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Local Polynomial Estimate of Surface Laplacian

Kongming Wang* and Henri Begleiter*

" Summary: This paper describes a method for estimating the surface Laplacian of brain potentials. The method consists of two steps: local surface
approximation by its tangent plane and local polynomial fitting. Compared to previous methods for estimating surface Laplacian, this method has
some new features. First, it can estimate the surface Laplacian at any point of the scalp, including the locations of the peripheral electrodes. Secondly,
itestimates the brain potential and the surface Laplacian at any point simultaneously. This reduces the risk of error propagation, which occurs when
the brain potential is interpolated first and the surface Laplacian is then computed based on the interpolated brain potential. Finally, the method
automatically adapts to noisy data by using more or less measurements at neighboring electrodes based on estimated noise level. Simulations suggest
that this method is effective. Application to event-related potentials are also presented.
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Introduction

Electric currents generated by sources in brain are
volume conducted through brain, cerebrospinal fluid,
skull, and scalp to the recording electrodes. Therefore,
brain potentials measured at an electrode represent the
summation of signals from many sources over the brain.
It has been shown that surface Laplacian measures pro-
vide reference-independent estimates of radial current
source density (Katznelson 1981; Le et al. 1994; Nunez et
al. 1994) and eliminate the common activity due to vol-
ume conduction from distant sources (Nunez 1995).
Srinirasan et al. (1998) show that the surface Laplacian
estimate of cortical surface potentials reduce the artificial
coherence in individual frequency bands due to volume
conduction.

There exist many implementations for computing
surface Laplacian of brain potential. The so-called local
methods use only the potentials at "nearest neighbor"
_ electrodes and the surface Laplacian is computed by a
finite difference scheme (Hjorth 1975; Katznelson 1981)
or by a least squares solution of fitting a local quadratic
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representation of the potentials (Le et al. 1994). Since the
electrodes are not placed at regular positions, these local
methods interpolate potentials at a regular grid. There-
fore, the surface Laplacian is computed based on interpo-
lated potentials and it is very sensitive to noise, because
the Laplacian operation amplifies high spatial frequen-
cies (Le et al. 1994). Since a peripheral location of the
recording montage is not surrounded by electrodes, the
surface Laplacian at the peripheral location can not be
estimated by these local methods. The so-called global
methods construct a global potential function and then
compute the surface Laplacian of the global potential
function. So the Laplacian at any point depends on the
potentials at all electrodes. A popular interpolation func-
tion is the spherical spline (Perrin at al. 1987; Perrin at al.
1989). The global approach sometimes produces a dis-
torted Laplacian estimate (Biggins et al. 1991; Fein et al.
1991; Le et al. 1994) and direct differentiation on the
interpolated function may not be a consistent estimate of
the Laplacian. Babiloni et al. (1995) evaluated the per-
formances of these local and global methods. They found
that the best surface Laplacian estimates were computed
by second order spline including A correction (smooth-
ing parameter).

This paper presents a new implementation. It aims
(1) to be a local method which assigns larger weight for
closer electrodes; (2) to be able to estimate surface
Laplacian at peripheral locations; (3) to estimate potential

and surface Laplacian simultaneously so that direct dif-

ferentiation on an interpolated function is unnecessary;
and (4) to be robust to noise.

The surface Laplacian is independent of the head
volume conductor model, though it depends on the
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shape of the scalp surface. We will assume a spherical
scalp surface in this paper for the convenience of comput-
ing the true surface Laplacian in simulation studies. At
any location on the scalp surface, the local surface is
approximated by the tangent plane at this position. The
locations of the neighboring electrodes are projected to
this tangent plane and the surface Laplacian at the scalp
location is approximated by the surface Laplacian on the
tangent plane. The number of neighboring electrodes
used in this computation depends on the noise level
which can be estimated from the potentials recorded at
all electrodes. Higher noise level requires more measure-
ments from neighboring electrodes. Once the number of
neighboring electrodes is determined and the projection
of the locations of these electrodes on the tangent plane
are computed, a quadratic fitting is solved by least
squares method to estimate both potential and surface
Laplacian at the scalp location.

