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Spatial Enhancement of Event-Related Potentials Using

Multiresolution Analysis

Kongming Wang*, Henri Begleiter*, and Bernice Porjesz*

Summary: Multiresolution analysis is a potentially useful tool to enhance the brain's electrical fields (spatial distributions of event-related potentials
(ERP)), and to bring out spatial features which may not be seen in the fields before enhancement. For comparing different images (slices from ERP
of different subjects or from the same subject but evoked by different stimuli), we define a measure (surface energy) at each decomposition scale and
for different wavelets. The best wavelet and the best level for comparing the given images can be chosen based on this measure. Our experiments
show that for very similar images, their difference can be brought out at some scale level. Three preprocessing steps are needed in order to carry out
this wavelet analysis. First, a wavelet denoising step is needed to remove noise from the raw ERP. Secondly, a one-to-one mapping is needed to map
scalp surface into a square, because the current wavelet analysis theory and algorithm are constructed on regular domains. Finally, a fitting. or
interpolation step is needed to construct an image on a regular grid in order to apply the fast wavelet transform algorithms.

Key words: ERP; Brain's electrical fields; Multiresolution analysis; Denoising; Local polynomial fitting; Wavelet.

infroduction

Characterizing the brain's electrical fields has been
given a great deal of attention in electroencephalogram
(EEG) and event-related potential (ERP) topography.
Electric currents generated by sources in brain are vol-
ume conducted through brain, cerebrospinal fluid,
skull, and scalp to the recording electrodes. Therefore,
potentials measured at an electrode represent the sum-
mation of signals from many sources over the brain,
especially when considering the signals of higher cog-
nitive functions such as P3. The P3 componentis a large
positive deflection occuring at a latency of 300-500 msec
after a stimulus of "significance" and is of maximum

amplitude at the PZ electrode. In order to see the local.

topographic variations in neurocognitive processes, the
recorded potentials need to be spatially enhanced
(sharpened). Typically, this is done with surface
Laplacian measures which provide reference-inde-
pendent estimates of radial current source density (Le
et al. 1994, Nunez et al. 1994) and eliminate common
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activity due to volume conduction from distant sources
(Nunez 1995). We represent a surface (electric poten-
tials) as surface = trend (linear and bilinear terms) +
details.

Then the surface Laplacian removes the trend but
keeps a transformed version (through Laplacian opera-
tor) of the details. Therefore the surface Laplacian is able
to bring out spatial features which cannot be noted in
evoked potentials.

In this paper, we use multiresolution analysis as a
tool for performing the spatial enhancement of ERP. In
multiresolution analysis, the orthogonal wavelet trans-
form decomposes an image into independent informa-
tion at different scale (spatial frequency) levels. For two
images which are different at only one level, wavelet
decomposition might bring out this difference while sur-
face Laplacian may fail.

An immediate application of the multiresolution
analysis is the comparison of the brain's electrical fields
of different subjects (control, alcoholic) or the fields ofa
subject evoked by different stimuli. After decomposing
each field into details at several levels, one can measure
the difference at each level. The level with the biggest
dispersion identifies the largest difference between the
fields. We will measure a surface (field) by its energy. In
our visual P3 studies, the amplitudes of the ERP of the
control and alcoholic subjects are quite different (see
figures 7 and 11), but the electrical fields at 400 msec (near
P3) are similar. In fact, one cannot see the difference
visually. The difference is brought out by multiresolu-
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Figure 1. Noisy visual potfential (left) and denoised 'version
(right). Horizontal unit is in msec and vertical unit is in
rmicrovolis.

tion analysis. Similar results are obtained when compar-
ing the electrical fields of a control subject evoked by
different stimuli.

The drawback of the multiresolution analysis is that
the brain's electrical fields have to be mapped onto im-
ages on a regular grid, because the international system
for placing sensors on scalp does not match a regular grid.
We will construct a one-to-one mapping of the scalp
surface onto a square, keeping image distortion as small
as possible. We will then apply local polynomial fitting
to construct approximate images on a regular grid. To
reduce error propagation, noise is removed by wavelet
denoising from the raw data.

