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Multivariate Composite Estimators: New Ways to Track
Signails with Application fo Human Cerebral Potentials

Wenyu Wang, Henri Begleiter, and Bernice Porjesz

Summary: In this paper, we propose new multivariate composite estimators (MCE) to track multiple channel potential waves of individual and grand
averages of recorded potentials at the scalp from a number of trials in a group of subjects. The advantages of these estimators over simple averages
used in the literature are that they have larger signal to noise ratios (SNR), and that they have taken into account variations and correlations of the

recorded potentials at the electrode sites as well as differences among subjects. Multivariate techniques and composite concept are used for deriving
the estimators. We also provide an application to human event-related potentials in a memory for faces experiment.
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Infroduction

Tracking signals or waveforms from a number of trials
in an experiment is a fundamental problem in
topographic studies of event related potentials (ERP) and
EEG. The quality of the tracked signals or waveforms
will determine the reliability of further studies based on
them. The most widely used estimators of ERP
waveforms are simple averages

(1.1)

m
1
pij- )= 2 Pijk®
k=1

and further grand averages

1.2)

s m
1
pi.. () = P D Pijk(f)
j=1k=1

where Pijk( t) denotes recorded potential at time ¢,
electrode site i on the scalp and the kth trial from subject
jet=ty ta oty i=1,2,..m,j=1,2,...s and k=1,2,...,m. Math-
ematically the simpleaverage p;;.(t) and the simple grand
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average p;.(t) can be thought of as the least squares
estimators of {1,(t) in the following model for subject j and
for all subjects in the group, respectively. ;

P j(t) = W(t) + B () (1.3)
where
Piit) = (p1jk(t), pojidlt),-... pujr(D))° (14)
W(t) = (U1(t), po(t),..., pn(®)) (1.5
B 1) = (ex(), €fjlt),... enlt))" (1.6)

&;jk(t)'s are the background EEG waves and assumed to
be stationary processes, have a random relation to the
stimulus, and be, for any fixed ¢, independent identical
distributed (i.i.d.) random noise with mean zero and
common variance 6> > 0. Such a model is based on the
assumption that an event related brain signal tends to
occur at about the same time, and has the same shape on
each trial for every subject in the same group. Under this
assumption, the SNR can be improved by taking the
averages (see McGillem and Aunon 1987).

However, itis clear from the model that there are some
problems with using p;;.(#) and p;..(2): (1) the event related
signal may not occur at exactly the same time, may not
have exactly the same shape, and may not be present to
the same degree on every trial; (2) the background EEG
waves {ei]-k( t)}’'s may notbe stationary processes; (3) in the
multiple channel case (usually 19, 31, 61, or 128), correla-
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tions among recorded potentials at different electrode
sites may not be negligible, and variations-of recorded
potentials at different electrode sites may notbe the same,
and (4) the problem is even worse when using p;..(t) than
using py;.(t) since differences of means and varjances
among the subjects are also ignored in p;..(t).

For single channel records, considerable efforts have
been devoted to dealing with the problem (1) (see above)
in the literature. The methods proposed are either to
average after reducing the effect of outlier trials such as
averaging without outlier trials, or to use weighted
averages with outliers downweighted (Gasser et al. 1983;
Gevins et al. 1986), or to average latency corrected trials
(Woody 1967; McGillem and Aunon 1977), or to use other
estimators such as the median instead of the averages.
Some low or high-pass or specially designed filters and
band-pass amplifiers are also developed to improve
recorded data and to reject artifacts during recording.
These issues have been reviewed in Gevins (1987) and
McGillem and Aunon (1987).

