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Human brain oscillations represent important features of informa-
tion processing and are highly heritable. A common feature of beta
oscillations (13–28 Hz) is the critical involvement of networks of
inhibitory interneurons as pacemakers, gated by �-aminobutyric
acid type A (GABAA) action. Advances in molecular and statistical
genetics permit examination of quantitative traits such as the beta
frequency of the human electroencephalogram in conjunction with
DNA markers. We report a significant linkage and linkage disequi-
librium between beta frequency and a set of GABAA receptor
genes. Uncovering the genes influencing brain oscillations pro-
vides a better understanding of the neural function involved in
information processing.

S ince the initial discovery of the human electroencephalo-
gram (EEG) by Berger (1), it has been speculated that neural

oscillations play a broad role in nervous systems and form the
basis for higher cognitive functions and consciousness (2–4).
Although it is not possible yet to assign a specific functional role
to each frequency, the presence of a beta�gamma oscillation
(18–50 Hz) is thought to represent an activated state of the
underlying neuronal network. These beta (12–29 Hz) and
gamma (30–50 Hz) brain rhythms involve �-aminobutyric acid
type A (GABAA) receptor action (5).

Neuronal networks can display different states of synchrony
characterized by their oscillation frequencies measured by EEG
(6, 7). Most EEG parameters are stable and to a large extent are
determined genetically. Test-retest correlation coefficients for
EEG power, after a 12–16-week interval between measure-
ments, are high (�0.8; refs. 8–10). The earliest extensive genetic
studies of the human resting EEG were carried out by Vogel (11,
12). A number of investigators have reported higher concor-
dance rates in the spectral characteristics of EEG from monozy-
gotic twins when compared with dizygotic twins (8, 13–15). In
the largest twin study to date (16, 17), the eyes-closed, resting
EEG recorded from 14 scalp locations was measured from 213
twin pairs. The average heritability of the spectral power in four
frequency bands, delta (1.5–3.5 Hz), theta (4.0–7.5 Hz), alpha
(8.0–12.5 Hz), and beta (13–25 Hz), was found to be 76, 89, 89,
and 86%, respectively. Although the data on the heritability of
EEG frequencies are quite compelling, the genes influencing
EEGs have not been identified yet. We report here a linkage and
linkage-disequilibrium study concerning the beta frequency
band of the human EEG.

Methods
Subjects in this study were recruited and tested in the multisite
Collaborative Study on the Genetics of Alcoholism (COGA).
COGA sites providing data for this study include State Univer-
sity of New York Downstate Medical Center (New York),
University of Connecticut Health Science Center, Indiana Uni-
versity School of Medicine, University of Iowa School of Med-

icine, University of California School of Medicine (San Diego),
and Washington University School of Medicine (St. Louis).
Ascertainment and assessment procedures have been described
(18, 19). The sample included in this EEG linkage study was
drawn from 250 families and consisted of 1,553 individuals
ranging from 7 to 70 years of age. The laboratory and data-
collection procedures were identical at each of the sites (20). In
addition to EEG activity, blood was collected for DNA extrac-
tion. Marker genotyping and Mendelian error detection have
been described (21). Maximum likelihood estimates of marker
allele frequencies were obtained from data on all genotyped
individuals in the COGA data set by using the USERM13 program
(22). CRIMAP (23) was used to calculate marker order and
distances. Data in this report are based on a whole-genome
screen with a total of 351 markers.

Subjects were seated comfortably in a dimly lit sound-
attenuated temperature-regulated booth (Industrial Acoustics,
Bronx, NY). They were instructed to keep their eyes closed and
remain relaxed but to not fall asleep. Each subject wore a fitted
electrode cap (Electro-Cap International, Eaton, OH) using the
19-channel montage as specified according to the 10–20 inter-
national system (FP1, FP2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8,
P7, P3, Pz, P4, P8, O1, and O2; Fig. 1). The nose was used as a
reference, and a forehead electrode served as the ground
electrode. Both vertical and horizontal eye movements were
monitored with electrodes that were placed supraorbitally and at
the outer canthus of the left eye to perform ocular artifact
correction. Electrode impedances were maintained below 5 k�.
Electrical activity was amplified 10,000 times by Sensorium
(Charlotte, VT) EPA-2 electrophysiology amplifiers with a
bandpass between 0.02 and 50 Hz and digitized on a Concurrent
(Atlanta, GA) 5550 computer. EEG data were collected in the
awake, eyes-closed condition at a sampling rate of 256 Hz for
4.25 min.

