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Summary: We describe a method to obtain estimates of EEG signal complexity using the well-established wavelet packet transform with best basis se-
lection. In particular, we use the two-dimensional wavelet packet transform to obtain estimates of the complexity of two-dimensional images. This al-
lows us to calculate complexity estimates of high-resolution brain potential maps generated from 61 scalp electrode Visual Oddball paradigm,
grand-mean data. A significant reduction in the complexity of the surface Laplacian time-slices is observed during and after the Visual Potential 300
(P3) event for the target case, possibly as a result of increased spatial synchrony associated with visual-related tasks. We also present the results of a
statistical analysis of the largest principal component of the time-varying complexity curves, for control, high-risk, and alcoholic groups of male sub-
jects. Parametric and non-parametric analyses show differences in the complexity data which are significant between the control group and the alco-
holic and high-risk groups.
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Introduction
Traditionally, the amplitude and frequency content of

electroencephalogram (EEG) and event related potential
(ERP) signals are employed to examine differences be-
tween experimental cases or population groups. Temporal
and spatial measures of signal entropy (or complexity) of-
fer an alternative method to analyze neurophysiological
signals as they use a measure that is less sensitive to possi-
ble differences in absolute signal measures such as ampli-
tude and frequency. Fell et al. (1996) showed that a number
of other linear and non-linear measures, such as correla-
tion dimension, Lyapunov exponents and entropy, offered
additional complementary information to that of spectral
measures for the discrimination of sleep stages using EEG
data. Rezek and Roberts (1996) argue that EEG rhythms
may be manifestations of changes in the interaction be-

tween neuronal assemblages; hence, measures of signal
entropy could provide a useful alternate method of analy-
sis. A number of recent articles (Pezard et al. 1996; Roberts
et al. 1998; Weber et al. 1998; Andino et al. 2000;
Bhattacharya 2000; Bergey and Franaszczuk 2001; Jeong et
al. 2001) have described the application of entropy and
complexity measures to EEG and ERP data in order to dif-
ferentiate cognitive tasks or clinical groups.

Here we apply a measure of signal complexity to
high-resolution ERP data collected during a simple dis-
crimination task "oddball" paradigm. This complexity
measure is based on the concept of Shannon entropy
(Shannon 1948), historically the first measure of signal
randomness or disorder. The term "entropy" here refers
to the analogy between the Shannon entropy formula and
the equation for thermodynamic entropy. The entropy of
a sequence has a number of equivalent interpretations:

* Entropy is a measure of the complexity of the ran-
dom process that generates the sequence, where larger
entropy values represent higher process uncertainty and
therefore higher complexity.

* Entropy is the length of shortest binary description
of the states of the random variable that generates the se-
quence, so it is the size of the most compressed descrip-
tion of the sequence.

* Entropy also measures the average surprise, or in-
formation gain, occasioned by the receipt of a symbol.

Shannon entropy is considered a standard measure
of the complexity of a sequence (Lloyd 1989), and is
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closely related to Kolmogorov’s algorithmic complexity
measure - defined as the length of the shortest program
for a universal Turing machine that correctly reproduces
the observed data (Kolmogorov 1965). The Shannon en-
tropy of a random variable X is:
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where H[X] is a function of the probability distribution of
the random variable X.

Recently, a number of alternatives have been de-
vised to determine the information content of a signal.
These include: Rényi entropy (Rényi 1960); correlation
dimension (Grassberger and Procaccia 1983); Lyapunov
exponent (Wolf et al. 1985); Taken’s maximum likelihood
estimator (Takens 1981); approximate entropy (Pincus
1991); spectral entropy and embedding-space decompo-
sition (Rezek and Roberts 1996); Time-frequency repre-
sentation Rényi entropy (Baraniuk et al. 1998). These
linear and non-linear measures quantify signal complex-
ity; however, the technical definitions of "complexity"
vary according to the method.

Methodology
In this paper we apply a method to calculate the

complexity of ERP time slice images using the
two-dimensional wavelet packet decomposition
(Coifman and Wickerhauser 1990) with best-basis selec-
tion (Coifman and Wickerhauser 1992). This provides an
estimate of spatial entropy at successive time points. Use
of the wavelet packet best-basis coefficient as a measure
of signal complexity has, to the authors knowledge, not
been reported elsewhere, and hence represents a new
and novel method of analyzing spatial ERP data. We
show the application of the measure to high-resolution
Visual Oddball data.