Methods

Wavelet denoising

We assume an additive noise model
S,'/'(t) = Pll(t) + Gii n,-,-(t) (1)

where s;(t) is the evoked potential with stimuli i and
recorded at sensor j and at time ¢, p;(#) is the true but
unobserved potential, n(t) is a Gaussian white noise
N(0,1) which represents the human and instrument er-
rors, and 6;; is the unknown noise level (standard devia-
tion). Wavelet denoising consists of three steps. In
order to simplify the notation, we will omit the sub-
scripts ij, because they are fixed throughout the denois-
ing process.

1. Wavelet decomposition of s. Choose a wavelet y and
a decomposition level N. Wavelet coefficients of s are
computed by

w(a,b) =, Vo=@ Yo+ V0 ()

Herea=1,---, Nis thescale parameter and b is the location
parameter. We will use the wavelet "sym8" (Symlets of
order 8, near symmetric, smooth, compact support). For
details about wavelet families, see Meyer (1993) and
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Misiti et al. (1996). Note that many wavelet families do
not have an explicit expression.

2. Shrinking wavelet coefficients. If p is a smooth (lower
frequency) signal, then the wavelet decomposition of p at
the finest level (a=1, high-pass filtered) yields almost zero
coefficients. This is because y has several vanishing mo-
ments. Therefore w(1,b) = ¢ (n, ¥y, ). But orthogonal
transform of Gaussian white noise # yields again Gauss-
ian white noise(r, y; ;) . We see that the median absolute
deviation of {w(1,b)} is a robust estimate of . Equation
(2) implies that by shrinking the wavelet coefficients
w(a,b) towards zero, one can remove noise from the sig-
nal. Many shrinking methods have been proposed in the
wavelet literature. We use a mixture rule of Stein's unbi-
ased risk estimate and a fixed form threshold

2log (length(s)) . For more details, see Misiti et al.
(1996).

3. Reconstruction. Compute the denoised signal from

the modified wavelet coefficients by the inverse wavelet
transform.

Figure 1 depicts a signal and the denoised version.
It shows that wavelet denoising is quite efficient. For
non-Gaussian noise, a nonlinear wavelet shrinkage (dif-
ferent amounts of shrinkage at different decomposition
scales) should be applied to remove noise.

The mapping of scalp surface to a square

Most wavelets for function analysis are constructed
in R” and fast algorithms are implemented for regular
domains such as interval (n=1) and square (n=2). Human
scalp surface is not such a regular domain. In this paper
we assume a two dimensional disk scalp surface. A half
sphere scalp surface is mapped to a disk by the simple
projection (x,y,z) - (x,y) without image distortion.

One way of transforming data from the scalp surface
to an image in a regular domain is to find the smallest
square containing the scalp surface. Then the interpola-
tion-prediction is used to construct an image on a regular
grid. Interpolation is not a problem, because the noise
has been removed in the previous step. But the predic-
tion would give a poor approximation at the corners,
because there is no data point near there. We will con-
struct a one-to-one mapping from a scalp surface to a
square with the following three properties:

1. Image distortion as small as possible. This means that
uniformly distributed points should be mapped to al-
most uniformly distributed points. Note that this prop-
erty disqualifies polar parametrization (see figure 2).
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Figure 2. Sensor locations on scalp (left), polar parametri-
zation (middie) where the center of the scalp is mapped
o (0.0), and mapped locations in a square (right) where
the center of the scalp is mapped to (0.0).

2. One-to-one mapping. Analyzed images in a square
can be converted back to images on a scalp surface.

3. Smooth mapping. Mapping should be smooth so that
the results from other tools such as surface Laplacian can
be converted back and forth.

We will use the following mapping from the scalp
surface to a square:

(x,y)=>(u,v), if y>x

where

i == -, =y

V2
R n =2l

and 7 is the radius of the scalp surface. The mappm
other parts of the scalp surface -y > | x|, x> y -x >%

is constructed similarly with symmetry. The idea is to
divide the scalp surface into four cones equally, and
shrink each cone to a triangle towards the center of the
scalp surface. The edges of the cones are kept un-
changed. The mapping of 31 electrode locations is
given by figure 2.