The raw data were subjected to wavelet filtering and recon-
struction to eliminate very high and low frequencies (24, 25). The
s12 wavelet was used to perform a six-level analysis, and the
output signal was reconstructed with levels d6–d3, roughly
equivalent to applying a bandpass filter with a range of 2–64 Hz
to the data. Subsequently, eye movements were removed by
using the method developed by Gasser et al. (26, 27). This
method subtracts a portion of the observed ocular activity from
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the observed EEG to obtain the true EEG, in which the
proportionality is based on the difference between the cross-
spectral values of trials with high ocular activity and those with
low ocular activity. Visual inspection of corrected data showed
satisfactory artifact removal. The filtered artifact-free data were
transformed into 11 bipolar derivations (F7–F3, F8–F4, T7–C3,
T8–C4, P7–P3, P8–P4, O1–O2, CZ–C3, CZ–C4, PZ–P3, and
PZ–P4) to improve sensitivity to local electrical sources (6, 28,
29). The 19-channel montage used in this study would not be
sufficient for current source density analyses. Bipolar derivations
using closely adjacent electrodes provide a high-pass spatial filter
(i.e., counteract some of the smearing of cortical potentials) and
are more effective in capturing a greater amount of cerebral
energy output than other referencing strategies. Bipolar deriva-
tions were analyzed in 254 overlapping 2-sec epochs by use of a
Fourier transform. After windowing effects were minimized by
application of a Hamming function (30), the resulting spectral
densities, sampled at 0.5-Hz intervals, were aggregated into
bands, divided by the bandwidth, and then averaged across
epochs.

This study focused on the absolute power in the EEG (3–28
Hz), which was subdivided into theta (3.0–7.0 Hz), alpha 1
(7.5–9.0 Hz), alpha 2 (9.5–12.0 Hz), beta 1 (12.5–16.0 Hz), beta
2 (16.5–20.0 Hz), and beta 3 (20.5–28 Hz) bands. Band-power
distributions for the population sample were examined, and
values beyond 4 standard deviations from the mean were elim-
inated. Linear regressions were performed on the spectral values
by using gender and age as covariates. After appropriate cor-
rection, the quantitative traits (theta, alpha 1 and 2, and beta 1,
2, and 3) were computed as residuals from the predicted value.

Information describing the spatial�spectral signature of an
individual’s EEG was compressed by employing the trilinear
modeling method, a singular value decomposition procedure
(31, 32). Trilinear modeling represents the EEG as superposi-
tions of a few pairs of spatial and spectral components. The
spatial components are obtained by pooling the individual’s data

together by electrodes and performing a singular value decom-
position. The spectral components are obtained by pooling the
individual’s data together by frequency bins and performing a
singular value decomposition. The resultant components then
are rotated by using the orthogonal matrices from a singular
value decomposition on the average of the fitting coefficient
matrices; hence the average of the fitting coefficients to the
individual’s EEG is a diagonal matrix. The representation of the
data is unique given the spatial and spectral components. We
extracted the first spatial and spectral component pair of the five
EEG bands (theta, alpha 1 and 2, and beta 1, 2, and 3) and used
the fitting coefficients for each subject as the phenotypic data in
subsequent analysis, greatly reducing the number of EEG vari-
ables examined.

The quantitative EEG phenotypes were used in a variance
component linkage analysis using the sequential oligogenic
linkage analysis routines (SOLAR; ref. 33). SOLAR uses all relative
pairs by constructing likelihood functions for whole pedigrees.
The appropriate variance�covariance matrix for a pedigree
depends on the predicted proportion of genes shared identical by
descent at a hypothesized quantitative trait locus (QTL); this
proportion in turn depends on the proportion shared identical by
descent at genotyped markers and on the type of relative pair.
Maximum likelihood estimates for the variance component
parameters are obtained, and a lod score is computed as log 10
of the likelihood ratio comparing two models: a model for which
the additive genetic variance �2a for the QTL is estimated versus
a model for which �2a is constrained to be 0 (no linkage).
Variance component analyses were carried out at 1-cM intervals
across all chromosomes using SOLAR (34). Although the variance
component method generally assumes multivariate normality
within pedigrees, the method is quite robust to distributional
violations (35–38). Because of slight kurtosis in the distributions
of the EEG traits (kurtosis values of 0.9–1.2), analyses were
performed by using the multivariate t distribution rather than the
multivariate normal distribution option of SOLAR (34).