Significant differences are observed between control
vs. alcoholic and control vs. high-risk spatial complexities
during and following the Visual P3 component for the
target stimulus case of the Visual Oddball experiment.
The Visual P3 component is the third positive component
of the ERP; it occurs between 300 and 500 ms after the
stimulus onset. Differences in the Visual P3 component
amplitude between control and alcoholic men have been
reported on several occasions (Porjesz et al. 1980, 1987;
Emmerson et al. 1987; Patterson et al. 1987; Pfefferbaum et
al. 1991; Cohen et al. 1995). In all these studies, the pri-
mary finding is a decrease in the Visual P3 component
amplitude of the ERP in abstinent alcoholics compared
with controls. Similar observations have been made be-
tween low-risk and high-risk boys (Begleiter et al. 1984;
Benegal et al. 1995; Whipple et al. 1988, 1991; Berman et al.
1993; Hill et al. 1993; van der Stelt et al. 1998).

The differences between the groups presented in
this paper, however, are independent of Visual P3 com-
ponent peak amplitude measures and so possibly repre-
sent a different putative phenotypic marker for the study
of the genetic predisposition toward alcoholism.

Materials and Methods

Measuring Data Complexity

Sparse coding provides a way to determine the com-
plexity of a signal or image. A signal which is maximally
sparse will have a probability distribution which is
highly peaked around zero and which contain signifi-
cant tails, e.g., figure 1a. Such highly peaked probability
distributions describe low entropy signals in which most
values will be zero and where there is a reduction of sta-
tistical dependency among the signal coefficients
(Olshausen and Field 1996). In contrast, a Gaussian dis-
tribution with the same variance will have maximal en-
tropy. Sparse coding can be achieved through a variety of
compression algorithms, and a measure of complexity
can be obtained using some measure of the effectiveness
of the compression algorithm (illustrated in figure 1b).

The Coifman and Wickerhauser (1992) best-basis al-
gorithm is used here to determine a transformation
which yields the best compression for the wavelet packet
transform (Coifman and Wickerhauser 1990). The
best-basis algorithm can deliver near-optimal sparsity
representations of a signal. The next section gives a brief
outline of the techniques employed to deliver an estimate
of signal complexity: the wavelet packet transform de-
composition and best-basis.

Wavelet packet transform, best-basis, and signal
complexity

The wavelet packet transform is a generalization of
the wavelet transform, which decomposes a signal f(t)
into a weighted sum of basis functions. The basis func-
tions are translated and dilated versions of a mother
wavelet function ψ, which define the orthogonal wavelet
basis, and is formed using the two fundamental equa-
tions upon which the wavelet calculations are based, the
scaling function φ and wavelet function ψ.

The wavelet packet transform generates the full de-
composition tree, as depicted in figure 2; this is an
overdetermined system (if *f* = 2n then each row in the
decomposition tree has 2n coefficients and the wavelet
packet tree has n2n coefficients). A particular choice of
subtree coefficients which represent a signal using the
same number of samples as the original is termed a basis.
For example, the coefficient sets depicted by white ovals
in figure 2 represent one possible basis representation of
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the signal f. (Wavelet transform coefficients are depicted
in figure 2 with gray ovals.) Commonly, the lowest cost
basis with respect to a cost function is chosen to represent
the signal. Typically employed cost functions include: Lp

norm (where p is some positive integer); L2 entropy; and
counting of the number of elements above a threshold
value (Coifman and Wickerhauser 1992).

Trgo and Wickerhauser (1996) show how the
best-basis algorithm of Coifman and Wickerhauser
(1992) can also provide an estimate of the signal com-
pression rate, since the best-basis algorithm minimizes
the theoretical dimension of a sequence. This estimate is
related to Shannon-Weaver entropy, the minimum bit
rate required to transmit the values of the signal (Shan-
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Figure 1. A highly peaked distribution with heavy tails, solid line in (a), will have low entropy and hence reduced statistical
dependencies among coefficients. In contrast, a Gaussian distribution (dotted line in (a)) has maximum entropy for the
same variance. Sparse coding of an image or signal, depicted in (b), provides transformation of the data to a lower en-
tropy form. Figure adapted from Olshausen and Field (1996).

