Goldman, 2003), dysfunction in these measures in clinical

groups, especially in high-risk individuals, suggests a

genetic vulnerability for the disorder(s).

In the present study, we observed that the OA group

displayed lowered activation in several brain regions during

P300 processing of the NoGo (but not Go) condition as

elicited by functional imaging through LORETA, reflecting a

weaker neural inhibition system in the vulnerable population.

This dysfunction may have been genetically mediated, as

reported by Jones et al. (2004) who found that the frontal

theta band elicited during the P300 time window

(300–700 msec) target condition of the visual oddball task

was associated with single nucleotide polymorphisms

(SNPs) in the cholinergic muscarinic receptor gene

(CHRM2) on chromosome 7. Further, this fronto-centrally

focused theta activity was reportedly deficient in both

alcoholics (Kamarajan et al., 2004) and their offspring

(Kamarajan et al. in preparation). The phenomenon of

reduced ‘NoGo-P3’, along with poorer brain activation

during NoGo processing, has therefore been supported with

considerable evidence to suggest a genetic mediation of

inhibition/disinhibition in causing predisposition to develop

alcoholism and other disinhibitory disorders in high risk

individuals. Thus it can be concluded that the ‘NoGo-P3’ can

be considered to be a potential endophenotypic marker for

alcoholism and other co-existing disinhibitory disorders,

which can be elicited in high-risk individuals even before the
onset/manifestation of the disorder. However, further studies

using different task paradigms to measure inhibition/

disinhibition in different disinhibitory disorders are

essential in order to replicate and confirm the findings of

the present study.
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