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ABSTRACT

The wavelet transform provides a time-scale analysis that
permits flexible pattern recognition, component
identification, and detection of transients for time-varying
neural signals such as the EEG, event-related potentials,
neuromagnetic signals, and other neural signals and
images. Many future applications to neural signals will
benefit from choosing a mother wavelet that mimics
neural waveform features. We use a recently developed
algorithm to design physiologically realistic orthonormal
Meyer wavelets, including 1) a wavelet that matches the
prominent IV-V complex of the auditory brainstem
evoked response used widely for clinical evaluation of
hearing loss, and 2) a wavelet that matches ERPs
containing prominent P300 components from control and
alcoholic subjects. We also compare the relative
naturalness of dyadic decompositions that use matched
Meyer wavelets, the Haar wavelet, and Daubechies D4
wavelet. Designer neural wavelets have broad potential to
customize and improve neurometric imaging and clinical
neurodiagnosis of sensory and cognitive dysfunction.

1 INTRODUCTION

The wavelet transform (WT) has attractive properties for
analyzing and efficiently storing neuroelectric and
neuromagnetic signals and images, including variable
measurement resolution matched to the scale of waveform
features, computational simplicity and speed, excellent
compression capability, and perfect reversibility for
precise and specialized waveform filter design [1].

The core element in a wavelet analysis is the mother
wavelet, a localized time-domain function satisfying
certain admissibility conditions [2]. In the WT of a time-
varying neural waveform s(t), the mother wavelet g(f)

is scaled by a and translated in time by b to form a
wavelet family, and the inner products of this family with
the waveform are taken as in (1).

If orthonormal, the wavelet may be used in a
multiresolution analysis (MRA), where an n- sample
waveform is decomposed into an efficient set of n
orthonormal wavelet bases at discrete time scales, @ =2/,

and translations, b = 2/ k, for j,k integers, using a simple
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pyramidal filter scheme of computational complexity that
is merely O(n ) [3].

Wi(a,b) = % |7 _swge" (%) dr (1)

Zeroing or manipulating some of the wavelet
coefficients in (1) prior to waveform reconstruction allows
precise filtering of neural waveforms for experimental and
diagnostic purposes. Discarding zero, near zero, or
application-irrelevant coefficients in MRAs of neural
signals can yield impressive lossy compression ratios [4].

Besides the appeal of the WT as a mathematical tool
for neural waveform decomposition, there is now evidence
that the brain accomplishes aspects of sensory-perceptual
construction by performing its own WT on sensorineural
signals [9]. Wavelet representations, then, may play a
basic role in the representational functions of the central
nervous system. Hence, wavelets may be physiologically
natural basis functions that are optimally suited to study
biologically important neural functions and to satisfy the
ubiquitous need of neuroscientists and clinicians to
decompose neural signals into meaningful components.

The WT has been applied successfully to neural
waveform analysis problems such as detection of epileptic
activity [5], denoising of single-trial event-related
potentials (ERP) [6], prediction of human signal detection
performance from ERPs [7], and identification of scale-
specific visual evoked response correlates of retinal
degeneration [8). Future applications will benefit by using
wavelets optimally designed to analyze neural signals. In
this paper we illustrate a method of designing Meyer
wavelets matched to neural waveform features.

1.1 Rationale for Matched Neural Wavelets

Many neural signals are of interest to the neuroscience and
neuroclinical communities, each exhibiting characteristic
time-dependent spectral and waveshape properties. These
include electroencephalographic (EEG) and magneto-
encephalographic (MEG) signals, epileptic spikes, state-
related EEG spindles, sensory evoked potentials, intra-
cranial unit recordings, and so on.

Any wavelet, regardless of its shape, can decompose
such neural signals into energy distributions that localize
waveform information in time and scale (frequency),



parceled out into overlapping waveform pieces that mimic
the mother wavelet in the time domain. However, if the
goal of neural waveform analysis is to identify specific
neural events or components, it is advantageous to choose
wavelets that match the shapes of the signals of interest.

The wavelet that most closely resembles the
waveshape of a neural signal is the best scale-independent
analyzing function for that signal in a matched filtering
sense. Wavelets that are poor shape matches to a
waveform or component will tend to produce more
distributed energy patterns, complicating the detection,
classification, and estimation of the signal of interest.

An important potential application of neural wavelets
is in statistical estimation models designed to efficiently
separate and measure specific ERP components that may
partially overlap in time or frequency. Recently, a
statistical wavelet model of this sort has been presented by
Raz and Turetsky [4]. In principle, the particular wavelet
used in such models determines the robustness of
component separation and the extent of acheivable data
compression. Wavelets that match the general spectral
properties of ERPs and the particular spectral properties of
individual components will typically be the most efficient
ones to use in such component identification models.

