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Trilinear Modeling of Event-Related Potentials

Kongming Wang*, Henri Begleiter*, and Bernice Porjesz*

Summary: This paper describes a method for estimating a set of spatial components (brain maps) and temporal components (waveforms) of brain po-
tentials. These components play the role of bases of a coordinate system, in the sense that the brain potentials of any subject can be represented as
superpositions of these components. The representation is unique given the spatial and temporal components, and this decomposition is particularly
appealing for comparing the brain potentials of different subjects (say alcoholics and controls). It can also be used for single trial modeling, clinical
classification of patients, and data filtering. The method is based on the topographic component model (TCM, Mocks 1988) which models brain po-
tentials in a trilinear form. We extend the TCM in two aspects. First, the diagonal amplitude matrix is replaced by a general loading matrix based on
some neurophysiological considerations. Secondly, the number of spatial components and the number of temporal components can be different. The
spatial components and temporal components are obtained respectively by performing singular value decomposition (SVD). This method is illus-
trated with visual P3 data.

Introduction

Brain potentials are often considered to be a combi-
nation of independent waveforms (temporal compo-
nents) and each of the waveforms is produced by a
spatial source distribution (spatial component). An ideal
method would be able to identify these components so
that the data can be interpreted neurophysiologically.
Suppose that we knew a priori all possible waveforms
and source distributions which are "common" to all exist-
ing combinations of subjects and conditions, then it is
straightforward to fit a given data set to these waveforms
and source distributions in order to identify the active
source areas and their waveforms.

In practice we do not have the a priori knowledge and
many methods have been proposed for estimating these
components. An incomplete list includes principal com-
ponent analysis (PCA; John et al. 1964; Glaser and
Ruchkin 1976; Donchin and Heffley 1978), singular value
decomposition (SVD; Harner 1990), independent compo-
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nent analysis (ICA; Bell and Sejnowski 1995; Makeig et al.
1996), topographic component model (TCM; Mocks 1988;
Field and Graupe 1990 and 1991; Achim and Bouchard
1997), and wavelets (Meyer 1993; Samar et al. 1995; Samar
et al. 1996; Wang et al. 1998).

PCA, SVD, and ICA estimate the individual spatial
and temporal components for a given subject and a given
condition, and it is not obvious how to compare the ERPs of
different subjects or different conditions. The one-to-one
correspondence between spatial and temporal components
may not be fulfilled in many experiments, because it is un-
reasonable to expect the activities of individual neural
"generators" to be mutually orthogonal (Field and Graupe
1991). Furthermore, these decompositions are nonunique
and their spatiotemporal interpretations should be viewed
with caution. Wavelet approach is a time-frequency analy-
sis tool and it does not have a spatiotemporal interpretation
in the neurophysiological context.

The method for estimating "common" spatial and
temporal components is the TCM, a trilinear model. The
difference between TCM and SVD is that the TCM compo-
nents are linearly independent but not orthogonal. On
one hand, this overcomes the drawback of SVD that or-
thogonal source distributions produce orthogonal wave-
forms. On the other hand, since the components are
correlated, it is impossible to order the components ac-
cording to the variance that they can explain. This makes
it difficult to determine the order of the TCM model (num-
ber of the components). If the model order is given, the
least squares solution of TCM modeling is unique. There-
fore, a TCM solution should be neurophysiologically in-
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terpretable if the number of components is correct. For
biophysical considerations in building the TCM model,
see Mocks (1988).

The present study aims to extend the TCM model to
a general trilinear modeling in order to overcome the
drawbacks. First, the components are orthogonal as in
SVD and they are ordered according to the variance that
they can explain. This provides an easy way for selecting
components. Secondly, the components are common to
all subjects as in TCM and they play the role of the bases
of a coordinate system, in the sense that the brain poten-
tials of any subject can be represented as superpositions
of these components. The inter-individual comparison
study can be carried out on the coefficients (loading ma-
trix) of the representations. Thirdly, the one-to-one cor-
respondence in TCM model between spatial and
temporal components is relaxed so that the activity of a
spatial component (source distribution) could be cap-
tured from more than one orthogonal temporal compo-
nents. This requires that the loading matrix is not
diagonal. Finally, the number of temporal components
and the number of spatial components are allowed to be
different, because these numbers depend on the length of
the signals and the number of electrodes respectively.
Therefore, the new model would possess the advantages
of both SVD and TCM. The components are rotated so
that the average loading matrix of all subjects is diagonal.
The components are then uniquely determined (up to
sign change) if any two eigenvalues of the average load-
ing matrix are different.