There has been a lack of discussion in the literature
concerning problems (2)-(4), and (1) under multiple
channel cases. Recently these problems have received
more attention as multiple channels are currently being
widely used in studies of ERP. Even if each trial can be
treated as a repeated sample, the simple averages p;.(t)
and p;..(t) are still limited by problems (2) to (4). There-
fore, it is important to find new ways to track the signal

~or waveform in multiple channel cases to deal with
) problems (1) to (4). ‘

We propose novel ways to deal with problems (2) to
(4) in multiple channel cases under an assumption that
problem (1) does not exist. The proposed multivariate
composite estimators (MCE) for replacing the simple
averages combine information from all relevant sources
such as trials, electrode sites and subjects in the same
group, and are optimal estimators in the sense that they
minimize the mean squared errors. We will show some
application results from a memory for faces experiment.

Tracking signat by multivariate composite
estimators

In order to deal with problems (2} to (4) in multiple
channel cases, we consider estimators of 13]-( t) in the fol-
lowing new model

P g(t) = 1) + B j(t) 2.1

as the estimators of signals or waveforms, where nota-
tions Py(f) and Bji(t) are the same as in the introduction
section, and

Bi(t) = (V15(t), V2i(t),..., Vil t)*
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We assume, for each fixed j and ¢, B]-k( t),k=12,..,m, are
i.i.d. random vectors with mean E(Bj(t)) = O and
variance covariance matrix Vj( t)( V]-( t)=E( Bjk( t) Bjk( 079),
and Bj(t) are independent for different j.

There are several advantages of this new model com-
pared to the old model (1.3). In the new model, the
background EEG waves {g;(f)} need not be stationary
while in the old model {g;(t)} are restricted to stationary
processes. In the new model, variations and correlations
of recorded potentials at the electrode sites for different
subjects are represented by V(t)'s, and the differences
among the subjects are represented by both the mean
Yj(t)'sand V j(t)'s. In contrast, in the old model, the mean
H;(t) is the same for any subject in the group, and {g;u(#)}
are assumed to be iid. random noises with common
mean zero and common variance 62>0 (this means the
correlations among recorded potentials at electrode sites
on the scalp are zeros, and the variances are the same for
recorded potentials at any electrode sites and any subject
in the group). Therefore, it is expected that estimators of
U;(t)’s from the new model are closer to reality than the
simple averages Pji.(t)'s and P;.(t). Moreover, we will
show that the new estimators also improve the simple
averages in the signal to noise ratio (SNR).

We now construct estimators of 9;'s. For simplicity,
we omit the subscript t unless it is necessary. Let us
consider two extreme cases. First, if there are no
similarities among the subjects, i.e., ﬁj’s are different, itis
appropriate to take P jo= (1/m) p | Y jk as anes-
timator of 97, which is the simple average. On the other
hand, assuming there are strong similarities among the
subjects, i.e., 9j = U, an estimator of 9; for any j should be
close to

s s 2.2)
Y vihty vl e
j=1 j=1

which is the variance covariance weighted sample mean
and obtained by minimizing

S m

— T
S Y Pr-wVil@Pr-w
j=1k=1

with respect to . When a real situation is between these
two extremes one may take a composite estimator of ¥;
given by

Oy (@) = (L—ay) pij. +aje Fp* @3)

where 4;/'s are unknown constants (0 <4;;<1), and e;isa
n #1 column vector having 1 for the ith element and 0 for
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the others. Here we discuss each component of Y;
separately rather than for the whole 9; in order to getall
possible gains from the composite estimating procedure.
1-a;; represents the weight applied to individual features
(for electrode i and subject j) while a;j represents the
weight applied to a group feature (for all electrodes and
all subjects).

Assuming that 1‘}1']-’5 and Vj’s are fixed and known, we
can determine 4;; by minimizing the mean squared error
(MSE)E [{ By (ay) - 19,']-}2] with respect to a;;. The optimal
choice is given by

ef(Vi—Aei 24)

a3
ef(Vi-Ae; +m[13ij4z TAEL VI 1191)]

*
ﬂ;] =

where A=(Zj_, Vih !