Results
The strongest evidence for linkage with EEG power was ob-
served on the short arm of chromosome 4 for the beta traits;
there were no other statistically significant lod scores for other
EEG frequency bands or chromosomes. Therefore, this study
focused on the findings from the three beta bands (beta 1, 2, and
3) using the first spatial and spectral component pairs.

The first component for beta 1 accounted for 54% of the
spatial variance and 73% of the spectral variance. The first
component for beta 2 accounted for 52% of the spatial variance
and 78% of the spectral variance. The first component for beta
3 accounted for 46% of the spatial variance and 70% of the
spectral variance. The analysis of beta 1 provided a significant
linkage on chromosome 4 at GABRB1 between the markers
D4S1627 and D4S1645 (lod � 3.39). Beta 2 demonstrated
significant linkage with a lod � 5.01 at the same locus. Beta 3
yielded a nonsignificant but suggestive linkage at the same locus
(lod � 2.17). The maximum lod score of the EEG linkages for
all three beta frequency bands on chromosome 4 were at
GABRB1, a microsatellite marker (Fig. 2). The 1-lod support
interval for the location of the QTL encompassed �16 cM
flanking the locus. Multivariate analyses were performed be-
tween the beta 1, 2, and 3 phenotypes (39). The overall genetic
correlations between these traits were very high; �g was 0.88
between beta 1 and 2 and 0.91 between beta 2 and 3, indicating
substantial overlap in the genes influencing these traits. In
linkage analyses at the chromosome 4 peak, the QTL-specific
correlations between the traits were estimated at 1 and were not
significantly different from 1, providing evidence for pleiotropy
and supporting the hypothesis that the same chromosome 4 QTL
influences all three beta EEG phenotypes.

Fig. 1. Diagram of aerial view of the scalp with the nose up (front) desig-
nating the positions of the electrodes in the 10–20 international System. F,
frontal; C, central; P, parietal; O, occipital; T, temporal. Odd numbers indicate
leads on the left side of the head, even numbers indicate leads on the right
side, and Z indicates zero or midline.
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Combined linkage�linkage disequilibrium analysis was used to
test for association between the beta 2 EEG phenotype and the
GABRB1 microsatellite marker (40). This approach uses identity
by state sharing between unrelated individuals to augment the
linkage information obtained from identity by descent sharing
among relatives. In the present analyses, the identity by state
matrix was constructed such that only individuals in the same
ethnic group were allowed to share alleles identity by state,
effectively constraining the disequilibrium analyses to within-
group comparisons. Additionally, using the contrast between the
locus-specific variance predicted by identity by descent and that
predicted by identity by state provides an estimate of the strength
of the linkage disequilibrium between the genotyped marker and
the true QTL. Using this method, the lod score in this region of
chromosome 4 increased to 6.53, and strong evidence for asso-
ciation between the beta 2 EEG phenotype and the GABRB1
microsatellite marker was observed (P � 0.004). The disequi-
librium parameter (�d � 0.57) indicated linkage disequilibrium
between the GABRB1 microsatellite and the functional QTL. �d
is a function of the difference between the actual haplotype
frequencies for the marker and the QTL and those predicted by

the constituent allele frequencies, standardized by the allele
frequencies such that it is a proportion of the maximum possible
disequilibrium between the marker and the QTL. For example,
for a two allele system

�d � ��AM � �A�M�����A ��a ��M ��m � [1]

where �AM is the frequency of the AM haplotype and �A, �a, �M,
and �m are the allele frequencies at marker M and QTL A. In
theory �d varies between �1 and �1, with the sign depending on
how the alleles at the marker and QTL are designated (i.e., which
allele is assigned to A and which to a). In the combined
linkage�linkage disequilibrium analysis described above, the
square of �d is estimated from the covariance among unrelated
individuals. Taking the square root of this estimate produces a
�d figure varying from 0 to 1 with 0 indicating no disequilibrium
and 1 indicating the maximum possible disequilibrium.