Figure 2. Illustration of the wavelet packet decomposition. A low (L) and high (H) pass filter is repeatedly applied to the
function f, followed by decimation by 2, to produce a complete subband tree decomposition to some desired depth. The
low- and high-pass filters are generated using orthogonal basis functions. The wavelet transform basis is indicated by gray
ovals. The orthogonality of the basis functions allows the use of an additive cost function to determine the optimal basis for
data compression. An example of a possible best basis is shown using white ovals.



non and Weaver 1964). In this study the value of the L2

norm cost function for the best basis is used as a measure
of the effectiveness of the compression algorithm, and
hence as a measure of the relative complexity of a signal
or image. Additionally, all complexity calculations use
the symmlet wavelet with eight vanishing moments as a
basis function for wavelet decompositions. As an exam-
ple, figure 3 shows complexity estimates for a 1024 point
sinusoidal signal x(t), with increasing amplitude addi-
tive noise (figure 3a). Two complexity measures are plot-
ted in 3b: signal complexity, calculated via wavelet
packets and best-basis; and the Rényi entropy, calculated
via time-frequency representations (following Baraniuk
et al. 1998 and Andino et al. 2000). Both measures show
the same general behavior - signal complexity increasing
with increasing additive random noise.

Extension of the wavelet packet transform to ana-
lyze two-dimensional signals is described by Coifman
and Meyer (1990). If ψ is the mother wavelet and φ the

scaling function, then the two-dimensional basis is given
by the functions
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The best basis tree is chosen using a cost function cal-
culation on each sub-matrix of the decomposition in an
analogous way to the one-dimensional case (figure 2).
The final relative complexity value of the image is then
equal to best overall cost-function value.

Figure 4 shows synthetic checkerboard images with
either 4 (a, b and c), 16 (d, e and f) or 64 (g, h and i) squares
and increasing SNR (Gaussian noise) of 4 (a, d and g), 10
(b, e and h) and 2 (c, f and i). The signal-to-noise ratio
(SNR) is here defined as the magnitude of the signal (the
same for all check patterns) divided by the mean abso-
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Figure 3. One-dimensional complexity calculation example for a deteriorating sinusoid (a). Sliding window complexity val-
ues are shown in (b) calculated using the one-dimensional wavelet packet decomposition and the best-basis algorithm
(solid line) and Rényi entropy estimation via time-frequency representations (dashed line) (Baraniuk et al. 1998; Andino et
al. 2000). Both complexity measures employed a 128 sample sliding window with 16 samples overlap. Entropy and com-
plexity curves have been amplitude normalized to allow comparison.



lute noise level (infinite SNR is therefore noise free). As
might be expected the images containing greater noise
show higher relative complexity values. Somewhat
counter-intuitively, however, images with a larger num-
ber of checks show lower complexity values. This effect
may be understood through the notion of average sur-
prise (Feldman 1998), which is related to the degree of
uncertainty. The quantity -log2 Pr(x) in the Shannon en-
tropy equation (equation 1) may be referred to as the sur-
prise associated with the outcome x, and is large when
Pr(x) is small. The landscape depicted in the image with

64 squares (figure 4c) is more predictable, and hence will
contain less surprise, than the landscape with 4 squares
(figure 4g). It is interesting to note that images figure 4a
and 4h have similar complexity values despite their dif-
ferent nature, i.e., the measure is non-unique.

The Visual Oddball Paradigm Experiment Data

Data collection

During the Visual Oddball experiment the subject is
seated in a dimly lit, temperature regulated, sound atten-
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Figure 4. Two-dimensional complexity calculation examples for checkerboard images with additive Gaussian noise.
Checkerboard images have 4 (a, b and c), 16 (d, e and f), or 64 (g, h and i) checks; and signal to noise ratios (SNR) of 4 (a, d
and g), 10 (b, e and h), or 2 (c, f and i).



uated booth (Industrial Acoustics Corp., Bronx, NY).
Data were recorded using a 64 channel electrode cap
(Electro Cap Intl., Inc., Eaton, OH), 61 placed using the
International 10/20 system (Jasper 1958), 2 channels
monitoring eye movement and 1 nose channel acting as a
reference channel. EEG activity was amplified 10 K
(Sensorium, Charlotte, VT), and bandpassed at 0.02 - 50
Hz, before being digitally sampled and recorded at a rate
of 256 Hz. Subjects were requested to sit as still as possi-
ble and minimize blinking during data recording.