Therefore, the optimal composite estimator of 9 in the
class described by (2.3) is given by

O = (1-af) py. +afefp” (2.5)

From a well-known matrix result that

S
Vi-Qvilyl=v; v+ vy )ty
=1 I#

which is a positive definite matrix, it is easy to see that
0 <aj;<1. Also,when =, aj;=1and thus 0% =p". This
means that if the features for every subject in a group are
the same, then our procedure will take the group feature
as the feature for each subject. Otherwise the value of

aj; depends on the value of
S Bl
m[5-e? (T Vi) (X vite)]?
=1 I=1

The larger the m or the distance of 9; from
elTCi=1 ViH 1 i1 V719), the smaller the
value of a}"j is. That is to say that if m is very large or the
individual feature is very different from the group fea-
ture, then our procedure will give less weight to the
group feature in favor of the individual feature. We
suggest the use of [ as an estimator of the grand average.
In terms of the SNR (McGillem and Aunon 1987), note
that

2
E lips. — 04 1-E ({05~ 0] 1=~ aj e

(Vi-(X, vihhHei>0

I=1 (2.6)
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the SNR will be larger by using 13}'}- than by using the
simple average p;;.. This kind of composite estimator has
been used in estimation of consumer expenditures for the
U.S. Consumer Price Index Numbers and has been
shown to be superior to other estimators (Lahiri and
Wang 1992).

In practice, Vj, p* and 4 in (24) and (2.5) are un-
known and need to be estimated. They and ﬁ}kj es-
timators are constructed in Appendix. To compare the
performance of 9} with the simple average Pij., we use
the relative improvement in MSE (RIMSEy) of 1?}?]- to the
simple average p;.,

2 . 2 (2.7)
Ellps —94) 1-E [{ﬁif - ﬂi'} 1

Elfpj. - 9]

RIMSEI']' =

and the improvement in SNR (ISNRj) of ¥} to the simple
average pij.,

2
Effpy -1 _ 1 28)

2 1-RIMSE; °
E (05~ ;] !

ISNR;; =

Their estimators are also given in Appendix.

Application

In this section, we apply the new model to track
human brain signals or waveforms to an event-related
potential (ERP) experiment dealing with memory for
faces. Twenty two right-handed males (mean age = 20.7)
volunteered for this experiment and were paid for their
participation. All individuals were fitted with an
electrode cap (ECI Electrocap International). For half of
the subjects we recorded from 31 electrodes, for the other
subjects we recorded from 62 electrodes. All scalp
electrodes were referred to Cz according to methods
described previously (Begleiter et al. 1993). Subjects were
grounded with a forehead electrode, and all impedances
were kept below 5 kOhms. Vertical eye movements were
monitored with electrodes placed directly above and
below the right eye, and horizontal eye movements were
monitored with electrodes placed at the outer canthi of
the eyes. Trials with excessive eye movements (> 73.2
1V) were eliminated. The electrical activity recorded at
each electrode was fed to a set of amplifiers (Sensorium
2000) with a 10,000 gain and a bandpass of 0.02-100 Hz.
The amplified activity was sampled at a rate of 256 Hz
during an epoch of 100 msec. preceding, and 1 sec. fol-
lowing each stimulus presentation.
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Figure 1. The grand average waves of potentials recorded at 31 electrode sites in the unprimed famous face (solid lines)
and the unprimed non-famous face (dashed lines) cases. The interval between two adjacent reference lines on the
time-axis (horizontal axis) is 100 ms. The interval between two adjacent reference lines on the vertical axis is 4 micro vols.

The subject was seated in a reclining chair located ina
sound- attenuated RF shielded room (IAC) and fixated a
point in the center of a computer display located 1 m
away from his eyes. A series of 240 faces were presented
with an interstimulus interval (ISI) of 1.6 seconds. The
face stimuli consisted of 120 male and female famous
faces. These famous faces were selected from high
quality photographs of well known personalities in the
entertainment world, the world of politics, and the sports
world. The other 120 faces were carefully selected males
and females from medical school yearbooks. Each face
was presented in black and white on a high resolution
computer screen as a frontal view without shoulders.
The experimental paradigm was designed to examine the
effects of repetition priming for both famous and non-
famous faces. For famous faces, 40 trials consisted of the
immediate repetition of the same face, 40 trials were
preceded by a different famous face, and 40 trials were
preceded by a non-famous face. Similarly, for the non-
famous faces, 40 trials consisted of the immediate repeti-
tion of the same face, 40 trials were preceded by different
faces, and 40 trials were preceded by famous faces. These
conditions yielded a total of 240 trials which were equally
likely to be presented with the restriction that no more