Local polynomial fitting

To apply wavelet techniques, we need to evaluate
potentials on a regular grid (square lattice in our case).
The international system for placing sensors on the scalp
does not match this regular grid. We will apply local
polynomial fitting to estimate potentials at each point of
a square lattice.

Let s{xj1, xp, t) be the brain potential evoked by
stimulus 7 and recorded at location (xj, x3) and time ¢.
We will omit subscripts i,t in this section because they
are fixed throughout the estimation process. We as-
sume an additive noise model for the scalp electrical
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fields
s (xj1, Xp2) = p (xp, Xp) +€, 3

where p is the true but unobserved potential and ¢ is a
residual term with mean zero. Note that (3) is a spatial
model while model (1) is a time series. Even though a
wavelet denoising operation has been performed for sig-
nals from each sensor, data are still noisy. First, any
denoising operation cannot remove noise completely.
Secondly, sensors are placed on the scalp with random
errors which have no effect on the model (1).

In a neighborhood of a grid point (u;, u,), Taylor
expansion gives

a
p(xq,%x,) = ag+a; (%, —u1)+a2(x2—u2)+—§i(xl T

a
a4(x1—ul)(xz—u2)+—22(x2—u2)2+---

with p(uy, uy) = ag. Estimation of g, will be based on a
quadratic model

P(xuxz) =p2(x1 —Uy, Xy —Uy,0) =

1 2
ag +ay(x; —uy )+ a,(x, —u2)+§a3(x1 —uy )+

1

a,(x, —ul)(xz—u2)+5a5(x2—u2)2
witha = (ag, - - -, as).
Let 4;,i=0,---,

least square problem

5, be the minimizer of the weighted

: 2
rerZWh(ijszlul,uz)(s(xl-llsz)— Pa(xj — Uy, Xjy —Up,4))
j=1

Here

[Genr 0 1, 2)
n

Wh(xil,sz,ul,uz)zw

with a spherically symmetric weight function W: W(0)=1,
W(r)=0 for r21, and W is decreasing on the interval [0,1].
The bandwidth & determines how many data points are
used in estimating the local polynomial and the proper
weights assigned to each data point. We have

plu, uy) = g

Repeating this procedure for every point (u;, up) of a
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Figure 3. Visually evoked potentials (left, af 400 msec)
- constructed with interpolation, and mapped image in a
square (right) by local polynomial fitting (first map scalp
potentials into a square, then construct the image on a
regular grid by locat polynomial fitting). The size of both
images are 64 by 64 points.

regular grid, we obtain an image on the regular grid. See
figure 3 for an illustration.

The crucial issue in local polynomial fitting is how
to choose bandwidth h. A larger h reduces variance of the

estimator d;,i=0,---,5, and increases their bias. On the

other hand, a smaller h reduces bias and increases vari-
ance. Intuitively, higher noise levels require a larger
bandwidth k because more data points are needed to

reduce the variance of 4; (central limit theorem).. Many

procedures like cross-validation have been proposed for
selecting h. We will simply choose k4 to be as small as
possible such that the minimization problem is well-de-
fined (as long as enough data points are used, the mini-
mization problem is well defined). This is justified
because of the wavelet denoising step and because the
error of placing electrodes is small. For more details
about local polynomial fitting, see Loader (1996). From
now on, the brain's electric fields are plotted using the
following direction: top — front head; bottom — back
head; left — left head; and right— right head.

Multiresolution analysis

The one dimensional wavelet decomposition of sig-
nals consists of a high-pass filter and a low-pass filter at
each scale level. The high-pass filter produces details of
a signal at this level, while the low-pass filter gives the
trend of a signal at this level.

It is similar in two dimensional wavelet analysis of
images. There exist four functions do(x1,%2), Ya(x122),
Wa(x1,%2), Wa(xy,x2) such that the following four sequences

2% g (2K xy-ky, 2K x0- k), 2wa(2 %y - ky, 2 %2 - k),

2 (U xy-ki, 2 x-ka), 232 xq-ky, 2 x2- k),

ki, kp € Z and j 2 k, form an orthonormal basis of L2(R?)
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for any given k 2 0. Here L%(R?) is the set of square
integrable functions on the plane. For details, see
Meyer (1993).