The Visual Oddball paradigm consists of 280 stimuli
separated by a uniform inter-stimulus interval of 1.625 sec-
onds and presented for 60 ms duration. Of the 280 stimuli,
210 are non-targets represented by the outline of a square,
35 are target stimuli in the shape of a cross, and 35 are novel,
formed from differing geometrical shapes; the subjects are
instructed to respond to the target stimulus by pressing a
button as quickly as possible. Speed was emphasized but
not at the expense of accuracy. The stimuli were presented
in a pseudo-random order with the constraint that the tar-
gets or novels may not be repeated consecutively.

Following acquisition, the data were separated into
trials with 200 ms of pre-stimulus baseline data and 800
ms post-stimulus data, and then grouped into the three
cases. An artifact threshold level of 75 microvolts was
used to reject trials with eye and movement artifacts; con-
sequently, the number of trials per case varies for differ-
ent subjects. Commonly, the trials at this stage are
filtered, averaged within target, non-target and novel
cases (correct trials only), and analyzed using amplitude
or frequency measures.

Data manipulation and complexity calculation

The Visual Oddball data were filtered with a
low-pass filter of 32 Hz, followed by desampling from 4
ms to 16 ms sample interval. This reduced the required
data by a factor of four. Trial data which passed the thresh-
old level test were then averaged according to target,
non-target, and novel stimuli cases for each subject. In or-
der to evaluate the temporal variations of the relative com-
plexity of the spatial ERP pattern, the surface Laplacian
was calculated from the average data following the algo-
rithm described in Wang and Begleiter (1999). A spherical
scalp is assumed for the convenience of the computations.
The surface Laplacian of the data is calculated to provide
high-resolution data (Nunez 1995), give a refer-
ence-independent estimate of the radial current source
density (Katznelson 1981; Le et al. 1994; Nunez et al. 1994),
and reduce the effects of electric field volume conduction
through the head (Srinivasan et al. 1998). The surface
Laplacian method employed here consists of a local sur-
face approximation using a tangent plane followed by
polynomial fitting; the coefficients were estimated by a

least-squares solution to a minimization problem (Wang
and Begleiter 1999).

The two-dimensional wavelet packet transform is
constructed in Rn where n = 2 (square). Therefore, in or-
der to obtain the measurement of spatial complexity, the
ERP data are required in a regular domain for the com-
plexity measure. The half-sphere scalp surface may be
transformed to a two-dimensional circle without distor-
tion, which is then transformed to a square, with slight
distortion, using the one-to-one mapping transformation
described in Wang et al. (1998) and given in the Appen-
dix. Figure 5 depicts the transformation of 61 electrodes
and corresponding surface Laplacian data from a
two-dimensional circle to a two-dimensional square.
Note, the outer edge of data associated with peripheral
electrode sites is discarded due to edge distortions
caused by the surface Laplacian calculation.

The resulting data cube consists of 62 slices, corre-
sponding to 1 second of data, for each of the three stimu-
lus cases (200 ms pre stimulus data and 800 ms post
stimulus data) per subject. Each slice is extracted from
the data cube, amplitude normalized, and transformed
using the two-dimensional wavelet packet best basis al-
gorithm. The relative complexity value (value of the best
basis cost function) is plotted as a function of time.

Results
Figure 6 illustrates application of the method to a

group of 45 male control subjects. Figure 6a shows a
grand-average slice of the surface Laplacian at approxi-
mately 450 ms following the onset of the target stimulus.
Figure 6b depicts the best basis wavelet packet transform
coefficients with phase-planes overlaid for the selected
basis. Figure 6c is a plot of the averaged complexity values
over time (stimulus onset is at zero seconds); and for com-
parison the average brain potential at electrode CZ
(mid-central electrode) is plotted in figure 6d. The main
feature of the complexity curve is that both during and af-
ter the Visual P3 component (300 - 700 ms) there is a de-
crease in complexity, from values in the 3.5 - 5 range to a
minimum value of less than 2. We suggest that this de-
crease may be the result of spatial synchronization of
neuronal activity associated with the Visual P3 response
for the target case. For the novel and non-target case data a
decrease in the complexity value is also observed during
the visual P3 response, but with a lower magnitude effect
(the effect has lowest magnitude for the non-target case).