than five famous or non-famous faces would be dis-
played in arow. At thebeginning of the experiment, the
subject was only told that two types of stimuli would be
presented: famous faces and non-famous faces; he was
asked to press a button in one hand as quickly as possible
if he recognized the person, and to press the button in the
other hand if he did not recognize the individual. The
order of the buttons was randomized across subjects.
The ERPs were recorded for six cases: primed famous
faces, unprimed famous faces, primed non-famous faces,
unprimed non-famous faces, famous faces followed by
non-famous faces, and non-famous faces followed by
famous faces. Figure 1 shows the grand average waves
of potentials recorded at 31 electrode sites in the un-
primed famous faces case (solid lines) and the unprimed
non-famous faces case (dashed lines).

For brevity, we only used the raw data (consisting of
8 subjects, 24 trials and 127 samples at the rate 3.906 ms.
per sample in a 500 ms interval for each trial) recorded
for the unprimed famous face case. For each sample
point, the data at the point, the prevjous point and the
next point are used in calculation of Vjto ensure nonsin-
gularity. Denote ry(j,t) the sample correlation coefficient
of recorded potentials between electrode i and ! at time ¢
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Table I. Statistics of {(ry G0, i,1=1....31; t=1.....127} foreach
subject

Table Il. Statistics of {vi¢.1).i=1,..31; t=1...., 127} foreach
subject.

SUBJECT MIN MEAN MAX P25 P50 P75

-0.818 0370 0972 0.113 0406 0.665
-0.853 0399 0986 0.154 0446 0.683
-0.808 0278 0975 -0.018 0.305 0.609
-0.683 0376 0.984 0.119 0427 0.683
-0.783 0356 0993 0.052 0402 0.697
-0.836 0330 0984 0.021 0368 0.679
-0.862 0383 0992 0.131 0428 0.683
-0.905 0362 0990 0.069 0404 0714

1. rit (j, t) - The sample correlation coefficient of recorded
potentials between electrodei and ! at the ¢-th sample for
subject j.

2. Here and hereafter P25, P50 and P75 denote the twenty-
fifth, the fiftieth and the seventy-fifth percentiles,

W NN Uk W N R

respectively.

for subject j, and vy(j,f) the sample variance of recorded
potentials at electrode i at the ¢-th sample for subject f, ,
I=1,...,31; t=1,..,127; j=1,...,8.

Table I shows the statistics of {ry(j,t), i,1=1,..,31; t =
1...,127} for each subject j. Comparing with the critical
value of Pearson’s Correlation Coefficient r,-2, o, where
n denotes the sample size (here, n=24x3=72) and o the

Table lll. Stafistics of {Gy (1. i=1....,31; =1,..., 127} foreach
subject.

SUBJECT MIN MEAN MAX P25 P50 P75

1 0.017 0498 1000 0210 0461 079
2 0.011 0407 1.000 0.124 0303 0.679
3 0.009 0380 1.000 0.112 0269 0.636
4 0010 0349 1000 0076 0216 0.589
5 0.003 0250 1.000 0.035 0.098 0.365
6 0.009 0414 1000 0126 0317 0.699
7 0011 0369 1000 0.079 0241 0.646
8 0011 0368 1000 0074 0230 0671
Average 0.379

1. &; (t) - The estimator (defined in Appendix) of the
composite factor ajj (f) at electrode i at the -th sample for

subject .

