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Abstract:

. Huge data of repeated measurements in waveforms
are collected in neurodynamic research. We are
particularly interested in the problem of analyzing
event-related potentials (ERP) recorded from hu-
mans. In this short communication, we concentrate
on extracting evoked electrical signals of the human
brains from the recorded mixture of evoked electrical
signals to stimuli, background electroencephalogram
(EEG), artifacts (e.g., eye movements), and noise
(instrumental and human error). This is one of the
challenging topics in ERP analysis because it is the
basis of some important theoretical and clinical re-
search (e.g., source localization, effects of alcohol on
human brains). OQur method is based on multireso-
lution analysis.

A level dependent wavelet shrinkage is applied to
remove the noise and the high frequency background
EEG. Then a linear fitting across trials is applied to
remove the low frequency EEG and to make sure
that the extracted ERPs are slowly changing from
trial to trial.

1. Introduction

Event-related potentials (ERP) are electrical signals
of human brain, caused by external events such as
sound and light, and recorded by placing electrodes
on head. Figure 1 shows a diagram of recording vi-
sually evoked brain potentials. In this experiment,
subjects are presented with up to 350 visual stimuli
on a PC screen with a uniform inter-stimulus inter-
val of 1.6 seconds. There are 280 non-target stimuli
in the shape of an outline of a square, 35 target
stimuli in the shape of an X, and 35 novel stimuli
each a different colored polygon or other geometri-
cal figure. These stimuli are presented to subjects
in random order. Subjects are instructed to respond
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only to target stimuli by pressing a button. We of-
ten use 64 electrodes for recording (nose channel as
reference, two electrodes for monitoring eye blinks,
and 61 electrodes for recording brain potentials). A
trial simply means the 1.6 seconds signal recorded
after a stimulus is presented. In reality the recorded
signals are a mixture of evoked activity and noise
(background electroencephalogram (EEG) and hu-
man error in placing electrodes) rather than pure
evoked activity. Therefore, extracting ERPs from
the recorded mixture is a fundamental step in the
study of ERPs.

Let s;;x(t) be the recorded signal from it* chan-
nel, j** subject, k** trial, and at time t. The most
frequently used model for ERP (3, Chapter 5] is

sijk(t) = pije(t) + nie(t) (1)

where p;ji is the unobserved evoked potential and
njx is the noise process, a time series of mean zero.
This model is a first and probably crude approxima-
tion, but useful results have been obtained with its
use. In addition, many methods of extracting signals
from noisy data sets are based on this model.

Figure 2 plots some EEG segments (brain poten-
tials when resting) and repeated ERP trials with
target stimuli. One can see from Figure 2 that the
signal (ERP) to noise (EEG) ration is very low, nor-
mally from 0.1 to 1.

The conventional method of averaging the
recorded mixture over a number of identical trials
assumes that the evoked potentials are time-locked.
That is, p;;jx (t) = pi;(t) for repeated trials k = 1,-- -.
With K trials using identical stimulus, the ERP
pi;(t) is estimated by

1 K
Bii(t) = > sun(®).
k=1

There are shortcomings with this estimation. In
reality the evoked potentials are not completely
time-locked and the averaging suppresses the indi-
vidual characteristics of single trials p;;z. These in-
dividual characteristics such as the P3 (the positive
component around 300 msec after stimuli) latencies
and amplitudes might be more interesting since they
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give information on the degree of attention of the
person and reveal the habituation process [10]. Even
in the case of time-locked ERPs, one might have only
a small number of trials (usually 20 - 35 for tar-
get and novel stimuli) and the signal to noise ratio
(SNR) would not be improved significantly.
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Figure 1. Diagram of recording visually evoked
' potentials.

Some methods have been proposed to overcome
these shortcomings. A multivariate composite es-
timator (MCE) [14] is proposed for estimating p;.
MCEs are nonparametric estimators resulting from

fitting the data at hand by weighted least-square
procedures, where the weight matrix depends on the
covariance matrix of EEG and where the high cor-
relation of the signals from different electrodes are
taken into account. The non-stationary problem of
EEG is taken into account because of the involve-
ment of the covariance matrix of the prestimulus
signals. This method results in better SNR for esti-
mating p;;, but it does not estimate the single trial
ERPs Dijk-
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Figure 2. Plot of the EEG and ERP of a subject:
the 35 segments of EEG (top: each of 1 second
long) and the 35 repeated trials of ERP with target
stimuli (bottom: stimuli are presented at time 0),
recorded from a specified electrode (PZ).

A robust moving average procedure (7] is intro-
duced for improving the signal to noise ratio (SNR)
and for identifying outliers of single trials. A window
of fixed depth slides along the stake of single trials.
At each step, a cluster analysis is applied to the tri-
als falling in the window to pick up a fixed number
of trials which has the smallest dispersion among all
such subgroups. The average of the selected trials
is the estimated ERP at this step. The SNR is not
improved very much.