Statistical analysis

The dataset consists of 45 male subjects in each con-
trol, alcoholic and high-risk groups. The control and
high-risk groups are age-matched with an average age of
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22.2 (standard deviation ± 2.6) and 22.3 (standard devia-
tion ± 2.2), respectively. The alcoholic group is older, with
an average age of 35.5 years (standard deviation 12.1).
The alcoholic group was recruited from individuals un-
dergoing treatment in the Short Term Alcohol Treatment
Unit, Addictive Disease Hospital, Kings County Hospital
Center, New York. The control and high-risk groups were
individuals who responded to advertisements and post-
ings at the SUNY Health Science Center. The subjects
were required to provide details regarding alcohol and
drug use, and medical and psychiatric histories.

Principal component analysis (PCA) was performed
on the complexity curves (e.g., figure 6c) for each of the
three stimulus cases and each subject. Each principal com-
ponent is a linear combination of the original variables and
is orthogonal to one another so there is no redundant infor-
mation. Commonly, the sum of the variances of the first
few principal components will characterize the majority of
the total variance of the original data; hence, multi-valued
problems may be represented with a few variables.

In the following analysis the largest principal com-
ponent was used to test for statistically significant differ-
ences among groups. he results of the analysis are
depicted in the box and whisker displays of figure 7. Sig-
nificant t-test p-values are observed between the control
and alcoholic subjects for the target case (p-value <0.003)
and novel case (p-value <0.038); and between the control

and high-risk groups for the target case (p-value <0.012).
Visual inspection of the complexity curves, in which we
observe significant differences, reveals that complexity
values for the control subjects are on average lower than
the high-risk and alcoholic subjects during and after the
visual P3 component.

The previous statistical analysis is based on the as-
sumption that the data is normally distributed. How-
ever, using a non-parametric approach for significance
testing allows the replacement of formal assumptions
with a more computationally intensive approach
through "permutation" tests. Given the null hypothesis
that the labeling of the groups is arbitrary, then the sig-
nificance of a statistic expressing group differences can
be assessed by comparison with the distribution of val-
ues obtained by random permutation of the labels
(Holmes et al. 1996). If there are no differences between
groups, then a statistic value produced by any other
re-labeling (permutation) of the data is as likely as the
true labeling. By considering all re-labelings of the data
(or an appropriately high number), a p-value can be com-
puted for the chosen statistic.

In general, any statistic can be used for the non-
parametric analysis; here we use the following t-statistic,
essentially a mean difference normalized by a variance
estimate:
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Figure 5. The surface Laplacian ERP data is transformed from spherical data slices (a) to a data square (b) to allow calcula-
tion of the wavelet packet transform decomposition tree. Note, the peripheral electrodes are cut from the dataset due to
edge effects from the surface Laplacian calculation. Electrode positions are indicated by black dots.
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where SS1 and SS2 are the sums of squares of group 1 and
group 2, respectively. This t-statistic is computed for each
possible data re-labeling i = 1,...,N, or for a high number of
permutations (e.g., N = 1000), giving ti. The critical thresh-
old value, Tc, for a significance level of α is the c + 1 largest
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Figure 6. Example of a complexity curve calculated from 45 male control subject Visual Oddball target case data. Plot (a)
is the mean surface Laplacian transformed ERP data at 460 ms following stimulus onset. The best-basis wavelet decompo-
sition of image (a) is shown in (b), with phase-planes plotted in white; the relative complexity of image (a) is calculated as
2.12. Plot (c) shows the curve of complexity values (averaged) calculated from 200 ms pre stimulus onset to 800 ms
post-stimulus onset. For comparison, the corresponding mean brain potential is plotted in (d) for electrode CZ.
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Figure 7. Box and whisker plots of the largest principal component for control vs. alcoholic, control vs. high-risk, and high-risk
vs. alcoholic groups; and target, non-target and novel cases. The t-test p-values indicate significant differences for the
control and alcoholic group data for the target and novel cases (p-value less than 0.01 and less than 0.05, respectively),
and a significant difference between the control and alcoholic group for the novel case (p-value less than 0.05).



member of ti, where c = λαNµ. If the t-statistic for the cor-
rectly labeled data exceeds the threshold value, then the
null hypothesis can be rejected and differences are signifi-
cant at the level of α (i.e., 0.05 or 0.01).

Table I presents a summary of the significant para-
metric and non-parametric results. Critical threshold
values (Tc) shown in bold are less than the t-statistic value
and so indicate a significant result at the specified signifi-
cance level α. Clearly, the non-parametric results show
good agreement with the more traditional parametric
t-test results. If the assumptions regarding the paramet-
ric statistical analysis are in doubt, then the result of a
non-parametric method will provide the only guaran-
teed result. However, if the assumptions of the paramet-
ric method are true, then the result of the non-parametric
method provides a validation of these results.