We evaluate the performances of this method with
simulations. It shows that this method performs better
than the second order spline including A correction in the
case of large SNR, due to the fact that surface Laplacian
is a local property of the scalp potentials. The second
order spline estimate is better in the case of small SNR,
since more data are needed for the estimate at any loca-
tion in order to reduce the effect of noise. Hence a global
method would be better. In practice, we would suggest
the use of the second order spline estimate for noisy data
such as single trials, and the local polynomial fitting for
clean data such as the average of the single trials. The
simulations also show that our adaptive method is robust
to noise, meaning that its performance is not far away
from the best that the local quadratic fitting can offer. For
the second order spline estimate, the simulations indicate
that a fixed small A (say A = 0.1) would work well for both
small and large SNR cases.

Method

The scalp surface can be parametrized by two inde-
pendent parameters and the surface Laplacian can be
computed by the standard Laplacian in a parametric
space. The polar coordinates are often used for para-
metrizing spherical surface, but they distort the relative
positions of the electrodes (figure 1) and it will produce
a distorted surface Laplacian. The projection of neigh-
boring electrodes on the tangent plane at a scalp location
reserves the relative positions of the electrodes very well.
Therefore, we use the tangent plane to approximate the
scalp surface locally. Figure 1 illustrates the tangent
plane at electrode F1 and the projection of the neighbor-
ing electrodes on the tangent plane. The local coordi-
nates of the projected neighboring electrodes on the
tangent plane are derived in the Appendix.
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Now we estimate the potential and the surface
Laplacian at a scalp location (x,y,z). Note that whether
(x,y,2) is an electrode position makes no difference. If K
neighboring electrodes will be used to estimate the po-
tential and the surface Laplacian at (x,,z), then denote
the local coordinates of the projected electrodes by (;, v;),
i=1,..,K. The local coordinate of (x,y,z) is (0,0). We ap-
proximate the local potential surface (not scalp surface!)
by a quadratic function

a a
P(u,v)=a, +alu+aZv+—23—uz+¢14uv+»—25—v2

Then the potential at (x,y,z) is estimated by a9 and the
surface Laplacian at (x,y,z) is estimated by a3+as, because
the point (x,y,z) has local coordinates (0,0). The coeffi-
cients a = (dg,....45) are estimated by the least squares
solution of the minimization problem

K
min Y W(u;, v, I)(P, ~ P(u;,0,))%.
A

Here P; is the measured potential at the scalp location
with local coordinates (u; v;), and W(w,, v;, h) is a weight
function which assigns larger weight for electrodes closer
to (x,4,z). In particular, we will use the Epanechnikov
weight function

2 2
W(ui’vi’h) = ng[l_ ui I:'zvi J

ifuf +of <h®, and W(u;,v;,h) =0 ifu? +v2 2h%  The
bandwidth & is determined by the estimated noise level
and will be discussed at the end of this section. The
Epanechnikov weight function W is optimal in the sense
of asymptotic mean squared error (Fan et al. 1997).

Estimating the noise level

The noise level is estimated by the difference be-
tween the measured potentials at the electrode positions
and the linearly interpolated potentials using the meas-
urements at neighboring electrodes. The linearly inter-
polated potential F; at the location of electrode i is
computed as follows. Project the three closest electrode
locations onto the tangent plane at the location of elec-
trode i and denote their local coordinates by (W, v)),
j=1,2,3. Then the linear interpolation of potential at elec-
trode i based on the potentials at the three closest elec-
trodes is given by F; = b;, where
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Figure 1. Projection of neighboring electrodes on the tangent plane at electrode F1. (a-top left) Spherical scalp surface
and the locations of @ elecirodes. The location of F1 is marked with ", (b-top right) The tangent plane at F1. (c-bottom
left) The projection of the 9 locations on the tangent piane and their local coordinates. (d-bottom right) The polar

parametrization of the ¢ locations.
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The noise level is estimated by

s¥(B - )’

Nop + median {|P~Fli=1,...,N}

1
c==
2

where N is the number of electrodes. Qur simulations
indicate that the first term overestimates the noise level
while the second term underestimates the noise level. So
we take their average as the estimate of the noise level.