We will use a one dimensional wavelet, and con-
struct a two dimensional wavelet by tensor product. Let
(¢, v) be a one dimensional father (low-pass filter) and
mother (high-pass filter) wavelet pair. Then we take

§ o1, x2)=0 (x1) ¢ (x2),  Wa(xLx2)=0 (x2) W(x1),

Wy (X1,%2)=0 (x1) W (x2), Wa(x,%2)=¥ (x1) W(x2),

Now at each scale level j, a given image f is decomposed
into four sub-images with wavelet coefficients:

1. Trend (or: approximation) at scale level j (low-
pass filtered in both dimensions).

2 [ fO, 00020~k 2y = k)i, KKy € Z

2. Horizontal details at scale level j (low-pass filtered
in dimension 2 while high-pass filtered in dimension 1).

zfj Flaty, o1 (22, kg, 22 — by )dxydny, Ky kg, €Z

3. Vertical details at scale level j (low-pass filtered in
dimension 1 while high-pass filtered in dimension 2).

2fj Flry, 2N (23, kg 20y by ddxydx,, Ky ky € Z

4. Diagonal details at scale level j (high-pass filtered
in both dimensions).

2 e, 0w 52—k 2%, kM, Kk € Z

Let fbe a given image. Then f can be reconstructed
from the wavelet coefficients as

f(x,,%,)= trend at scalelevel 0+
+ three detailed images at scale level 0+
+ three detailed images at scale level 1+
+ three detailed images at scale level 2+

+ e (4)

Since this decomposition is orthogonal, we see that
the image is decomposed by wavelet analysis into infor-
mation (trend at level 0 and fluctuations at each scale level
j) that is independent from one scale to another. If we
want to look at the trend and details at scale level N, then
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Figure 4. Three components and their mixture image (bot-
tom-right).

f(x1,%,) = trend at scale level N +
+ three detailed images at scale level N +
+ three detailed images at scale level (N +1) +
+ three detailed images at scale level (N +2)+

+ cee (5)
where

trend at scale level N = trend at scale level 0+
+ three detailed images at scale level 0+
e
+ three detailed images at scale level (N —1).

(6)

This is a multiresolution analysis of two dimensional
images.

The discrete wavelet decomposition starts from the
finest level (see Misiti et al. 1996). After decomposition
at the finestlevel, one has four images: the trend and three
details. Next one decomposes the trend of the present
level to get the trend and three details at the next level.
Because of the dyadic structure of the wavelet decompo-
sition, there is a limit on how many levels wavelet decom-
position can attain.

Another consideration is how to choose a proper
wavelet for such multiresolution analysis. Many wavelet
families have been constructed in the literature. The idea
is that a less smooth wavelet should be chosen if the
image is rough, and a smoother wavelet should be chosen
if the image is smoother. If one chooses a smooth wavelet
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Figure 5. Wavelet decomposition of the image in figure 4.
The wavelet "sym8" is used.

for a rough image, one would not see some details be-
cause they are smoothed out. On the other hand, if one
chooses a rough wavelet for a smooth image, one could
create some artificial bumps. We will use the wavelet
"sym8" (Symlets of order 8) in the example of this section,
because we have a smooth image.

Since a wavelet decomposition is a linear operation,
it is easy to manipulate the decomposition for different
purposes. We will add the details at each level and obtain
a decomposition similar to a wavelet decomposition in
dimension one. That is, animage is decomposed into two
images (trend and detail) at each level rather than four
images.

Figure 4 depicts an image which is the sum of three
components with different spatial distributions. The
first component consists of two squares. The second
one is a smooth image of lower spatial frequency. The
last one is also smooth but is of higher spatial frequency.
Wavelet decomposition of this image is plotted in figure
5. Again wavelet "sym8" is used. At the finest levels
(levels 1-3) the boundary of the two squares are cap-
tured even though the square at the top-left corner is
almost invisible. Details at levels 4 and 5 are basically
the higher frequency image (the third component). De-
tails at level 6 show a square of the first component. The
other square is not enhanced because of its lower inten-
sity. Details at level 7 are part of the second component.
The trend is the sum of the lower frequency images of
all three components.