We will construct the spatial components and tempo-
ral components by performing singular value decomposi-
tion (SVD) on properly concatenated data of many
subjects. Details are described in the next section. The
number of the components depends on the size of the con-
catenated data. In general, more components are needed
for accounting the same level of variance if the concate-
nated data has larger size. The question is how many sub-
jects are needed to construct a complete set of components
in the sense that the data from any subject, either used in
the construction of the components or not, can be
well-represented as superpositions of these components.
We checked this by constructing components from the
data of 10, 20, and 69 subjects respectively. It shows that
the major components (the first few components which
explain the most of the variance) obtained from the three
runs are highly correlated (see discussion section). There-
fore, a complete set of components could be constructed
from the data of reasonable number of subjects (say 20).

The trilinear modeling can be used for interindividual
comparison study, single trial modeling, clinical classifica-
tion of patients, and data filtering. Application of this ap-
proach is illustrated with visual P3 data recorded from 30
alcoholics and 39 controls with 61 electrodes.

Method
The repeated single trials of a subject under a given

experimental condition are averaged to eliminate the back-
ground EEC and to improve the signal to noise ratio
(SNR). These average ERPs then go through a bandpass
filter (low-pass filter of 16 Hz in our visual P3 experiment)
to further improve the SNR. Let Xi be the filtered ERP of
subject i, where each row of X; is the measurements from
an electrode at consecutive times and where each column
is the measurements from all electrodes at a given time. If
there are more than one experimental conditions (e.g., tar-
get, nontarget, and novel), then each row of Xi has more
than one epoch corresponding to the experimental condi-
tions. The trilinear modeling is to represent the data Xi as

where each column of B is a spatial component and each
row of C is a temporal component. The matrix Ai is the
loading matrix of subject i. Once B and C are available,
the loading matrix for each subject is obtained as the least
squares solution for fitting the data Xi. With orthogonal
and normalized spatial and temporal components, the
loading matrix Ai=(ai(j,k)) of subject i is given by

Estimation of the temporal components

For estimating temporal components, each time
point is a variable and each electrode produces an obser-
vation. The concatenation of the individual data matrix
Xi by variables gives the combined data matrix

where S is a diagonal matrix and where the rows of V are
orthogonal temporal components. The scaled diagonal
elements of S, scaled by the total variance (the summa-
tion of the diagonal elements of S), give the ratios of the
variances explained by the temporal components respec-
tively. If each of the first K ratios are at least 0.5% and the

SVD decomposition of the data D results in

where bj is the jth column of B and ck is the kth row of C.
Then formula (1) can be written as
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As in the estimation of the temporal components, we
choose the first Ks columns of Us as spatial components
that each of these components explains at least 1% of the
spatial variance. The rest columns of L/s will be consid-
red as negligible components or noise. We have chosen

the cut point at 1% since the number of variables (the
number of electrodes) is much less in spatial case.

Rotation

With the estimated spatial and temporal components
(the first Ks columns of Us and the first X rows of V), the
data matrix X, of subject i can be decomposed as in equa-
tion 1. This representation is unique because of the
orthogonality of the components. For subsequent analysis,
it is desirable that the loading matrix Ai has as few signifi-
cant entries as possible. This is also neurophysiologically
meaningful because it leads to the interpretation that the
activity of a spatial component (source distribution) is
mainly captured by one temporal component, though
other temporal components also capture a small part of the
activity of this spatial component. To this end, we com-
pute the average loading matrix A of all subjects
(A =^M=1Ai/M if we have M subjects) and its SVD
decomposition A=PRQ. Since R is diagonal, the best rota-
tion matrix for rotating temporal components is Q and the
best rotation matrix for rotating spatial components is P.
Multiplying the first Ks columns of Us by P and the first K
rows of Vby Q, we obtain the common spatial components
B and the common temporal components C of the formula
(1) respectively. The rotation idea comes from PCA.