This simple estimate is based on the assumption that the
potential surface is smooth due to the volume conduction
of the brain.

Determining the number of neighboring
electrodes and the bandwidth h

First we determine how many measurements from
neighboring electrodes should be used when estimating
the potential and the surface Laplacian at a scalp location.
We start from clean data (6 = 0). Simulation with differ-
ent potential surfaces shows that the estimation with 11
measurements at neighboring electrodes produces al-
most optimal estimates for clean data if 61 electrodes are
used for data recording. This is consistent with the
method of Le et al. (1994) where 12 neighboring measure-
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ments are used. For estimating the second derivatives of
a regression function, the optimal bandwidth is propor-
tional to 6%/° (Gasser and Miiller 1984). Therefore, we
determine the number of neighboring electrodes by K=11
if the noise level 5<0.1, and

5 \¥°
K= round {11(—) J 1)
0.1

if the noise level ¢ > 0.1. Here the function round ()
rounds a number to its closest integer. This means that
11 neighboring electrodes are used when data is almost
clean (6 <0.1), and more neighboring electrodes are used
when the noise level increases.

If the number of recording electrodes is not 61, the
same formula can be used to compute the number K of
neighboring electrodes. The difference is that the number
of neighboring electrodes for clean data is now a different
number from 11, and it can be determined by simulation.

When the number K of neighboring electrodes is
determined, the bandwidth % is then chosen as follows.
Project the locations of the closest K+1 neighboring elec-
trodes to the tangent plane at (x,y,z) and denote their local
coordinates by (u;, v), i=1,..., K+1. Let

d; =1/ui2 +v,-2

and assume d; < d;,; without loss of generality. The
bandwidth k is defined by

h = (dg+dgia)/ 2.

Simulations

The new method is tested with two functions. The
true surface Laplacian is computed through the polar
parametrization of the scalp surface: x = cos(6) sin(¢ ), y
= sin(B) sin(¢), z = cos(0), 6 € [0, 2n] and ¢ € [0,7].

The clean data are computed from a test function
flx,y,z) at 61 electrode locations. The first test function is
defined by

flxy,z) =5 (sin(m x) cos(m y) sin(x z) + 222).
The second test function is defined by
5 3
i=1 j=1

where L; is the Legendre polynomial of order i. The three
points (u;, v;, ;) are defined by (cos()) sin(n/4), sin(6;)
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sin(n/4), cos(n/4)), 6,=0, 6,=21/3, 0;=47/3. The coeffi-
cients Q;;are generated random numbers:

~21628 59546 - 0.9335
-83279 59458  3.6290
Q:(Q,-]-)z 0.6267 -0.1882 -29416
14384 16365 10.9159
-57324  0.8732 -0.6820

The second test function is an approximation to the
theoretical potentials with three dipole sources, and it
is in favour of the spline method which approximates a
potential surface by a combination of the Legendre
polynomials.

The noisy potential data are obtained by adding
scaled white noise to the simulated potentials to give a
prespecified SNR. The scaling factor is of course the
noise level.

The simulation is carried out at five SNR levels. For
each prespecified SNR, the simulation is performed with
50 replications. For each replication, we generate 61 nor-
mal random numbers and scale them so that the noisy
data have the prespecified SNR. Then we estimate the
surface Laplacian with four procedures: (I) the second
order spline method with optimal A correction, chosen by
a grid search Ae {0.1t: £=0,1,2,...,10}; (II) the second order
spline method without A correction; (IIl) the local quad-
ratic fitting with optimal K (the number of neighboring
electrodes), chosen again by a grid search K € {11+2t:
t=0,1,2,...,10}; (IV) the local quadratic fitting with K se-
lected by the data-driven formula (1). The second order
spline implementation is taken from Babiloni et al. (1995).