Discussion and Conclusions
We have presented in this paper a method, based on

the 2-D wavelet packet transform with best-basis algo-
rithm, to derive an estimate of the spatial complexity of
brain activity for event-related potential electroencepha-
logram recordings. The measure may be calculated at
successive time-intervals for both individual trial data
and case-dependent average data, provided a spatial map
of brain potential or surface Laplacian data can be gener-
ated (i.e., multi-channel EEG recording), so as to provide
a time-varying curve of complexity. Alternatively, tem-
poral complexity could be calculated using the 1-D wave-
let packet transform, or spatio-temporal complexity
through a combination of 1-D and 2-D algorithms. The
heart of the method is essentially a linear algorithm to ob-
tain maximal sparsity which provides an estimate of the

signal entropy. Although there are a number of alterna-
tive methods which exist to calculate this measure the
wavelet packet transform offers some advantages:
1. Is adaptive, and so automatically finds a transform which
provides the best average compression for the signal.
2. Yields a family of orthonormal basis allowing the use
of an additive cost function.
3. Allows for fast computation of O(N log N)
4. Extendable to two dimensions and higher.

However, due to the dependence of the measure
upon the calculation method, and the need to select a
particular orthogonal wavelet basis, the measure is rela-
tive and can only be compared with other values calcu-
lated with the same algorithm and parameters.

Application of the method to case-averaged Visual
Oddball ERP data shows a decrease in spatial complexity
values following the onset of the target case stimulus,
and during the occurrence of the Visual P3 event; this de-
crease may reflect higher regional synchrony of electrical
activity between channels. Decreases in spatial and tem-
poral signal complexity have been observed in EEG data
shortly after the onset of an epileptic seizure (Pijn et al.
1997; Franaszczuk and Bergey 1999; Bergey and
Franaszczuk 2001). Lehenertz and Elgar (1995) suggest
that signal complexity may reflect the intricacy of
neuronal interactions; the observed activity has been as-
sociated with higher regional and temporal synchrony
reflected in regular, rhythmic activity near the onset of a
seizure. Nunez et al. (2001) summarizes findings of au-
thors describing robust increases in measures of EEG co-
herence and synchrony during task performance. In
general, such increases may be associated with decreases
in signal entropy or complexity. Similarly, we suspect
the observed decrease in spatial complexity in the Visual
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p-value t-statistic Tc (α = 0.05) Tc (α = 0.01)

Control vs. Alcoholic (target) 0.002**
2.966 2.045 2.558

Control vs. Alcoholic (novel)
0.038* 2.066 1.965 2.563

Control vs. High Risk (target)
0.012* 2.478 1.920 2.585

Table I. Summary of significant results of parametric and non-parametric tests calculated on the largest principal compo-
nent of the spatial complexity curves. When the t-statistic value exceeds the critical threshold values Tc (estimated by per-
mutation) then the group differences are significant (indicated in bold) at the threshold significance level α. The
non-parametric results confirm the p-values given by a students t-test (* <0.05, ** <0.01).



Oddball experiment is due to increased spatial
synchronicity of brain activity, and hence, a more pre-
dictable spatial brain pattern caused by processes associ-
ated with the event-related visual task.

The observed differences in the control vs. alcoholic
and high-risk group complexity curves may be due to a
physiological difference between groups. Begleiter and
Porjesz (1999) propose a model for the predisposition to-
ward alcoholism in which the CNS hyperexcitability re-
flects an imbalance between excitation and inhibition
and that the decreased Visual P3 component amplitude
in alcoholics and individuals at risk is caused by a gen-
eral state of CNS disinhibition with an excess of CNS ex-
citation. The reduced complexity values observed in this
study, for the target case between the control subject
group when compared to the alcoholic and high-risk
groups (as indicated by the PCA analysis), may be due to
these latter groups having increased CNS excitation
which is reflected in decreased spatial synchronicity of
neuronal firing and therefore increased spatial complex-
ity. This possibility warrants further investigation and
possible use of the measure for genetic analysis.

Appendix
Mapping of surface Laplacian data from scalp sur-

face to square is achieved through:
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and r is the radius of the scalp surface. Mapping of the re-
gions -y > *x*, x > *y* and -x > *y* is calculated similarly
using symmetry (Wang et al. 1998).
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