Clinical Neurophysiology 112 (2001) 1917-1924
www_elsevier.com/locate/clinph

Warp-averaging event-related potentials

Kongming Wang™, Henri Begleiter, Bernice Porjesz

Department of Psychiatry, Box 1203, Neurodynamics Laboratory, SUNY Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
Accepted 28 June 2001

Abstract

Objective: To align the repeated single trials of the event-related potential (ERP) in order to get an improved estimate of the ERP.

Methods: A new implementation of the dynamic time warping is applied to compute a warp-average of the single trials. The trilinear
modeling method is applied to filter the single trials prior to alignment. Alignment is based on normalized signals and their estimated
derivatives. These features reduce the misalighment due to aligning the random alpha waves, explaining amplitude differences in latency
differences, or the seemingly small amplitudes of some components.

Results: Simulations and applications to visually evoked potentials show significant improvement over some commonly used methods.

Conclusions: The new implementation of the dynamic time warping can be used to align the major components (P1, N1, P2, N2, P3) of the
repeated single trials. The average of the aligned single trials is an improved estimate of the ERP. This could lead to more accurate results in
subsequent analysis. © 2001 Published by Elsevier Science Ireland Ltd.
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1. Introduction

It is well known that the event-related potentials (ERPs)
obtained in repeated trials experience variable latencies of
the components (for example, P3 and N1). The distortion is
non-linear in the sense that the timing of features (say P1,
N1, P2, N2, P3) in one trial cannot be linearly mapped to the
timing of another trial.

The conventional procedure for estimating the ERP is to
average the repeated trials. Single trials are assumed to be in
the form

5i(t) = p(t) + ¢,(0),

where s;(f) is the ith recorded signal, p(f), the evoked poten-
tial which is the same for all trials, and e,(), the background
electroencephalogram (EEG). The amplitude and latency
variations among the single trials may lead to underestimat-
ing the amplitudes of the components (e.g. P3 and N1 of the
average). The latency of a component of the average could
be dictated by few trials with highest amplitudes.

In Woody’s method (Woody, 1967), cross-correlation or
cross-covariance is calculated between a template and a
low-pass filtered single trial. Single trial latency is defined
as the time lag by which the template should be shifted to
maximize the cross-correlation or cross-covariance. This
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would improve the average of the single trials if the latency
variation were simple shift. Other latency correction aver-
aging methods involve peak identification, grouping of the
peaks, and aligning the segments between peaks (Aunon et
al., 1981; McGillem et al., 1985). It is difficult to identify
peaks unequivocally from the noisy single trials. It is more
problematic to group the peaks to represent different compo-
nents. Except for the well-defined component such as P3,
one could end up with aligning the alpha waves that are
actually random relative to each other in the individual
trials. The alignment between peaks is most likely linear
even though the distortion is non-linear.

Pham et al. (1987) proposed an maximum-likelihood
method, an alternative to Woody’s method. The model for
single trials is

s{() =pit+ 1)+ 1)

and 7; stands for latency shift of the ith trial. The above
equation is Fourier transformed and a log-likelihood func-
tion is formed. The latency shifts of the single trials can be
obtained by maximizing the likelihood function. For esti-
mating the N1-P2 complex, their simulation showed that
the mean squared error was 5-10 times smaller for their
method than for Woody’s. Jaskowski and Verleger (1999)
extended the model by assuming variations of signal ampli-
tude from trial to trial.

5i{(0) = aip(t + 7;) + ¢;(?)
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where q; stands for amplitude of the ith trial. For estimating
P3 amplitude and latency of single trials, the simulations of
Jaskowski and Verleger (2000) showed that the methods of
Pham et al. (1987) and Jaskowski and Verleger (1999) are
slightly better than that of Woody’s method and peak pick-
ing.

Jung et al. (1999) applied independent component analy-
sis (ICA) to single trial ERPs. It is reported that ICA sepa-
rated stimulus-locked (P1/N1), response-locked (P3), and
no-phase locked background EEG into different indepen-
dent components. The alignment is to align the response-
locked P3 wave by shifting the reaction time to the median
reaction time. The stimulus-locked P1/N1 component is
unaligned.