Experiment

Data collection

In this visual P3 experiment, subjects are presented
with 280 visual stimuli with a uniform inter-stimulus in-
terval of 1.6 seconds. There are 210 non-target stimuli in
the shape of an outline of a square, 35 target stimuli in the
shape of an X, and 35 novel stimuli, each a different col-
ored polygon or other geometrical figure. So there are
three experimental conditions. Subjects are instructed to
respond to target stimuli by pressing a button. The vi-
sual P3 data are recorded from 64 channels (61 channels
of International 10/20 system, two channels for monitor-
ing eye movements, and the nose channel for reference).
Therefore, the data to be analyzed have 61 channels. The
sampling interval is 3.906 msec and 205 sample points
(800 msec signal) after each stimulus are recorded for
each condition. After amplification by a factor of 10,000,
artifact threshold is set at ± 73.3 microvolts. Any trial
with a value above the threshold is rejected, and the other
trials are averaged to obtain the averaged ERP with im-
proved SNR. The number of trials used in the averaging
is different for different subjects and experimental condi-
tions due to the artifact thresholding. The average ERP is
then filtered with a low-pass filter of 16hz.

The trilinear model

The TCM model is built up with data from all 69 sub-
jects (30 alcoholics and 39 control subjects). As described in
the last section, the SVD decomposition is performed on the
concatenated data matrix D (concatenated according to re-
cord time) of size 4209 by 615, yielding 43 temporal compo-
nents which account for 90% of the temporal variation.
Similarly, the SVD decomposition is performed on the con-
catenated data matrix Ds (concatenated according to record
channel) of size 61 by 42435, yielding 16 spatial components
which account for 80% of the spatial variation. These com-
ponents are then rotated such that the loading matrices for
all subjects have as few significant entries as possible.
These components will be plotted in figure 1.

The fitting error in representing the data of the 69
subjects with these components is 0.5025 microvolts,
computed by

where Xij(t) is the filtered average ERP from subject i,
channelj, and time t. TheXij(t) is the estimated values of
Xij(t) based on the components.

Then SVD decomposition of Ds results in

rest of the ratios are less than 0.5%, the first K rows of V
will be chosen as the temporal components. The rest will
be considered as negligible components or noise.

An alternative method for selecting temporal com-
ponents is to choose enough components in order to ex-
plain a specified percentage of the total variance. If the
specified percentage is higher (say 90% or 95%), some se-
lected component explains only a very small percentage
of the total variance.

Estimation of the spatial components

For estimating spatial components, each electrode is
considered to be a variable, and each time point produces
an observation. In this case, the concatenation of the indi-
vidual data matrix Xi by variables gives the combined
data matrix
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Figure 1. The 16 spatial components obtained from the data of 69 subjects (30 alcoholics and 39 controls). The average
time courses (red for controls, black for alcoholics) are plotted next to their corresponding spatial components (source dis-
tributions). Three experimental conditions (T for target, NT for not-target, NV for novel) are separated by vertical lines.
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calized source distributions. We apply the local polyno-
mial method (Wand and Begleiter 1999) to compute the
surface laplacians, which are plotted in figure 2.

Similarly, source distributions can be computed for
each temporal component.

Classification of subjects

A clinical application of ERP is to classify a new sub-
ject into one of the two groups: alcoholics and controls.
The data of a new patient can be represented in the form
(1) and the loading matrix can be compared to the load-
ing matrices of the training examples. If the loading ma-
trix is closer to the loading matrices of the alcoholic
training examples than to the loading matrices of the
control training examples, this patient is classified as an
alcoholic patient. Otherwise the patient is classified as a
control subject.