Table I gives the results of estimating the noise level.
The estimation is good in most cases and it is poor when
the data are clean, since the simple method overestimates
the noise level. The column titled with "estimated ¢" is
the average of the estimated ¢ in 50 replications, and the
relative errors are computed by

(estimated c) - ©
o

error = 100 % (2)

Table II gives the results of estimating the surface
Laplacian of the first test function. The errors are com-
puted as the ratio between the mean squared error (MSE)

and the signal power (SP). Let j}( i) be the estimate of the

function valuef{(i) (potential or surface Laplacian) at scalp
location i. Assume that the estimates are computed at N
locations on the scalp, then
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Table I. The error of estimating the noise level with 61 electrodes, computed by using (2.

First Test Function Second Test Function
SNR o estimated ¢ error (%) SNR c estimated ¢ error (%)
1 5.1482 5.4803 6.4512 1 9.1394 9.7328 6.4926
5 2.2609 2.5349 12.1230 5 4.0136 4.5315 12.9030
10 1.6402 1.8211 11.0280 10 2.9117 3.3616 154516
15 1.3555 1.5427 13.8056 15 2.3598 2.9309 24.2039
100 0.5117 0.9450 84.6910 100 0.8975 1.8388 104.8885
1. 9 1 & ) lation), both methods are competitive. For clean data, the
MSE = N 2 (f @O-f (i)) ’ SP = 1N 2 ( f (1)) local method is better because the bias of the local estima-
i=1 i=1 tor is smaller. The tables also show that formula (1), the

Let AMSE = 2% MSE;/50 be the average of the MSEs of

the 50 replications. We define the estimation error by

AMSE,

error = 100 % 3)
SP

This relative error measurement is more informative than
the AMSE.

Table III is the same as table II, except that it is com-
puted with the second test function. The poor performance
of the second order spline method without A correction is
partially due to the numerical instability (singular matrix
inversion) of the method. This and the noise amplification
of the Laplacian operation (Le et al. 1994) make it almost
impossible to estimate the surface Laplacian from noisy
data without smoothing (the A correction).

Tables II and III show that the second order spline
with A correction is better for poor SNR, because the local
quadratic fitting can not effectively reduce the variance
of the estimator. For moderate SNR (10, 15 in our simu-

method of determining the number of neighboring elec-
trodes according to the estimated noise level, works well.
For the A correction, it seems that a small A (say 0.1) works
well for all SNR. Figure 2 plots a typical run of the
simulations with SNR=10 and the second test function.
Table IV reports the simulation results with 105 elec-
trodes and the second test function. The error of estimat-
ing the potentials is also included. We still use formula
(1) to estimate the number of neighboring electrodes,
even though a modified formula should be used because
of more than 61 electrodes. The local quadratic fitting is
competitive or better when SNR > 15 for estimating sur-
face Laplacian, and it is better when SNR > 5 for estimat-
ing potentials. The second order spline with A correction
is the best among the previous surface Laplacian esti-
mates with more than 64 electrodes (Babiloni et al. 1995).
Two reasons can explain why the local method uses
many neighboring electrodes to estimate the potentials
and the surface Laplacian at a scalp location (tables Il and
IIT). First, it needs many data points in order to suppress
noise. Secondly, the weight function W implies that the
fitting at many of those neighboring electrodes does not

- Table lI. Simulation results with the first test function and 61 electrodes. The errors of estimating surface Laplacian are

computed by using (3) for all methods | - V.

SNR I I IIr v
error (%) A error (%) error (%) K error (%) estimated K
79.0548 0.16 8764.218 148.1100 30.48 167.6808 26.22
5 70.7034 0.10 1726.072 95.3647 22.84 98.1511 22.00
10 68.4526 0.10 877.831 76,6997 19.20 78.6989 20.50
15 68.7859 0.10 581.779 69.3542 17.64 71.7324 19.70
100 67.6271 0.10 114.352 43.3342 11.08 56.5995 17.78
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Tabile lil. Simulation results with the second test function and 61 electrodes. The errors of estimating surface Laplacian are

computed by using (3) for all methods | - IV,

Wang and Begleiter

SNR I II I v
error (%) A error (%) error (%) K error (%) estimated K
61.6382 7 0.108 7584.407 112.1548 30.8400 116.3906 29.84
5 53.8809 0.100 1492.176 64.3853 27.4800 67.0795 25.14
10 53.2761 0.100 761.059 54.6037 23.6800 56.8277 23.50
15 52.2033 0.100 529.694 52.9425 20.4800 54.9267 22.80
100 51.8548 0.100 97.604 36.2822 13.4400 44.0454 20.50

count much. The fitting at few closest neighboring elec-
trodes count the most.