Dynamic time warping was developed to eliminate the
non-linear timing differences between a speech signal and a
template for speech recognition (Sakoe and Chiba, 1978). It
has been applied for classification of EEG waveforms
(Huang and Jansen, 1985; Picton et al., 1988) and for align-
ing ERPs (Picton et al. 1995; Gupta et al., 1996). While the
method of Gupta et al. aligns signals based on amplitude,
the method of Picton et al. aligns signals based on both
amplitude and slope. Wang and Gasser (1997, 1999)
proposed a modified version and applied it to estimate the
non-linear latency variations among sample curves. Their
approach is motivated by the loose assumption that the
single trials can be modeled as

8i(1) = a,(Op(gi(1) + e;(0), i=1,-1 ey

where a,(f) stands for time-dependent amplitude and g,(?)
stands for non-linear latency. The method was tested with
simulations and applications to growth data and the results
are promising (Wang and Gasser, 1999). This method is
modified in this paper to align single trials.

The performance of these methods depends heavily on
the signal to noise (background EEG and random noise)
ratio (SNR). The SNR of single trials is very small (0.1-
1), and it is necessary to filter out noise before applying
these methods. Picton et al. (1995) suggested that warping
is probably more applicable to combining the already aver-
aged data from different subjects. We will apply the trilinear
modeling of ERP (Wang et al., 2000) to filter single trials
before aligning them by dynamic time warping. Some
details on trilinear modeling are given in Appendix A.

We performed simulations to evaluate this method and
compare its performance with that of other methods. Since
the maximum-likelihood method is better than Woody’s
method and peak picking (Jaskowski and Verleger, 2000),
we need only to evaluate 3 methods: the maximum-likeli-
hood method, the previously employed dynamic time warp-
ing method (Gupta et al., 1996), and the method proposed in
this paper. Simulations are pseudo-real in the sense that the
ERP signal and amplitude/latency variations are simulated,
while real EEG signals are used as background noise. The
simulated results show that the proposed method performs

much better than other methods. As an example, we will
also apply the method to real ERP data.

2. Method
2.1. Background

Since the ERP of each trial is influenced by many factors
(for example, background EEG, experimental environment,
and learning), the amplitude and the development pace of
the ERP fluctuate: the amplitude changes from trial to trial
and the components (for example, N1 and P3) occur at
different latencies from trial to trial. Therefore, model (1)
is a reasonable model for single trial ERPs. But it is not
uniquely defined (hence a ‘loose model’).

The amplitude fluctuations a,(¢) are non-negative func-
tions. This implies that a component of the ERP p() is either
present in the ith trial or absent (for example, one only
observes N1 and P3 in the ith trial). Since the single trials
are under same experimental conditions and evoked by
same stimulus, it is natural to assume that the amplitude
fluctuations aif) are random processes with mean
a(t) = 1.This leads to

1
D anil =1, for all 1.
i=1

The latency variations g;(f) are assumed to be monotone
increasing functions of 7. It means that after each stimulus is
applied, the brain experiences certain events in the same
order (for example, P1, N1, P2, N2, P3). In general, g,(¢)
are non-linear functions of ¢. Since the stimulus is the same
for each trial, one expects that the brain responds to the
stimulus in almost identical way. Yet some random effects
(for example, background EEG effects, experimental envir-
onment changes, learning) could cause fluctuations in both
amplitude and latency. Again it is natural to assume that
gi(®) are random processes with mean g(¢) = ¢, the natural
development pace. This leads to

1
dgi=1t,  for all 1.
=1

To estimate the ERP from these trials, the latency fluctua-
tions have to be estimated first. That is, some warping func-
tions A(t) are estimated based on the single trials such that
the features (peaks, change points, etc.) of the trials are
aligned. For example, the P3 components of the aligned
signals, s;(h;(t)), occur at the same latency which is the
average position of the P3 latencies of the individual trials.