If the spatial and temporal components were con-
structed from 10 training examples (5 alcoholics selected
randomly from the 30 alcoholics and 5 controls selected
randomly from the 39 controls), the classification error is
larger (3 out of the 30 alcoholics were misclassified as con-
trols and 24 out of the 39 controls were misclassified as al-
coholics). The large error of classifying controls indicates
that the training examples are not representative. If we
use 20 training examples (10 alcoholics and 10 controls se-
lected randomly), the error is greatly reduced. The num-
ber of misclassified subjects is 4 for both groups. If we use
all 69 subjects as training examples, the number of
misclassified subjects is still 4 for both groups. It indicates
that 20 training examples are enough for the classification
purpose, and there are few "outliers" from each group.

Monitoring single trials

If the spatial and temporal components are obtained
based on enough subjects, they form a complete basis for
decomposing ERPs in the sense that data from new sub-
jects under the same experimental modality can also be
represented in this system. In particular, we can use this
system to monitor single trials.

Figure 3 illustrates the visual P3 data recorded from
an alcoholic subject whose data was not used in obtain-
ing the spatial and temporal components. There are 25
trials under the target condition. Recall that the temporal
components have three epochs corresponding to three
experimental conditions. The first epoch, which corre-
sponds to the target condition, can be used to monitor the
single trials under the target condition. Figure 3 plots
two single trials, the modeled ERP data, and noise which
represents background EEG. It shows that single trials
can be filtered effectively with the temporal and spatial
components.

where Tij = Ekai (j, k)ck is the time course of the source
distribution bj for subject i. Let Taj denote the average time
course of the source distribution bj for alcoholic subjects
and Tcj the average time course for control subjects. Figure
1 plots the source distributions and their time courses.

The average time courses of 30 alcoholic subjects
(black line) and 39 control subjects (red line) are plotted
next to the corresponding spatial component. Three ex-
perimental conditions (T for target, NT for not-target, NV
for novel) are separated by vertical lines. We have 800
msec signal for each condition. Since the spatial compo-
nents are all of norm one (orthogonal components), the
color only indicates the source area (red) and sink area
(blue). The strength of a source distribution is shown by
its time course.

The first spatial component (top left) is the source
distribution producing the P3 component. The P3 ampli-
tude of control subjects is larger than the P3 amplitude of
alcoholic subjects. The second spatial component (top
middle) is the source distribution producing the N1 com-
ponent. The third spatial component (top right) is rela-
tively active. The strength of other spatial components is
less than 5% of the strength of the first spatial component.

Figure 1 shows that the P3 component is generated
mainly by the first spatial component (source distribu-
tion). For subject i, the ratio \ai ;(1,1)| /^ k|ai,-(l,k)| shows
how much the activity of the first spatial component con-
tributes to the P3 component. The ratio is 21.3% for alco-
holic subjects and 27.3% for control subjects. The T-test
shows that this difference is significant (p = 0.0035). This
could be a partial interpretation of the lower P3 ampli-
tude for alcoholic subjects. The ratio is less than 30% for
both groups, and it confirms that the one-to-one corre-
spondence between orthogonal spatial and temporal
components is not fulfilled in this visual P3 experiment.

Source distribution of P3 component

The representation (2) can also be written as

Where uik = Ejai(j, k)bj is the source distribution gen-
erating the temporal component ck for subject i. Let Ua1

denote the average source distribution generating P3
component (first temporal component) for alcoholic sub-
jects and Uc1 the average source distribution for control
subjects. The surface laplacian of Ua1 and Uc1 are more lo-

Time courses of the spatial components (source
distributions)

The trilinear representation (2) can be written as
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Figure 2. (a) The P3 component (first temporal component), (b) Source distribution (surface Laplacian) generating P3
component for alcoholic subjects, (c) Source distribution (surface Laplacian) generating P3 component for control sub-
jects.