SUBJECT MIN MEAN MAX P25 P50 P75

1.504 66.529 411.696 24.847 52545 84.138
1312 33.794 268.328 16735 29.786 43.814
0240 11.763 87.243 3.907 8713 15.641
0.332 33.448 303.846 11.982 25707 45.204
0.615 43.921 395.140 13.845 33.805 58.551
0.708 26301 129.221 8367 20.991 38.339
3.805 62491 277.631 33.825 57.684 85.157
3.622 83368 434102 36987 66.253 114.406

1. vi (j, t) - The sample variance of recorded potentials at
electrode i at the #-th sample for subject ;.

X NN U W N

significantlevel, ryg 9.01=.3017, we see that more than fifty
percent of the correlation coefficients of recorded poten-
tialsamong electrode sites are significantly different from
zero. In other words, very strong linear correlations exist
among recorded potentials at different electrode sites.
Therefore, the assumptions in the model (1.3) that cor-
relations among recorded potentials at different
electrode sites are negligible and variations of recorded
potentials at different electrode sites are the same, which
the simple averages are based on, are not suitable in
multiple channel cases. Such impropriety of the assump-
tions can also be seen in Table II. Table II shows strong
varibility of the variances of recorded potentials at dif-
ferent electrode sites. In contrast, the correlations and
variability are considered in our proposed estimators.
Table III shows the statistics of {dij( Hi=1,.31t=
1,...,127} for each subject j, where 4;(t) is the estimator
(defined in Appendix) of the composite factor aj (£).

Since af; () represents the weight or the percentage of
information borrowed from all relative sources, we can-
see from the table the contribution of all relative sources
is about 38 percents in average. The relative improve-
ment in mean squared error RIMSE;(t) of the proposed
0 (b) to the simple average p;;.(#) is shown in table IV,
where RIMSE;; () is the estimator (defined in Appendix)
of the RIMSE;(t). From this table, we see that the
proposed estimator improves the simple averages in
MSE about 38 percent in average. Table V shows how the

 signal to noise ratio is improved by using the proposed

ﬁf]}\(t) compared to using the simple average p;;.(t), where
ISNR;; (#) is the estimator (defined in Appendix) of the
improvement in the signal to noise ratio ISNRy(t) of the
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A
Table IV. Statistics of {RIMSE; (1), i = 1....31; t = 1,...,127} for
each subject.

Wenyu Wang et al.

_ A
Table V. Statistics of { ISNRj (1), i=1....,31; t=1...., 127} for
each subject.

SUBJECT MIN MEAN MAX P25 P50 P75
1 0.0171 0497 0998 0.209 0460 0.794
2 0.0110 0405 0997 0124 0302 0.676
3 0.009 0374 0993 0.110 0265 0.628
4 0.0108 0346 (0997 0075 0214 0585
5 0.0037 0249 0998 0.035 0.098 0.364
6 0.0093 0411 0997 0125 0315 0.694
7 0.0117 0.368 0999 0.079 0241 0.644
8 0.0115 0367 0999 0.074 0229 0.670

Average 0.378

1. RI?\\/ISEij (t) - The estimator (defined in Appendix) of the

relative improvement in mean squared error RIMSE;; (t) of

the proposed 9f; (£) to the simple average pj.(t) at electrode i

at the t-th sample for subject ;.

SUBJECT MIN MEAN MAX P25 P50 P75
1 1.017 16.068 82242 1265 1.854 4.865
2 1.011 8.221 360.70 1.142 1433 3.091
3 1.009 5.023 162.37 1124 1361 2.688
4 1.011 7.289 37857  1.082 1.272 2410
5 1.003 5.625 524.03 1.036 1109 1.573
6 1.009 8.375 390.15 1.143 1461 3.274
7 1.011 14070 1627.04 1.085 1.318 2.810
8 1011 13.611 239220 1.080 1.297 3.032
Average 9.786

1. I.é\NR ij (£) - The estimator (defined in Appendix) of the im-

provement in the signal to noise ratio ISNR;; () of the

proposed B § (£) to the simple average pj.(t) at electrode i at

the #-th sample for subject ;.

proposed estimator to the simple average. The improve-
ment in SNR is about 10-times on average.