1.2 Matching Algorithm

Previously, wavelets used in studies of neural signals have
been based on standard mathematical functions or
recursive algorithms like Daubechies' algorithm, with no
attempt to directly match wavelets to specific neural
signals. Chapa and Raghuveer [10] recently derived an
algorithm that designs Meyer wavelets to match specified
band-limited signals as closely as possible in a least
squares sense. The algorithm can design Meyer wavelets
that closely match nearly any real neural signal of interest
to the neuroscience and neuroclinical communities.

The Chapa and Raghuveer algorithm uses samples of
S(®), the Fourier transform of signal $(), to determine

afunction G(®), the Fourier transform of wavelet g(t),
such that [G(@)[* is closc to |S(@)[ in a least squares
sense while satisfying all requirements for the energy
spectrum density of Meyer wavelets. The group delay of
G(®) is also matched to that of S(@)in a least squares

sense. A scaling function and impulse responses for filter
implementation are also obtained.

Raghuveer and Chapa [11] give the closed form of
the magnitude matching algorithm as:

A(w)=C/2+[B(w)~B2r - ©) @
—BQw)+B(4n—2w)]/2,

where C= lj””B(w)dw, A(@) =|G(o)f,
T 92x/3

and B(w)=|S(@)f’, for 27/3<w<4xn/3. For

An/3<w<8n/3,use A(@)=AQRn—-w/2).
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Phase matching minimizes the error function in (3),
subject to constraints on the group delay for band-limited
wavelets. See Chapa and Raghuveer [10] for details.

w=3"" [am@.m-T,mF o

where €2(n) is a normalized weighting function that
limits the phase match to the passband
2rn/3<|w|<8m/3, and I"¢(n) and Fg(n) are the

signal and wavelet group delays, respectively.
2 SAMPLE MATCHED NEURAL WAVELETS

We focus on clinically relevant auditory and visual evoked
potentials (EP), namely the auditory brainstem evoked
response (ABER) used widely to evaluate hearing loss and
brainstem integrity, and the visual odd-ball EP containing
a P300 component used to evaluate cognitive processing.

2.1 Matched ABER Wavelet

The ABER reflects neural activity in the auditory pathway
from cochlea to primary auditory cortex, developing
within 10 milliseconds after auditory stimulation. Figure
1 shows ABERs from routine clinical evaluations of four
adult normal-hearing patients. Each ABER is an average
based on 2000 click stimuli. The six typical positive
peaks are visible in each ABER, including the prominent
1V-V complex used routinely in clinical evaluations.

We isolated the IV-V component complex in the
rectangle, zero padded on both sides and fit an orthogonal
Meyer wavelet to it. This wavelet is superimposed on the
original ABER in Figure la. The ABER IV-V wavelet
tracks the contours of the major positive crest and the
characteristic deep negative trough following it quite well.

Figures 1b-1d show scaled versions of the same
wavelet superimposed on the other three ABERs. The
close fits indicate good shape generalization from patient
to patient. These examples also show that the IV-V
complex undergoes substantial time scaling from patient
to patient. Up to 13% variation in time scaling is
apparent. Due to its natural scaling property, the
continuous WT of these ABERs, using the ABER 1
wavelet, would contain a peak in the time-scale plane at
the right scale and time lag for each ABER IV-V complex.

Properly matched Meyer ABER wavelets will
generally provide the most reliable and distinct
identification of their target component, regardless of how
the component's scale varies over patients, conditions, or
trials. Such a wavelet might be used, for example, in
simple pattern recognition algorithms to reliably locate
similarly shaped instances of the IV-V component in noisy
recordings from the same subject, independent of inter-
recording variability in the scale of the component.

Increased precision due to shape matching will also
improve the high noise performance of more sophisticated
wavelet and wavelet-packet based component identifica-
tion algorithms [4], suggesting a clear clinical application
of matched neural wavelets for detecting and identifying
low stimulus intensity ABER components in automated
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Figure 1. ABERs of 4 patients (80 dB NHL clicks).

Scaling coefficient "a" indicates proportionate scaling
relative to ABER 1.

audiometric threshold evaluation algorithms. Customized
ABER wavelets can be incorporated into software to
improve hearing assessment in the universal newborn
auditory screening programs now being implemented in
the United States in response to the National Institutes of
Health Consensus Panel’s 1993 recommendations.
Generally, matched wavelets will benefit the study of
auditory system function and hearing loss evaluation in
infants and adults by improving the characterization of
ABER responses.