Comparing the brain's electrical fields

The importance of wavelet analysis is that at each
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Figure 6. Fitted images based on data of 31 and 61
channels respectively. The difference of the two fitted
images are also plofted.
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decomposition level one can tell the difference between
potentials recorded from the same head but evoked by
different stimuli, or between potentials recorded from
different heads (e.g., control and treatment subjects).
While graphics can show this difference visually, quan-
titative analysis provides means to measure the differ-
ence at each level, and hence to pick up the most
interesting scale level at which one can see the biggest
difference of potentials from different heads. For this
purpose, some descriptive parameters of an image need
to be defined.

A global measure is the surface energy. Recall that
for a surface f on R?, its surface energy is defined by

E(f)= J [ f(xl,xz)]zdxldxz.

In order to compare M images of the same size, we
decompose each image at N scale levels. For images of
different size, an interpolation step can be used to con-
struct images with the same size. At level j, the image i

is decomposed into two sub-images f7 (trend or ap-

proximation) and f,]d (total detail). Define the difference

measure between the M images at level j by

i S i fé
E ——— +E - . (7
2 T A T i

]. =
I<k<isM

Then the largest difference between these images lies in
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level jo , where jj is such that

Dj = max D]-.
0 1gigN

The normalization in (7) is by supernorm. That is,

fix1,%5)

a
I “ij - mex

By normalizing, we consider two images f(x,x;) and
cflx1,x7) to be the same for all ¢>0, because they have
exactly the same spatial distribution.

Note that this surface energy measure is wavelet
dependent. For different wavelets, the maximum differ-
ence may occur at different decomposition levels. This is

easy to understand because different wavelets have dif-

ferent shapes and vanishing moments. For a given im-
age, one can compute the difference measure D)-" for

different wavelets y and at different scale levels j. Then
the best wavelet y and the best scale level j, for compar-
ing the M images are given by the solution of the follow-
ing optimization problem

DYo= max DY.
Joo ty)1gjeN

We have used a global measure (surface energy) to
select a wavelet and a decomposition level for comparing
different images. Other measures can also be employed.

For example, let D; =D} + D}-’I where

T Y I N
I 1A

1<k<isM

Then {D;} can be used to select a wavelet and a

decomposition level for comparing approximation

(trend), while {D}?} can be used for comparing details.

The ERP from different subjects may be recorded
from different numbers of electrodes. To compare them,
we need to construct images of the same size by local
polynomial fitting. The number of electrodes affects the
accuracy of the fitting. A more accurate estimate of the
potential image is obtained with more electrodes. Figure
6 shows the fitted images from 31 and 61 electrodes
respectively. The bars in the bottom-right graph repre-
sent the intensities of ERP recorded from 61 electrodes,
where the 31 red bars indicate the channels used for
fitting the top-right image. The maximum difference of
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Figure 7. Plot of raw data recorded from 31 electrodes.
Denoised potentials (non-target) are also plotted. Hori-
zontal unit is in msec and vertical unit is in microvolts.

the two fitted images is 0.7237 microvolts, which occurs
at the boundary of the images. Overall the difference is
small, less than 0.4 microvolts (see the bottom-left graph
of figure 6).

Analyzing potentials evoked by different
stimuli

Data collection

We recorded the visual P3 ERP in control subjects.
Evoked potentials are recorded from 33 electrodes (31
electrodes of standard international recording system
and two additional electrodes for monitoring eye move-
ments). Subjects are presented with 280 visual stimuli
with an ISI of 1.6 seconds. There are 210 non-target
stimuli in the shape of a square, 35 target stimuli in the
shape of an X, and 35 novel stimuli each a different
colored polygon or other geometrical figure. Artifact
threshold is set at 75 microvolts, the samplirig interval
is 3.906 milliseconds, and post-stimuli sample size is
368. After rejecting trials with artifacts, the average
ERPs are obtained across trials. Then the noise is re-
moved by wavelet shrinkage described in the previous
section. The average data are plotted in figure 7.