Tables VI to VIII show another advantage of the
proposed estimator when the trial number is small. Ten
trials are used to create the statistics there. Comparing
with the corresponding tables III to V where 24 trials are

used, we see that the percentage of information (a;‘]' ®)

borrowed from all relative sources is increased by 5 per-
cent in average (tables VI), the relative improvement in

mean squared error RIMSE;i(t) of the proposed 97 (¢) to

Table VI. Statfistics of (& (D, i=1.....,31; f=1...., 127} foreach
subject by using 10 trials.

the simple average p;;.(t) is increased to 43 percent (tables
VII), and the improvement in SNR of the proposed
ﬁfj () to the simple average pj;.(t) is increased to 43 times
in average (Tables VIII). This represents one of the basic
motivations for using the proposed multivariate com-
posite estimator, namely, that we canimprove the quality
of the estimation of the features for each subject by bor-
rowing information from all relative sources when the
sample size is small for each subject.

A
Table VII. Statistics of { RIMSEj (), i=1....,31; t=1,..., 127}
for each subject by using 10 trials.

SUBJECT MIN MEAN MAX P25 P50 P75 SUBJECT MIN MEAN MAX P25 P50 P75
1 0 0504 1.000 0.207 0462 0.820 1 0 0.504 0999 0207 0461 0.819
2 0 0534 1.000 0259 0517 0832 2 0 0533 0999 0259 0516 0.832
3 0 0416 1.000 0.133 0323 0.687 3 0 0.415 0999 0133 0322 0.686
4 0 0.402 0999 0.147 0306 0.629 4 0 0402 0999 0147 0306 0.629
5 0 0323 0999 0.050 0179 0.563 5 0 0323 0999 0.050 0.179 0.562
6 0 0430 1.000 0141 0350 0713 6 0 0429 0999 0141 0350 0712
7 0 0395 1.000 0.111 0298 0.666 7 0 0394 0999 0.111 0298 0.665
8 0 0417 1.000 0.146 0324 0.670 8 0 0417 0999 0146 0324 0670
Average 0.428 Average 0.428
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A
Table VIIl. Statistics of { ISNRy (h, i=1...., 31; t=1...., 127} for
each subject by using 10 tridls.

SUBJECT MIN MEAN MAX P25 P50 P75
1 1.000 75.233 15959.88 1.262 1.858 5.554
2 1.000 61.001 1143771 1.350 2.070 5.964
3 1.000 25.056 6873.56 1.154 1475 3.193
4 1.000 26.756 9174.36 1.172 1441 2.700
5 1.000 20,994 6149.07 1.053 1.218 2.288
6 1.000 39.804 8492.28 1.164 1.540 3.480
7 1.000 34412 8922.55 1.125 1.425 2992
8 1.000 63.633 16180.99 1.172 1.479 3.036
Average 43.361

Appendix

We construct the estimators of Vj, w*and u}kj as follows.
Define

m

N 1

Vi=——7 2 (Pj=P ) (P P;)
k=1

s s

A AL A_q
H=Q Vih™ X Vi'P;
j:l j=1

A N
A el(Vi-Zi1 VIhHDe;
ij = A A
e Vi~Ei=1 VI De+m(py.—eF)?

Ay
It is easy to see that V;, ﬁ and ﬁij converge to Vj, u* and
af]- , respectively, as m is large enough. We propose the

following estimator of ¥} :

A A
By=1 -2y py+azellt

and suggest the use of (i as an estimator of the grand

average. For the relative improvement in MSE (RIMSE;)
and the improvement in SNR (ISNR;) of 97 to the simple

average pji., we have from (2.6)- (2.8) their corresponding
estimators

Aogl D 1y -1
Gef(Vi-(Xiz1 ViD Ve

A
RIMSE;; =
efVie;
and
ISNR;=——at
Y™ 1~ RIMSE;
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