As a simple example, assume that the amplitude a;(f) can
be modeled by positive constants (a;(f) = a; for a constant g;
and for all 7). These constants depend on the brain status
when the stimulus is applied. Then we would like to esti-
mate p(¢) from the single trials. For this example, the warp-
ing functions are the inversions of the latency fluctuations,
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hi(t) = g (D).

The aligned curves are s;(h;(t)) = a;p(t) + e;(h;(t)) and the
average of the aligned curves are

1 1 1
8 =Y sl = (Z aﬂ)pm + > eI (2)

i=1 i=1 i=1

As discussed above, we can assume that Zle a;ll = 1.
For the background EEG, one usually assumes that the aver-
age background Z,’»ZI e;/l of single trials is approximately
zero. This leads to the approximation

§(t) = p(0).

2.2. Estimating the latency fluctuations

The warping functions are formulated as a solution set of
a weighted least-square problem to minimize the overall
latency fluctuations among the single trials. The purpose
is to align the components (P1, N1, P2, N2, P3) of the single
trials. Several steps are taken to reduce the alignment error.

First, the performance of the methods (peak picking,
maximum likelihood, dynamic time warping) depends
heavily on SNR, which is very low in single trials (Fig.
4). Artifacts such as eye movements are removed by reject-
ing those trials with a value above a threshold (73.3 wV in
our visual P3 experiment). We employ the trilinear model-
ing (Wang et al., 2000) to improve the SNR of the single
trials. We use the average of the single trials as an estimate
of the ERP signal and the difference between the single
trials and this average as estimates of the background
signals. We then get a crude estimate of the SNR of single
trials. Then we use the estimated SNR to determine the
number of components in the trilinear model. Specifically,
the components of the trilinear model will represent
100(SNR/(1 + SNR)) percent of the total variance.

Secondly, large difference in amplitudes of the single
trials can also lead to misalignment. Assume that two trials
have no latency difference but have different amplitudes.
Then dynamic time warping would try to align a segment
of the trial with higher amplitude to a single point of the trial
with lower amplitude if the alignment was based solely on
amplitudes. This misalignment is due to the least-squares
minimization. Two methods are employed to prevent this
kind of misalignment.

One of the methods is to normalize the single trials. Each
trial is normalized so that the maximum amplitude is one.
When two trials have no latency difference, the two normal-
ized trials are the same and misalignment could not occur.
Another method is to align the derivatives of the single trials
simultaneously. The estimated derivatives of the single
trials are normalized in the same way. This will not only
reduce the chance of alignment error, but also align other
features such as the change points of the trials. Kernel
smoothing method is employed to estimate the derivatives
of the single trials (see Gasser and Miiller, 1984).

We now formulate the least-square problem. Let S(f) be
the normalized data of ith trial and D,(¢) its normalized
derivative. Then the warping functions are given by the
solution of the equation

1
D St + (1 - o’
=

1 T
. 2 _
pin > [ 1

1
X (Di(hi(1)) = > Di(hj())1)*dt. 3)
=1

The restrictions on the warping functions {h;} are: (a)
continuous and monotone increasing; (b) no excessive
alignment (|h;(¢) — | is less than a given upper bound); (c)
same starting point (%;(0) = 0). Eq. (3) is formed to find the
warping functions such that each trial is aligned to the aver-
age of the aligned trials. With a penalty term > P(h;(t) — 1)
where P is a strictly convex function with minima O,
formula (3) will be a strictly convex problem and has a
unique minima.

The alignment of the amplitudes (first term of Eq. (3)) and
the alignment of the derivatives (second term of Eq. (3)) are
tuned by a parameter . The minimum of the total weight
o? + (1 - a)2 has a minimum value 0.5 when « = 0.5. This
means that the alignment of the amplitudes and the align-
ment of the derivatives are equally weighted unless the data
clearly suggest otherwise. The perfect warping function for
the models discussed in Section 1 can be obtained by this
modified dynamic time warping (Wang and Gasser, 1999).