These results provide strong evidence for an association
between the GABRB1 locus and the beta 2 EEG phenotype and
suggest that the chromosome 4 QTL is in or near GABRB1. This
significant linkage�linkage disequilibrium for the beta frequen-
cies is situated within a cluster of GABAA receptor genes located

Fig. 2. Linkage of beta frequencies: beta 1 (12.5–16 Hz), beta 2 (16.5–20 Hz), and beta 3 (20.5–28 Hz) on chromosome 4. For all three beta bands, the maximum
lod scores were at GABRB1, a microsatellite marker situated within a cluster of GABAA receptor genes (beta 2, lod � 5.01; beta 1, lod � 3.39; beta 3, lod � 2.17).
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on chromosome 4. This cluster includes GABRA2, GABRA4, and
GABRB1 within 1 cM (41).

Discussion
Fast synaptic inhibition in the mammalian central nervous
system is mediated largely by activation of GABAA receptors
(42). Most GABAA receptors consist of �, �, and � subunits. It
has been hypothesized that GABAA actions are a fundamental
requirement for both gamma (30–80 Hz) and beta (12–30 Hz)
oscillations to occur, and blockade of these receptors results in
the loss of synchronization (5); beta rhythms can synchronize
over long temporal delays between more spatially distant brain
loci than gamma rhythms (43). Although the recording of
electrical oscillations from a neural population reflects the firing
of multiple excitatory pyramidal cells, the mechanism underlying
beta and gamma oscillations depends on the firing patterns of a
network of inhibitory interneurons (43, 44) gated by their
mutually induced GABAA action (45). Two kinds of beta have
been described. In the first, both excitatory pyramidal cells and
inhibitory interneurons fire at beta frequencies and approxi-
mately in phase; the mechanism seems to be a similar but slower
version of gamma oscillations in which both pyramidal cells and
interneurons participate. In the second kind of beta, pyramidal
cells fire at beta frequencies, but interneurons fire at gamma
frequencies; the pyramidal cells generate synchronous action
potentials that fire at subharmonics of the inhibitory gamma
oscillation (‘‘missed beats’’; ref. 44).

Classical benzodiazepines such as diazepam bind to GABAA
receptors containing the � subunits �1, �2, �3 or �5, whereas the
receptors containing the �4 or �6 subunits are insensitive to
diazepam. It has been reported recently that the sleep and
waking EEG spectral changes observed with diazepam are
mediated by GABAA � subunits other than �1, namely by �2, �3,
or �5 (42); anxiolytic activity is mediated by �2- but not
�3-containing receptors (46). These pharmacological findings
suggest that the GABAA �2 subunit may be the most likely
candidate for our linkage�linkage disequilibrium findings with
the EEG beta spectral band. Benzodiazepines produce a strong
increase in EEG beta power that is more marked in frontal
regions. Benzodiazepines disrupt the beta (excitatory pyramidal
cell)�gamma (inhibitory interneuron) oscillations at the cellular
level and produce a ‘‘beta buzz.’’ This beta buzz can be produced
experimentally by pressure injection of glutamate or specific
metabotropic glutamate agonists into a hippocampal slice (47,

48). In this case, the observed beta rhythm occurs as a slower
pyramidal-interneuron network oscillation determined by ben-
zodiazepine GABAergic synaptic potentials in pyramidal cells
and interneurons; this occurs without an underlying inhibitory
gamma rhythm (there are no missed beats; ref. 49). These
drug-induced beta oscillations can be considered as ‘‘slow gam-
ma,’’ because they are caused by the same fundamental mech-
anisms; they differ from the beta (excitatory pyramidal cell)�
gamma (inhibitory interneuron) oscillations, which involve both
an underlying inhibitory gamma component as well as recurrent
excitatory synaptic activity.

Beta activity is indicative of background excitation involving
a frequency potentiation mechanism at the synaptic level of the
recurrent loops (45, 50). In a spontaneously active network of
interneurons, inhibitory GABA and glycine receptors generate
periodic oscillatory burst patterns with remarkable regularity in
burst period and duration observed at many brain sites (45, 51).
This finding suggests that beta frequencies typically observed in
the human EEG reflect a state of central nervous system
activation, with GABAA receptor action as pacemakers (52, 53).
Our findings of a strong linkage�linkage disequilibrium between
the beta frequencies and the region on chromosome 4 containing
a cluster of GABAA receptor genes represent the identification
of a genetic locus associated with these fundamental human
brain oscillations.
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