In [4], ERPs of single trials are modeled paramet-
rically by a finite sum of damped sinusoids. The pa-
rameters are estimated by weighted nonlinear least-
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square procedures to fit the data at hand, given the
model order (number of sinusoid terms). The weight
matrix is estimated from the covariance matrix of
the prestimulus signals. This means in a sense that
EEG signals are decorrelated and normalized such
that EEG is then removed by the least-square proce-
dure. They used a model of order nine for their data
according to the previous results [5,6]. The model
order is not chosen by a data-adapted method, and
it is not easy to get a good estimate of the covari-
ance matrix of the background EEG from the short
prestimulus signals.

In this paper we propose a nonparametric proce-
dure for estimating single trial ERPs. This proce-
“dure is based on the model (1) and multiresolution
wavelet analysis. Since the background EEG is a
correlated noise process, the size of noise contained
at different level of wavelet coefficients is different.
Hence a level-dependent shrinkage is applied to re-
move noise. At each wavelet decomposition level,
the noise level is computed from the estimated au-
tocovariance function of the background EEG. This
estimation of the noise level is more accurate than
the estimations obtained from the size of the wavelet
coefficients at the decomposition level. To enhance
the estimation of ERP by wavelet shrinkage, a local
linear fitting of the shrunk wavelet coefficients across
trials is performed to remove the low frequency EEG
and to enforce that the estimated ERPs are slowly
changing from trial to trial. Finally, the shrunk and
smoothed wavelet coefficients are transformed into
signals in the time domain.

In the rest of the paper we will use simplified no-
tation. Since the method works on repeated trials
from a given subject and electrode, the subscripts
1,7 of model (1) will be dropped out. That is, the
model can be written as

sk(t) = pr(t) + ni(t). (2)

2. Method

For some details on wavelet theory and applications,
we refer to [8] and [9]. The latter presents a software
package Wavelet Toolbox. The wavelet transforms
in this paper are performed by using the toolbox.
Some applications of the multiresolution analysis to
ERP data are reviewed in [12].

Step 1: Estimating the autocovariance func-
tion of EEG

Since the stimulus application time is independent
of any components in the ongoing background EEG
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and since the stimuli (target, nontarget, novel) are
presented in random order, it is reasonable to as-
sume that the noise is independent from trial to trial
under a given stimulus type. Therefore,

i#k

The within-trial autocovariance function of EEG is

Elng(t)n;(u)] =0, all” t,u.

o(u) = Enp(t)ne(t+u)], o(-u)=o0(u), all k.

The ERPs are slowly changing signals in the fol-
lowing sense. First, the ERPs change smoothly
in the time direction. Secondly, the trial-to-trial
change in consecutive trials is small. For such slowly
changing ERPs, the successive difference method is
effective for estimating the autocovariance function

o(u) [11]. The estimator is

T—u K-1

ot = H TG0, wsoa
with Qu(t, k) = [skt1(t + u) — si(t + u)][sk41(t) —
sk (t)] and 6(—u) = &(u).

Step 2: Wavelet transform and shrinkage

The discrete wavelet transform is an orthogonal
linear transform

cr = Wsy.

Here s = (sx(1), --,s&(T)) is the recorded signal
of the trial k, W is the transform matrix depending
on a specified wavelet and is orthogonal (WW' = I).
The rows of W are simply the coefficients of the
lower-pass filters (for extracting trend) or the high-
pass filters (for extracting details). These filters
are constructed from the specified wavelet, scaled to
have longer support (zoom-out) or shorter support
(zoom-in), and shifted to center at different loca-
tions. Specifically, W can be written as

Wo
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W= .
Wy
if the wavelet decomposition is performed at J scale
levels. The rows of Wy are the coefficients of the
lower-pass filters at the coarsest scale level and W,
is a circulant matrix where one row is a circularly
shifted version of another row. The rows of W, j >
1, are the coeflicients of the high-pass filters at the

j** scale level and W; is a circulant matrix. This is
the structure of the multiresolution wavelet analysis.



The maximum possible scale level J depends on the
length of the signal sx and the specified wavelet.
We will taken J = 6 in this paper according to our
simulations and the suggestion of [9].

With the decomposition of W, we can write ci as

%
c
ck =

PR EEEE

with & = W;sk, § = 0,1,---,J. Note that ¢} =
W;pr, + Wjn, where pr = (pk( ), -, pe(T)) is the
ERP to be estimated and ng = (nk( )y, ne(T))
is the noise of trial k. The term W;py is the wavelet
transform of the ERP of trial k, while W;ny is the
wavelet transform of the noise. It is straightforward
to compute the covariance matrix

covid] =

COV[WjTLk] = WjEWJ{

where Y is a T x T circulant matrix whose first row

is (0(0),5(1),- - -,a(T —1)). Since Wj is also a cir-
culant matrix, all the diagonal elements of covic)
are the same and the square root of their value

v; = \/;ean of the diagonal elements of covic)

gives the size of the noise contained in the coefli-
cients ¢,. The off-diagonal elements of covid] is
almost zero. This decorrelation property of wavelet
transform is a consequence of the fact that wavelets
are “almost-eigenfunctions” of many operators [2].
This decorrelation justifies the one-by-one shrinkage
of the wavelet coefficients for removing noise. Fur-
thermore, because the mapping from the measured
signals to the wavelet coefficients on any particular
Jevel is essentially a band-pass filter, there will tend
to be little or no correlation between the wavelet co-
efficients at different levels [15]. That is, ¢} and ¢}
are almost uncorrelated for ¢ # j.