2.3. Estimating the ERP

Since each warping function aligns a trial to the average
of the aligned trials, the average of the warping functions

I
h(t) = > bt/
j=1
is the average development pace of the single trials. There-
fore, h(?) is the estimated latency of the ERP.
The amplitude of the ERP at time A(?) is estimated by the
average of the aligned trials

I
PO = 5

j=1
where §;(f) is the smooth version of s;(7) obtained by the
trilinear modeling. The estimated ERP is in parametrized
form (h(t),p(t)), 0 =t = T. The restrictions on the warp-
ing functions imply that 4£(0) = 0.

2.4. Algorithm

The following descriptive algorithm is for understanding
the method better and can be used as guidelines for
programming.

Step 1: Apply trilinear modeling to improve the SNR of
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single trials. This step uses data from all electrodes and all
trials.

The rest of the algorithm is to align single trials from each
electrode, one at a time. Let X be the single trial data from
an electrode. Then X is an m by n matrix if there are m
trials and » time points per trial.

Step 2: Estimate the derivatives of X. We apply kernel
method to each row of X to compute the derivatives at
sampling time points. Let X; denote the derivatives. Then
X4 and X have same size. Oversmoothing is employed to
reduce the effects of alpha waves and noise.

Step 3: Normalize data as follows:

X(@i,:) = X(@, :)Y/max(|X(i, :)|)

X4, ) = Xy, Ymax([X G, ).

Here X(i, :) stands for the ith row of X and |-| for absolute
value.

Step 4: for each « in a grid on [0,1] (we used 3 values 0.3,
0.5, 0.7), run dynamic time warping on data X and X,
using cost function (3). Let C,, be the cost. Then the best
warping is indexed by a* = arg min,C,,.

Step 5: Apply the best warping path obtained in step 4 to
the data X. Average the aligned X as an estimate of ERP
from the electrode. Note that the normalized data X and
X, are only used to compute the best warping path, not the
average.

Repeat steps 2-5 for each electrode. The algorithm is
finished afterwards.

Computational cost depends on many factors: CPU
speed, memory size, programming language, restrictions
on warping functions ((b) after formula (3), number of «
values to choose from, etc. We have not evaluated the
computational cost.

3. Simulation

The simulated data are generated from the model
fi(®) = aip(gi(0) + e;(0).

Here qa; is an individual constant which represents the ampli-
tude variation of trial i. Our visual P3 experiment runs 20—
30 target trials and is recorded at 61 channels. Therefore,
each simulation replication will have 61 channels and 25
repeated trials. The noise term efr) is obtained from
recorded EEG data of 20 subjects. For each subject, the
EEG data from each channel is cut into segments of the
same length of the simulated ERP, p(f). The collection has
2741 EEG segments from the 20 subjects. For each simula-
tion replication, a random selection of 25 EEG segments
from the collection is taken as the EEG data for this replica-
tion. The EEG data are then scaled to give a specified SNR:

1 T
> D lap(gonr?

_i=1 =1
SNR = 7
[

D ler?

t=1

L

The simulated ERP, p(?), is plotted in Fig. 1. The ERP has
several positive and negative components, simulating the
basic pattern of visually evoked potentials.

Non-linear latency variation is generated by the formula

g =t+b(T — T

—_

with a constant b;. To insure that g; is strictly increasing, the
condition |b;| < 1 has to be satisfied. It is obvious that
gi(0)=0and g(T) =T.

For comparisons between the estimated ERP and the
simulated ERP, we will require that

1 1
TZaiZL Yggl(t):t

It follows that the simulated ERP and the average of the
aligned curves (the estimated ERP) should be identical.
The latter condition implies that 3’1, b; = 0.