We carry out a spatial wavelet analysis of the brain's
electrical fields at 400 msec, a time consistent with the P3.
Repeating this analysis process at consecutive time
points provides major insights into the evolution of the
brain's electrical fields.

The locations of the 31 sensors are mapped to
points in a square by the one-to-one mapping technique
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target image at 400 msec

nove! image at 400 msec non-tasget image at 400 meec (original)
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Figure 8. Mapped images in a square. ERP evoked by
non-target stimuli are also plotted. Each image is scaled
to full color scale. If allimages are plotted in a fixed color
scale, then no feature can be seen from the field evoked
by non-target stimuli because of its relatively smnall ampli-
tude.

described in the previous section. Then local polyno-
mial fitting is employed to fit a 128 by 128 image on a
regular grid. The constructed images are plotted in
figure 8.

Wavelet decomposition

Each image is decomposed at 6 levels using wav-
elet "sym8". Recall that the information extracted at
different levels are independent. Therefore by compar-
ing the information from different images at each level,
one is able to see the difference at some level of the
decomposition even though the original images look
pretty much the same (figure 8). The decomposition
result is plotted in figure 9. As in the last section, we
plot only the total details at each level. Since the images
are smooth, there are no obvious features in the details
of the first few scale levels. Therefore only the details
at the last:two scale levels and the trend at the last level
are plotted. Recall that if we put together the details at
all levels and the trend at the last level, we recover the
original image.

Comparison results

We see from figure 9 that the details at levels 5-6 are
different for different stimulus conditions. We will com-
pute the difference measure D; defined in the last section
to confirm this difference. To see the effects of different
wavelets, we compute D; for Daubechies wavelets of
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Table I. Surface energy Djusing Daubechies wavelets of different order. Last line is the difference of original images.

D; db2 db4 db6 db10 db12 db14 db16
j=1 0.1125 0.1132 0.1102 0.1220 0.1147 0.1122 0.1135 0.1188
2 0.1093 0.1421 0.1110 0.1307 0.1220 0.1196 0.1220 0.1226
3 0.1084 0.1303 0.1374 0.1414 0.1477 0.1444 0.1517 0.1792
4 0.1232 0.1928 0.1860 0.1563 0.1993 0.1860 0.1483 0.1731
5 0.1031 0.2935 0.1185 0.2578 0.2070 0.2017 0.2781 0.2003
6 0.0403 0.4667 0.0707 0.7429 0.0957 0.6134 0.1373 0.4873
Dy 0.1007 0.1007 0.1007 0.1007 0.1007 0.1007 0.1007 0.1007

target image {trend) at level 6 non-target image {trend) at level € navel image (trend) at level 6
detail at level 5 trend at level 6

detail at level 6

Figure 9. Decomposition of the target image (top row),
non-targetimage (middle row), and novelimage (boffom
row) af 400 msec. The originalimages are plottedin figure
8. Detdails af the first four levels are omitted because no
features can be seen. The images are plotted with the
following direction: top — front head; bottom — back
head; left — left head: and right — right head.

order 2, 4, - - -, 16 and for scale levels j=1, - - -, 6. Results
are grouped in table I. The difference measure of the
original images is also tabled in the last line of table I for
comparison. It is computed as

I I I I I I
Dy =El -t — 4B L - Fl T _—&]
’ [llltll Illmll] (lllfll IIInll] [llfnll Il
where I, I,;, I are the target, not-target, and novel images.

For an image f on a grid {ij}, we simply compute an
equivalent surface energy

20 40 60 80 100120

20 40 60 80 100120 20 40 60 80 100120

target image {detail) at level 6 non-target image (detail) at tevel 6 novel image (detail) at level 6

-

20 40 60 80 100120 20 40 60 80 1 20 40 60 60 100120

Figure 10. Decomposition of evoked potentials at 400
msec using Daubechies wavelet of order 8. The unifs give
the image size (128 by 128 points).

E(f) = average of { [ f(i,/) 1}.