2.2 Matched P300-ERP Wavelet

Figure 2b shows a Meyer wavelet matched to the group-
averaged cognitive Pz P300-ERP. The P300-ERP wavelet
tracks the dominant low frequency P300 component well.

2.2.1 Comparative ERP Wavelet Decompositions

Figure 2c shows multiresolution representations (MRR)
associated with typical 5-level MRA wavelet decomp-
ositions of the averaged Pz P300-ERP using the matched
P300-ERP wavelet, Haar wavelet, and Daubechies D4
wavelet. MRRs are sequences of successively lower
resolutions of the ERP obtained by removing successive
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levels of high frequency detail (detail functions) by
passing the ERP through wavelet based filters at
successively larger dyadic scales. Clearly, the Haar and
the Daubechies D4 MRRs preserve the physiologically
unnatural shape properties of their wavelet basis functions
up to the highest level of resolution in their MRRs.

A general shape mismatch between the ERP and the
wavelet basis functions used to analyze it will tend to
delocalize waveform details at specific scales of activity,
dispersing energy more widely in the time-scale plane
than matched wavelets. Consequently, naturally band-
limited ERP components will be more concisely
partitioned by a matched, physiologically natural wavelet.

The dispersive effect of shape mismatch is evident in
Figure 2¢. For the matched Meyer P300-ERP wavelet, the
match between the MRR and the high resolution ERP is
essentially complete at the level 4 resolution for the P300
component. The P1-N1-P2-N2 component complex is
absent at the level 4 resolution, but appears essentially
complete at the level 3 resolution, just one dyadic scale
step more. This shows a neat separation into distinct,
localized scales of the information associated with the
P300 component and the P1-N1-P2-N2 complex,
respectively. By contrast, the Haar and Daubechies MRRs
tend to confound and misrepresent the P300 and the P1-
N1-P2-N2 complex over several different scales.

2.2.2 Localization of Clinically Relevant Group
Differences

To demonstrate that wavelet analyses can localize
functionally meaningful effects in ERP data sets, we
computed a S-level MRA on each of 306 ERPs obtained in
a visual odd-ball paradigm [12]. Subjects (25 controls and
26 alcoholics) produced ERPs at left and right hemisphere
parietal sites (P3 and P4) in response to a rare visual target
(an "X"), rare novel shapes, and a frequent standard shape
(a square). MRA coefficients for these ERPs were
analyzed in three 4-way repeated measures analyses of
variance (ANOVA), one for the level 5 low resolution
signal and one each for the levels 5 and 4 detail functions
(factorial design: Group X Hemisphere X Stimulus Type
X Coefficient Sequence). These three coefficient sets
nominally reflect ERP frequencies in the .02-4 Hz (delta),
4-8 Hz (theta), and 8-16 Hz (alpha) ranges, respectively.
The level 5 detail function contributed energy maximally
to the P300, while the level 4 detail function primarily
determined the P1-N1-P2-N2 complex.

The level 5 low resolution ANOVA produced no
significant group effects. A significant Group X
Coefficient Sequence interaction was found for each detail
function: Level 5, F(13,637)= 2.42, p<.0035; Level 4,
F(29,1421)= 2.38, p<.0001. Figure 3 shows the sources of
these interactions graphically. The bar plots show the
numerical difference between the control and alcoholic
groups in the average magnitudes (absolute values) of
their wavelet coefficients at each translation (time step).
The superimposed grand average ERP shows that the
significant group differences at level 5 (4-8 Hz theta)
occurred within the span of the P300, consistent with
earlier P300 studies [12], while the significant group
differences at Level 4 (8-16 Hz alpha) occured primarily
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Figure 3. Group coefficient magnitude difference plots
for detail functions 4 (8-16 Hz alpha) and 5 (4-8 Hz theta).
Grand average ERP superimposed for time localization.

around the latter half of the P1-N1-P2-N2 complex.
Differences in the P1-N1-P2-N2 complex have not been
identified previously by standard peak analysis. These
effects at distinct waveform scales may index distinct
neural mechanisms related to alcoholism.

3. CONCLUSION

We have illustrated the construction of matched Meyer
wavelets for auditory and visual neural waveforms, and
have demonstrated that MRAs using such wavelets
achieve a physiologically natural decomposition of ERPs
that can localize functionally meaningful clinical effects.
Designer neural wavelets hold considerable potential for
customizing neural signal and image processing for
advanced clinical and experimental applications.
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