The parameters are generated as follows. For a;, first
generate I normal random variables N;, i = 1,...,1. Then
normalize them as A; = 0.5N,/N where N = max;|N,|. Set

1 I

For the parameters b;, we generate / normal random vari-
ables M;, i = 1,...,1 and let

1 1
@:o%m—Yz%)
=

It is easy to see that |g;(t) — t| = |b,t(T — t)/T| = T/4.
The upper bound for the restriction (b) on the warping func-
tions should be set to 7/4. This information is usually
unavailable for real problems, but one does not expect
excessive latency variation. The upper bound 7/4 should
be good for most real problems and we take it for the simu-
lations of this section. Note that a smaller upper bound
implies a narrow search and would speed up the dynamic
time warping. For aligning the single trials in a visual P3

15 T T T T T T T

Fig. 1. The simulated ERP p(#). Horizontal unit is in ms and vertical unit is
in pV.
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experiment, the upper bound is set at 60 ms in Section 4
based on experience.
The mean squared error of estimating the ERP, defined by

T
MSEA = JO p(h() — pOP AT,

is used to evaluate the performance of the methods. For each
method, we will compute the average MSEA (AMSEA) of
all 61 channels for each replication. The simulation results
with 200 replications are plotted in Fig. 2. The SNR for the
simulated trials are randomly chosen, ranging from 0.2 to 1.
Fig. 2 plots the ratio of the AMSEA for a method and the
AMSEA of the conventional average.

The average ratio of the 200 replications is 0.89 for the
method of Gupta et al., an 11% improvement over the
conventional averaging. The average ratio is 0.73 for the
maximum-likelihood method of Pham et al.,, a 27%
improvement. Since the maximum-likelihood method esti-
mates only a shift, we only used the data from 300 to 800
ms, or the P3 component, to estimate the shift. Furthermore,
data are lower-pass filtered at 6 Hz, following the idea of
Jaskowski and Verleger (2000), before applying the maxi-
mum-likelihood method. The average ratio is 0.56 for our
new method, a 44% improvement over the conventional
averaging method. So in terms of MSEA, the modified
dynamic time warping performs much better. After all the
maximum-likelihood method is not designed for handling
non-linear latency variations. This simulation shows that
both data normalization and aligning derivatives are neces-
sary to reduce the misalignment. Finally, to see how impor-
tant it is to improve SNR before alignment, we applied the
modified dynamic time warping and conventional averaging
to a simulated clean data set (without adding noise to the
simulated signals). The alignment is very good, a 76%

11 T T T T T T T T T

Fig. 2. Each line represents the ratio of the average MSEA of a method and
the average MSEA of the conventional averaging method in 200 replica-
tions. (1) The modified dynamic time warping; (2) the maximum-likelihood
method of Pham et al.; and (3) the dynamic time warping of Gupta et al.
Horizontal unit is the index of the replications.

1
[ 100 200 300 400 500 600 700 800

Fig. 3. A typical run of the simulation. Top: the simulated data from a
channel. Bottom: the true ERP signal (dashed line), the estimated ERP
by the modified dynamic time warping (wide solid line), and the conven-
tional average (thin solid line). Horizontal unit is in ms and vertical unit is
in wVv.

improvement over the conventional averaging method.
Recall that the improvement is 44% for noisy data.

A typical replication of the simulation is plotted in Fig. 3.
Fig. 4 shows the effects of noise on alignment.

4. Application to VP3 data

In the visual P3 experiment, subjects are presented with
280 visual stimuli with a uniform inter-stimulus interval of
1.6 s. There are 210 non-target stimuli in the shape of an
outline of a square, 35 target stimuli in the shape of an X,
and 35 novel stimuli, each a different colored polygon or

Fig. 4. Top-left: simulated data with SNR 0.2. Top-right: simulated data
with SNR 1. Bottom: simulated ERP as in Fig. 1 (dash line), warp-average
of the data with SNR 0.2 (solid line), and warp-average of the data with
SNR 1 (wide solid line).
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Fig. 5. Application to visual ERP data. Top: the 25 target trials recorded at
PZ electrode from a subject. Bottom: the estimated ERP by the modified
dynamic time warping (dashed line) and the conventional average (solid
line). Horizontal unit is in ms and vertical unit is in wV.

other geometrical figure. The different types of stimuli are
presented in random order. Subjects are instructed to
respond to target stimuli by pressing a button. The visual
P3 data are recorded from 61 channels (the international 10/
20 system). After amplification by a factor 10 000, artifact
threshold is set at 73.3 wV. Any trial with a value above the
threshold is rejected. The number of the recorded single
trials is different for different subjects and experimental
conditions due to the artifact thresholding.