Discussion
The TCM of Mocks (1988) is extended to general

trilinear modeling of ERPs. The goal is to estimate
"common" spatial and temporal components of ERPs
from clinical data. These components should form a
complete system in the sense that the ERPs of any sub-
ject can be well-represented as superpositions on the
common components. An important question is how
many subjects should be measured in order to achieve
this completeness. We have constructed the compo-
nents based on the data of 10 (5 alcoholics and 5 controls,
randomly selected), 20 (10 alcoholics and 10 controls,
randomly selected), and 69 (30 alcoholics and 39 con-
trols) subjects respectively. Based on the data of the 10
selected subjects, we find 16 spatial components that
each accounts for at least 1% of the total spatial variance
and 30 temporal components that each accounts for at

least 0.5% of the total temporal variance. Based on the
data of the 20 selected subjects, we find 15 spatial com-
ponents and 36 temporal components. Based on the
data of all the 69 subjects, we find 16 spatial components
and 43 temporal components. If the components are
stable in the sense that the first few components are
about the same no matter how many subjects are used in
constructing the components, then these three runs
with 10, 20, and 69 subjects indicate that 10 subjects
should be enough for fulfilling the completeness. To be
on the safe side, we would suggest that data from at
least 20 subjects should be used in constructing the com-
ponents in order to offset the effects of outliers, as indi-
cated by the classifications in a previous section. Figure
4 plots the pairwise correlations between the corre-
sponding components of different runs. The high corre-
lations show that the components are indeed stable.
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Figure 3. Top row: two single trials evoked by target stimulus. Middle row: the two trials modeled with the 16 spatial compo-
nents and the 43 temporal components. Bottom row: noise or background EEG. Each subgraph plots 61 signals from 61
channels. The horizontal unit is in msec and the vertical unit is in microvolts.
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Figure 4. (a) The pairwise correlations between the temporal components obtained by using the data of different sub-
jects. Solid line: correlations between the temporal components obtained by using 10 and 69 subjects; dashed line: corre-
lations between the temporal components obtained by using 20 and 69 subjects; dash-dotted line: correlations between
the temporal components obtained by using 10 and 20 subjects, (b) The pairwise correlations between the spatial com-
ponents obtained by using the data of different subjects. Same interpretation of line types as in (a).

We have demonstrated that the trilinear modeling can
be used to analyze ERPs in many ways. Data is reduced to
a small portion of the original size (2% in our example).
The inter-groups comparison analysis and patient classifi-
cation can be performed on this reduced data set because
the components are common to all subjects. It also helps to
interpret the ERPs. The loading matrix indicates which
source distributions are active and which wave forms cap-
ture their activities. In addition, it can be used as a filter to
extract the ERPs from single trials. Signals that can not be
interpreted by these components, even low frequency sig-
nals, are considered as noise or background EEG. Single
trial modeling is important and difficult.

We have applied SVD to properly concatenated data

to construct the components. This means that the compo-
nents are uncorrelated but not statistically independent. A
better way of finding common components would decom-
pose the concatenated data into independent components
in a unique way. ICA would be a good alternative if we
knew the exact number of spatial components and the
number of the temporal components. When applying
ICA, one also runs into the problem of not having enough
data for obtaining spatially independent components.
Even one has data of 128 channels, it is still insufficient to
apply any existing method to obtain more than 10 spatially
independent components. This means that it is very diffi-
cult to separate 10 independent distributions from their
mixture if one has only 128 observations of the mixture.
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Some parametric methods have been proposed to
implement the TCM of Mocks (1988). A dipole compo-
nent model was proposed by Turetsky at al. (1990). The
temporal components are modeled by damped sinusoids
which tightly constrain the temporal morphology of
source activity. The spatial components are determined
by the positions and orientations of the underlying
sources which are estimated from the data. They mod-
eled the head as a homogeneous spherical conductor.
Several issues make it difficult to apply the dipole compo-
nent model. First, locating the underlying sources with a
realistic head model is itself a very difficult task. Sec-
ondly, fitting a dipole component model needs to solve a
high dimensional minimization problem. Achim and
Bouchard (1997) proposed a dynamic version of the TCM
which further admits component modulation in time
scale to accommodate possible changes in the component
expression across conditions. They tested the method
with simulated data of only two components and it is not
clear how it performs on real data sets.
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