Since the largest difference D; is obtained with wav-
elet "db8" at level j=6, we see that Daubechies wavelet of
order 8 should be used if we want to compare these three
similar (Dy=0.1) images using a Daubechies wavelet. Fig-
ure 10 plots the three decompositions at level 6 using
Daubechies wavelet of order 8.

Comparing the details of figure 10 and details of
figure 9 atlevel 6, one can see that "sym8" and "db8" bring
out different details from the recorded potentials. The
reason is that the details of figure 10 at level 6 and the
details of figure 9 at level 6 have different spatial frequen-
cies, due to the different frequencies of the wavelets
"sym8" and "db8". For comparing images, the same wav-
elet should be used for decomposing all images.



Spatial enhancement of ERP

evoked polentials (target, alcoholic)
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Figure 11. Plot of raw potentials of an alcoholic subject.
Denoised potentials (non-target) are also plotted.

Comparing brain's electrical fields of
control and alcoholic subjects

Data collection

Data from control subjects are described in the pre-
vious section. We will compare these ERP data with
evoked potentials of alcoholic subjects. The experiment for
recording evoked potentials is the same for both alcoholic
and control subjects, except that potentials are recorded
from 64 sensors (standard international system) for alco-
holic subjects. Three sensors are for monitoring eye move-
ments. Therefore we have a data set of 61 channels and 368
sample points. The raw data are plotted in figure 11.

Comparing figure 11 with figure 7, we see that the
evoked potentials of control and alcoholic subjects have
a similar shape, but the amplitudes of potentials of alco-
holic subjects are considerably smaller. Our interest is to
determine whether they are different spatially.

Again we cut a slice at 400 msec from each of the
three traces. After preprocessing the data of alcoholic
subjects (denoising, mapping to a square, and construct-
ing 128 by 128 images with local polynomial fitting), we
pair them with the slices from control subjects according
to stimulus condition (target, non-target, novel). Then
we analyze each pair as in the last section.

For each pair, we compute the surface energy of their
difference: 0.0101 for target pair, 0.0021 for non-target
pair, and 0.0230 for novel pair. This means that their
spatial distribution is about the same for each pair even
though their amplitude is quite different. From the re-
corded potential fields we cannot determine the differ-
ence in their spatial distributions.

After wavelet decomposition, the spatial difference
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trend, controf ic detail, control

Figure 12. Plot of the wavelet decomposition (level 5) of
potentials evoked by target stimuli (fop row), non-target
stimuli (middle row), and novel stimuli (botfom row). The
images are plotted with the following direction: fop —
front head; bottom — back head: left — left head; and
right —right head.

between evoked potentials of control and alcoholic sub-
jects is brought out at some scale level. Using the notation
D; of the last section with M=2, we find that Ds=0.0667 for
target pairs using wavelet "sym8"; Ds=0.0350 for non-tar-
get pairs using wavelet "sym7" (Symlets of order 7); and
Ds=0.0738 for novel pairs using wavelet "sym8". In terms
of surface energy, images are sharpened by a factor of 3 to
6 at a scale level 5. The decompositions are plotted in the
next figure. From the columns 3 and 4 of the figure 12, we
see that significant spatial differences emerge between
alcoholics and controls after wavelet decomposition.

Discussion

We have seen that multiresolution analysis is a po-
tentially useful tool for spatially enhancing evoked po-
tentials, mainly because it decomposes an image into
independent information at different scale levels. Thisis
particularly useful for extracting features from images,
and hence for comparison studies of the brain's electric
fields of different subjects.

Decomposing potential surfaces at consecutive time
points, one is able to see the evolution of potential surface
at each scale level. This is straightforward and we donot
perform it in this paper.

The present implementation of fast wavelet trans-
forms requires that images are defined in a regular grid
and image size in each dimension has length 2/ for an
integer J. For analyzing brain potentials, raw data have to
be preprocessed (one-to-one mapping, local polynomial



200

fitting) before wavelet techniques can be employed.

A drawback of the implemented fast wavelet trans-
forms is the boundary effects. Since both high-pass and
low-pass filters of a wavelet transform have length
greater than 1, boundary effects need to be considered.
This means that different filters should be used when
wavelet transform takes place near a boundary, and fur-
ther work is needed.
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