To remove noise from c},, we apply a soft shrinkage
with a universal threshold 1]

Aj = vjy/2log(d;)

where d; is the length of c}c The shrunk coefficients
are given by
& (i) = sign(c} (i) wax(0, |c} ()] ~A), i = 1+, ds.
Perform this shrinkage at all J levels and keep ¢
unchanged, because it is the wavelet coefficients of
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the trend of ERPs. Set
Cp =

Note that the universal threshold of {1] is defined
by A\; = v;\/2log(T) where T is the length of the
51gnal sp. In view of the results of [15], the opti-
mal threshold should be \; = v;# where 6 is chosen
to minimize a loss function and @ € [0, /2log(T)].
Our choice § = /2Tog(d;) is in the above range and
can be thought of as “universal threshold” at each
decomposition level.

Step 3: Extracting slowly changing ERPs

Let N denote the length of ¢ (the number of

wavelet coefficients of s;). Then the shrunk wavelet
coefficients of the ERPs from K trials can be written
in a N x K matrix
éx).
The shrinkage removes high frequency EEG while
some low frequency EEG remains because the
wavelet shrinkage is not performed for the coeffi-
cients ¢ of the ERP trend. In addition, the high
frequency EEG can not be completely removed by
the wavelet shrinkage. The remaining EEG has to
be removed by utilizing cross trial properties.

The ERPs change from trial to trial, and they
changes slowly across trials in both latency and am-
plitude. This means that the wavelet coefficients of
the ERPs at a given scale level and a given time
also changes slowly from trial to trial. This suggests
the following linear modeling for extracting slowly
changing ERPs.

Let z; = (2(1),---,2(K)) be the i* row of C.
Since the ERPs change slowly from trial to trial, the
wavelet coefficients of any few consecutive trials can
be approximated by a linear fit. That is,

w(i+d) ~a+bd, |d<h

Cz(élyéZ"")

for two constants a and b, where h is a bandwidth.
For any j and a given bandwidth h, solve the min-
imization problem

m}nz QU, k, h)[zi(k) — (a + b(k — N,

where @ is a weight function assigning weight of fit-
ting at each point. We will take

Q. k, h) = max <0,1 _G-R

h2




which assigns higher weight if |k— j| is small, smaller
weight if |k — j| is larger, and zero weight if |k —
j| > h. Let (@, 13) be the minimizer of the above
minimization problem, then the wavelet coefficient
of trial j at the given frequency level and the given
time is estimated by

#(j) = a.

Repeat this linear fitting procedure for all rows of
C and let

21
=
iN
Then C is the estimated wavelet coefficients of the
ERPs from K trials. Computationally, this is ob-
tained by
C =08

where S}, is the smoothing matrix depending on the
bandwidth A.

If one performs such smoothing across trials with-
out doing wavelet shrinkage first, the poor SNR of
the recorded signals requires a large bandwidth in
order to remove noise. This usually leads to the con-
ventional averaging discussed in the introduction.

Step 4: Inverse wavelet transform

Recall that W is orthogonal. Then

P=(p1, -, px) =W'C

is the estimated ERPs from K trials and fi; = s;—p;,
J=1,---, K, is the estimated noise of trial j.

3. Experiment

We apply the proposed method to the ERP data
set plotted in Figure 2. The wavelet ‘db8’ (see [9]
for details of the wavelet) and bandwidth h = 3.5
are used based on our simulations. The results are
plotted in Figure 3.

The estimated SNR for this data set is 0.32, typi-
cal in evoked potential recording. The conventional
average of the data is still quite noisy and the back-
ground EEG is not cleared (see Figure 3). Figure 4
plots several cross correlation functions, where pres-
timulus signals are the recordings of the 200 msec
signals before the ‘X’ appears on screen.

Figure 4 shows that the prestimulus signal and
the estimated ERPs are almost uncorrelated. It also

shows that the cross correlation between the pres-
timulus signal and the data is almost identical with
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Figure 3: Top — the estimated ERPs from the
35 trials plotted in Figure 2; Middle — the es-
timated noise or EEG; Bottom — the average
of the data (rough line) and the average of the
estimated ERPs (smooth line).
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the cross correlation between the prestimulus signal
and the estimated noise. Therefore, the correlation
analysis suggests that the estimated ERPs are the
evoked brain potentials due to the application of the
stimuli.
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Figure 4: The cross correlations between pres-
timulus signal and the data (solid line), be-
tween prestimulus signal and the estimated
ERPs (dashed line), and between prestimulus

signal and the estimated noise (dotted line).
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