Fig. 5 plots the data from a subject, recorded at PZ elec-
trode. There are 25 clean (no artifact) target trials recorded
from the subject. We apply the modified dynamic time
warping to the target trials and obtain an estimate (warp-
average) of the ERP. The result is plotted in Fig. 5.

5. Discussion

Many methods have been proposed for computing an
improved average of single trials. The objective is to elim-
inate the latency differences of the components across the
repeated trials. The correlation techniques (Woody, 1967;
Wastell, 1977) and the iterative Fisher scoring (Mocks et al.,
1988) estimate a latency shift in the entire waveform or a
shift in a prominent peak in each trial. The single trials are
then registered (aligned) according to the estimated shift
and averaged. Non-linear time variations such as expansion
or compression between consecutive components are not
taken into account. The latency correction averaging tech-
nique (Aunon et al., 1981; McGillem et al., 1985) identifies
peaks (components) of the single trials and then aligns the
segments between peaks. Identifying peaks across noisy
single trials is a difficult task. These and other parametric
methods (Gasser et al., 1983; Gevins, 1984) consider the
measured response to be an additive superposition of the

evoked potential (ERP signal) and the background EEG
activity (noise). They then make assumptions on the statis-
tical properties of signal and noise. It is often assumed that
signal and noise are statistically independent. All those
assumptions are of course approximations. Some methods
do not make assumptions on the statistical properties of
signal and noise (Gevins et al., 1986; Laskaris et al.,
1997). These methods apply pattern classification or moving
average techniques to select good trials for averaging. The
idea is that task-related signals may not be obtained in some
single trials and such trials should be excluded for aver-
aging. The ICA approach of Jung et al. (1999) aligns only
P3 component by shifting reaction times to the median reac-
tion time. The numbers of components in the component
classes (stimulus-locked, response-locked, and no-phase
locked) vary across subjects and the ICA components
cannot be ordered in variance that they represent. One
would need a systematic method to identify the stimulus-
locked, response-locked, and no-phase locked ICA compo-
nents.

Dynamic time warping provides a non-linear, non-para-
metric, and smooth alignment of evoked potentials. It is an
automated method that aligns potentials based on the entire
signals. This reduces the human error of picking up corre-
sponding components across trials. The method was initially
developed for speech analysis and speech recognition
(Sakoe and Chiba, 1978; Rabiner and Schmidt, 1980;
Parsons, 1986). The idea is that people speak the same
word or sentence in different speed and loudness. For recog-
nizing a sample speech, the sample is warped onto a
template by eliminating the timing differences of the
features between the sample and the template. The template
can be obtained as an aligned average of the spoken signals
by many people. Wang and Gasser (1997, 1999) proposed a
modified dynamic time warping for computing an aligned
average of sample curves observed from general experi-
ments. The features that are aligned by the modified method
are peaks of the sample curves and their derivatives. The
derivatives are estimated from noisy data by kernel smooth-
ing. Gupta et al. (1996) proposed several implementations
for aligning evoked potentials.

It is straightforward to apply dynamic time warping to
single trials since an aligned average of single trials is
simply a template for ERP. Picton et al. (1988) applied
dynamic time warping to align the brain-stem auditory
evoked potentials recorded from different subjects prior to
averaging. They compared dynamic time warping with
experienced human interpreter. They found that warping
is very accurate in identifying the waves of normal brain-
stem auditory evoked potentials with error rates between 0
and 4%, and reasonably accurate in identifying the peaks in
abnormal wave forms with error rates between 3 and 18%.
Eisen et al. (1986) used dynamic time warping to align
somatosensory evoked potentials to a standard wave derived
from normal subjects. They found that the mean costs for
such alignment are 1.305 for normal subjects and 5.089 for
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patients with definite or possible multiple sclerosis. This
indicates that the alignment using dynamic time warping
can help in clinical diagnosis of patients. Other applications
of dynamic time warping are reported by Jansen and Huang
(1985), Roberts et al. (1987), and Huang and Jansen (1985).