Application to visual P3 data

In this visual P3 experiment, subjects are presented
with 280 visual stimuli with a uniform inter-stimulus
interval of 1.6 seconds. There are 210 non-target stimuli
in the shape of an outline of a square, 35 target stimuli in
the shape of an X, and 35 novel stimuli, each a different
colored polygon or other geometrical figure. The three
different stimuli are presented in a random sequence.
Subjects are instructed to respond to target stimulus by
pressing a button. The visual P3 data are recorded from
64 channels (61 channels of International 10/20 system,
two channels for monitoring eye movements, and the
nose channel for reference). So the data to be analyzed
have 61 channels. The sampling interval is 3.906 msec
and 205 sample points (800 msec signal) after each stimu-
lus are recorded for each condition. After amplification
by a factor 10000, artifact threshold is set at 73.3 micro-
volts. Any trial with a value above the threshold is
rejected, and the other trials are averaged to obtain the
average ERP with improved SNR. The averages are plot-

ted in figure 3 for a control subject and a alcoholic subject.

We will estimate the potential maps and the surface
Laplacian at 400 msec using the proposed local quadratic
fitting. For the control subject, the estimated noise level
at 400 msec is 6 = 0.7545, the estimated SNR is 172 (clean
data), and the surface Laplacian is estimated with K=17
neighboring electrodes. For the alcoholic subject, the
estimated noise level is 6 = 0.6290, the estimated SNR is
211 (clean data), and the surface Laplacian is computed
with K=16 neighboring electrodes. The simulations of
the last section indicate that we should get accurate esti-
mates for both potentials and surface Laplacian from
such clean data, due to the averaging over trials. The
estimated potentials and the estimated surface Laplacian
are plotted in figure 4.

It canbe seen from figure 4 that the surface Laplacian
maps are much shaper than the potential maps. Both
potential maps have similar differentiation from back to
front, but the surface Laplacian maps indicate completely
different current source densities. For the control subject,
there are two major source areas (back-left and back-
right) and one major sink area (front head). For the alco-
holic subject, there is one major source area (back-left)
and one major sink area (top of head).

Table V. Simulation results with the second test function and 105 electrodes. The errors are computed by using (3). The
columns 2, 4, and 6 are the errors of estimating surface Laplacian using the three procedures (1), I, and (V) respectively.
The columns 8-10 are the errors of estimating potentials using the three procedures.

SNR I I v error (%)
error (%) A error (%) K error (%) estimated K I 11 v
57.24 0.12 163.75 31.00 163.66 31.18 14.25 22.03 21.94
5 47.86 0.10 68.58 31.00 80.69 26.00 9.70 5.08 5.78
10 44.68 0.10 55.69 30.32 63.47 24.16 8.72 2.58 3.03
15 44 .55 0.10 47.99 - | 2848 52.35 23.24 8.71 1.98 2.24
100 43.72 0.10 36.02 19.56 36.17 19.84 8.41 0.52 0.52
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Figure 2. Plot of a run in the simulation with SNR=10 and the
second test function. The left column plofs the scalp
potentials and the right column plots the surface
Laplacian. The rows from top to bottom: true data (first
row); estimates by method | (second row); estimates by
method Il (third row); estimates by method Il (forth row);
estimates by method IV (fifth row). All images are plotted
from the view of top head.
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Discussion

Many techniques have been employed to obtain high
spatial resolution EEG and ERP. Increasing the number
of electrodes will improve the resolution, but its useful-
ness is limited by the distortion of the volume conduction
through brain, skull, and scalp (Gevins 1996). Methods
for reducing this distortion can be model-dependent and
model-independent. The model-dependent methods
such as cortical imaging and source localization (linear
estimation) are usually computationally intensive, while
model-independent methods such as surface Laplacian
are usually computationally simple.