Our implementation is based on the modified method of
Wang and Gasser (1997, 1999). The single trials are
smoothed by trilinear modeling to improve the SNR. A
statistical method (kernel smoothing) is employed to esti-
mate the derivatives of the smoothed single trials. In align-
ing the single trials, both the recorded signals and the
estimated derivatives are aligned. The amounts of alignment
of the recorded signals and the estimated derivatives are
weighted according to the data. The involvement of deriva-
tives helps to make more accurate alignment, especially the
components with smaller amplitudes. The signals and the
derivatives are normalized for the purpose of computing the
time differences among the single trials. This prevents the
misalignment in which amplitude differences are explained
in latency differences.

A main drawback of some early methods is the alignment
of alpha waves. Several steps of the new implementation
help to resolve this problem. The components of the trilinear
method are obtained by singular value decomposition
(SVD). Each component is a linear combination of the
signals from all trials and all electrodes. This reduces the
alpha wave because of its randomness with respect to the
time-locked feature of ERP. Oversmoothing reduces the
effects of alpha wave on estimated derivatives that are
used to compute the alignment. Finally, normalization of
single trials and their derivatives seems also to reduce the
effects of alpha wave on alignment.

We have focused on computing an aligned average from
single trials. As it has been done before (Picton et al., 1988;
Eisen et al., 1986), the modified dynamic time warping
should improve the accuracy of accessing variability of
the single trials or the recorded ERPs from different
subjects, the accuracy of clinical diagnosis, and the accu-
racy of classifying patients.
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Appendix A. Trilinear modeling

Trilinear modeling is to represent the data X; as
X; = BA,C (Al

where each column of B is a spatial component and each

row of C is a temporal component. The matrix A; is the
loading matrix of trial i.

For estimating temporal components, each time point is a
variable and each electrode produces an observation. The
concatenation of the trial data matrix X; by variables gives
the combined data matrix

X

D=|%X

SVD of the data D results in
D = USV

where S is a diagonal matrix and where the rows of V are
orthogonal temporal components. The diagonal elements of
S give the variances explained by the temporal components,
respectively. If the first K temporal components explain at
least a specified portion of temporal variance, then the first
K rows of V will be chosen as the temporal components. The
rest will be considered as negligible components or noise.
For estimating spatial components, each electrode is
considered to be a variable and each time point produces
an observation. In this case, the concatenation of the trial
data matrix X; by variables gives the combined data matrix

Ds = (X],XQ, )
Then SVD of Dy results in
D, = U,S,V,.

As in the estimation of the temporal components, we choose
the first K; columns of U, as spatial components and
consider the rest of the columns of Uj as negligible compo-
nents or noise.

With the estimated spatial and temporal components (the
first K, columns of U, and the first K rows of V), the data
matrix X; of subject i can be decomposed as in Eq. (Al).
This representation is unique because of the orthogonality of
the components. It is desirable that the loading matrix A; has
as few significant entries as possible. This is also neurophy-
siologically meaningful because it leads to the interpretation
that the activity of a spatial component (source distribution)
is mainly captured by one temporal component. To this end,
we compute the average loading matrix A of all trials A =
>, Ai/m if we have m trials) and its SVD decomposition
A = PRQ. Since R is diagonal, the best rotation matrix for
rotating temporal components is Q and the best rotation
matrix for rotating spatial components is P. Multiplying
the first K; columns of U, by P and the first K rows of V
by Q, we obtain the common spatial components B and the
common temporal components C of the formula (Al),
respectively.

With B and C at hand, one can compute the loading
matrix for trial i as A; = B'X;C’. The ERP in trial i is then
estimated by BA;C.
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