Cortical imaging is for approximating potential fields
on the cortical surface (Marin et al. 1998; Babiloni et al.
1997;Sidman et al. 1996). It uses equivalent current dipole
layers as a source model to fit the recorded scalp potentials,

- and then computes the cortical potentials from the fitted

sources. This method is based on a head and volume
conduction model, and it is reference-electrode dependent.
Realistic head models other than a three concentric sphere
have been used in recent researchs (Marin et al. 1998;
Babiloni et al. 1997; Fuchs et al. 1998a, 1998b).

Source localization techniques are designed to locate
the source distributions in the brain based on the recorded
scalp EEG or ERP (Koles 1998; Mosher and Leahy 1998;
Awada et al. 1998). These methods are for locating 3-D
source distributions (cortical and deep sources). Again
head models range from the spherical to the more realistic
based on boundary and finite elements. The accuracy of
cortical imaging and source localization is affected by the
modeling errors inhead model and conductivity, approxi-
mation of the forward and inverse problems by linear
equations, noise, and reference electrode.

Compared to the cortical imaging and source local-
ization techniques, surface Laplacian is a simpler, refer-
ence-independent, and model-independent technique
(Hjorth 1975; Katznelson 1981; Oostendrop and Oos-
terom 1996). The surface Laplacian is proportional to the
radial source intensity and therefore is an estimate of the
radial current source density. The superiority of the
surface Laplacian over that of the potential has been
reported in many applications (Srinivasan et al. 1998;
Tenke et al. 1998; Edlinger et al. 1997; van Burik et al.
1998). Edlinger et al. (1997) studied sensory, motor and
cognitive events and reported that all methods (surface
Laplacian, cortical imaging, source locahzatlon) yield
similar results.

There are two general approaches for computmg sur-
face Laplacian. The local approach computes the surface
Laplacian at a scalp location based on the measured poten-
tials at neighboring electrodes. These methods range from
the finite difference scheme (Hjorth 1975; Katznelson 1981)
to local modeling of the scalp and the potential surface (Le
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Figure 3. Plot of the average ERPs of a control subject (top) and an alcohalic subject (bottom). The horizontal unit is in

msec and the vertical unit is in microvolts.

et al. 1994). The global approach constructs an analytic
potential surface based on the potentials from all elec-
trodes. The popular approach is based on the plate or
spherical splines (Perrin at al. 1987; Perrin at al. 1989;
Babiloni et al. 1996; Srinivasan et al. 1998; Gevins 1996)
because the spline model provides a means of obtaining
both potential maps and the surface Laplacian estimation.
To use spherical harmonics to represent scalp potentials,
one often assumes a three or four concentric spherical head
model (Srinivasan et al. 1998; Srinivasan et al. 1996; Tenke
et al. 1998; Babiloni et al. 1998).

The surface Laplacian is very sensitive to higher
spatial frequencies and noise (Le et al. 1994; Srinivasan et
al. 1998; Babiloni et al. 1998; Babiloni et al. 1995). To
construct a robust algorithm, low-pass spatial filters are
employed to obtain regularized (smooth) potential sur-
face and surface Laplacian (Le et al. 1994; Babiloni et al.

1998; Babiloni et al. 1995). Linear low-pass spatial filters
are weighted averaging schemes. If more neighboring
potentials are averaged to estimate the potential at a scalp
location, the noise will be greatly reduced in the estimate.
But the bias will be increased because the potential sur-
face is not flat. On the other hand, if few neighboring
potentials are averaged to estimate the potential at a scalp
location, the bias will be small but the noise will not be .
reduced by much. Several methods have been proposed
to determine how much filtering should be applied to the
recorded potentials. Babiloni et al. (1998) reported that A
correction and Tikhonov regularization provide more
precise Laplacian solutions than the generalized cross-
validation computation. Increasing the number of elec-
trodes will dramatically improve the estimate of the
surface Laplacian by a local method. On one hand, there
are many neighboring electrodes and the weighted aver-
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Figure 4. Plot of the estimated potentials (left column) and surface Laplacian (right column) at 400 msec after target
stimulus. The fop row is for the control subject and bottfom row for the alcoholic subject. The maps are plotted from the

view of top head.

aging of the potentials from these electrodes greatly re-
duces the noise. On the other hand, these neighboring
electrodes are close to each other and the potentials at
these electrodes are about the same as the potential at the
scalp location where surface Laplacian is being esti-
mated, due to the volume conductivity of the head. The
weighted average gives a good estimate of the potential
at the scalp location. Therefore, local methods benefits
most from increasing the number of the electrodes.
Another problem for the previous local methods is
that surface Laplacian at peripheral electrodes can not be
estimated because some neighboring electrodes do not
exist (Le et al. 1994). Even though the global approach
sometimes produces a distorted Laplacian estimate (Big-
gins et al. 1991; Fein et al. 1991), Babiloni et al. (1995)
reported that the best surface Laplacian estimates were
computed by second order spline including A correction.

Since Laplacian is a local property of the potential sur-
face, one can expect that a properly implemented local
method would be better.

Conclusion

We have implemented a local method for estimating
brain potentials and surface Laplacian, based on the as-
sumption that the potential surface is smooth due to the
volume conduction of the brain. The implementation ful-
fills the four requirements in the introduction. Compared
to the second order spline estimation with A correction,
which is the best among previous implementations
(Babiloni et al. 1995), this method is better for data with
high SNR, competitive for normal SNR, and poor for small
SNR. Therefore, we would apply this method to cleaner
data such as the averaged ERP. For very noisy data such
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as single trials, we would apply the second order spline
estimation with A correction.

The head is assumed to have a spherical scalp surface
for the convenience of the simulation. Itisa good approxi-
mation but it is not a realistic model. The proposed
method can be used to estimate a realistic scalp surface as
long as one has the coordinates of the electrodes. Assume
that the N electrode coordinates are (x;, y; z;), i=1,....N.
Then z; can be considered as the measurement of a surface
at (x; ¥)), and one can estimate the scalp surface over the
xy plane by the local quadratic fitting. Once the scalp
surface is estimated, the proposed method can be used to
estimate the scalp potentials and the surface Laplacian.

We have considered data using 61 channels. More
channels would produce more accurate estimate of both
scalp potentials and surface Laplacian, but the recording
may be more difficult to handle. Furthermore, the maxi-
mum number of electrodes is limited because of the size
of the electrodes. The examples show that one can get
reasonable estimate of the surface Laplacian from data of
61 channels.

Like other implementations for estimating surface
Laplacian, this method is also alinear method in the sense
that the estimate of the surface Laplacian at a scalp loca-
tion is a weighted average of the potentials at neighbor-
ing electrodes. The accuracy of such linear debluring
methods is limited because of the nonlinear volume con-
duction in the brain.

Appendix: Projection of electrodes on
tangent plane

The upper half of the scalp surface can be para-
metrized as (x, y, z), where

z=s(x,y)=1-x*-y*, |d<1, ]ylSl, X +y’ <1

The center of the brain is parametrized as (0,0,0). Ata
scalp location (x,y,z), the normal vector of the scalp sur-
faceis also (x,y,z). The two vectors C; and C,, defined by

G =(*xz,—yz,1—22)/ Vi-2%, C=(y,~x,0)/v1-2%,

if 2 + y2 >0, form an orthogonal coordinate system on
the tangent plane at (xy,z). If 2 + y? = 0, a natural
coordinate system on the tangent plane at (0,0,1) is
formed by two vectors C;=(1,0,0) and C,=(0,1,0).

For any point (x', y, z) (z' =s(x', ¥)) on the scalp
surface, its projection on the tangent plane at (x,y,z) is
given by

o Yp 29) = (%, Y, 2) + M, ', 2)

Wang and Begleiter

where A = 1-xx"-yy'-zz'. Therefore, the local coordinates
of this projected point on the tangent plane is given by

W', v) =R Cix', y, 20, ACo(x', ', 2)Y).

In particular, the local coordinates of (x,y,z) is (0,0).
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