LOCALIZATION OF MULTIPLE DIPOLE SOURCES OF HUMAN CEREBRAL
POTENTIALS BASED ON SCD AND A MODEL SELECTION CRITERION

Wenyu Wang, Henri Begleiter and Bernice Porjesz
Wenyu Wang,SUNY HSC,Box 1203,450 Clarkson Ave.,Brooklyn,NY11203

Keywords: Laplacian; Multiple Sources
Localization; Model Selecting Criterion; Con-
sistency

1. Introduction.

The localization of sources of electrical activity
generated in the human brain is a fundamental prob-
lem in topographic analysis. The localized sources
can be used either to characterize brain functions
in related experiments or to decompose and com-
press the recorded data. Almost all efforts have
been directed at localization of dipole like analo-
gous sources from potentials measured with elec-
trodes on the scalp, as in EEG or event-related po-
tential (ERP), or the external magnetic field mea-
sured in magnetoencephalography (MEG).

In the literature, the head is usually treated as
a sphere or some simplistic shape, and the brain is
assumed to be a homogeneous isotropic conductive
media in the magnetic theory based methods, or is
modelled as one, three, or more shells in the po-
tential theory based methods. With the assump-
tion that the exact number of dipoles k in an ap-
plication is known, some methods have been pro-
posed to solve dipole source localization problems
such as the spatio-temporal source model (Scherg
and Von Cramon 1985; Scherg 1990; Turetsky et al.
1990), non-linear least-square method and potential
theory based methods (e.g. Sidman et al. 1978),
non-linear least-square method and magnetic theory
based methods (e.g. Ueno and Iramina 1990, Mosher
et al. 1990), etc. Let {e;,j = 1,2,...,w} denote the
locations of measuring sites, {t,, v = 1,2,...,m} de-
note the sampling times, and ¥4 (¢) denote a vector
whose elements are possible locations and moments
of k dipoles at time t. Then the methods in the
literature use the following model

SP(ej,tu) = SPk(Ej,tu, 79k(tu)) + Ej(tu),

i=12,...,w;u=12,...,m,

(1.1)

and look for the optimal 9* which minimize

DD (SP(ej tu) ~ SPilej, tu, 9(t)))?

u=1j=1

with respect to Jx(t. ), where €;(t,) denotes the

noise, SP(e;,t,) denotes observed scalp electric po-
tential (SP) or magnetic field at the site e; and time
tu, and SPg(ej,ty, 9r(ty)) denotes theoretical elec-
tric potential or magnetic field at the site e; and
time t,, created by k dipoles (or 9% (t,)) in the brain
through the physical model of the head. All afore-
mentioned methods do not work if the possible num-
ber of dipoles in an application is unknown. In the
literature, there does not exist a sufficient way to
test the assumption of the a priori knowledge of the
exact number of dipoles. For example, the reduced
x? statistic (see e.g. Bevington 1969), used for the
determination of adequate underlying model order,
is not the x? statistic with mean one if the fitted
model is not the actual underlying model or if the
noise ¢;(t,) are not Gaussian. Even if ¢;(t,) are
Gaussian, it fails to select a model if several fitted
models are all significant under different model as-
sumptions or at the same or different significant lev-
els. If the values of the reduced x? statistic under
different models are used only, there is no unique way
to set a critical value for selecting a model among all
possible models. :

It is well known that recorded voltages at elec-
trode sites on the scalp are potential differences be-
tween the recorded sites and the reference electrode,
while the observed potentials SP and the theoret-
ical potentials SP; in (1.1) are referenced to the
mfinite point. Denote the recorded potential dif-
ference at electrode e; and time t, as SPD(e;,t,),
then SPD(ej,ty) = SP(ej,tu) — SPR(t,), where
SPR(t,) denotes the potential at the reference elec-
trode and time ¢,,. Then, the average reference
transformed potential SPN(e;,%,) used in the liter-
ature has, from (1.1),

def

SPN(ej,tu)=SPD(ej,t,) — (1/w)zw:SPD(ei,tu)

i=1

= SP(ej,ty) — (l/w)ZSP(ei,tu)

= SPi(ej,tu, Vk(tu)) — (1/w) Y SPe(es, tu, 9i(tu))

i=1

+Ej(tu)~(1/w)§:e,-(tu). (1.2)
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Denote

€ (tu) = €5 (t) — (1/w) 3 ei(ta),
SPg(ej,tu, 9x(tu)) = SP;:(e,-,tu, 9i(tu))

— (/)Y SPules h, B4(t)

and 95 (ty) = (ax(ty), Bx(tu)), where the elements of
a(ty) are locations of & dipoles and the elements of
Bx(ty) are moments of k dipoles at time ¢,. Then,
we can write SPy(ej,ty, U(ty)) = Cilej, ar(tu))”
My (9x(ty)). When the locations of dipoles are as-
sumed fixed in time, Ci(e;,ar) is not a function
of time and plays the rule of the average reference
transformed theoretical data in the literature (see
e.g. Scherg 1990). It is clear that the produced
noise E}('),j = 1,...,w are no longer independent,
and hence it in turn will make diffcult in statisti-
cal inference for a model fitting procedure. Note
that Ci(ej, ax(ty)) variates in time if the locations
of dipoles are assumed changed in time.

Since each dipole possesses six parameters
(three for position and the others for moments) that
need to be estimated and the number of measur-
ing sites w is usually small (e.g. in EEG or ERP,
the number of electrode sites is usually 16, 31, 64),
the upper bound of possible number of dipoles k is
restricted by the number of measuring sites w mul-
tiplied by the number of time samples in a least-
square principle based method. Therefore, other as-
sumptions such as that locations and orientations
of dipoles are not changed in time, magnitude of
dipoles are non-parametric or some parametric func-
tions of time, etc., are added in these methods in
order to handle multiple dipole source cases. Again,
the literature does not provide sufficient means to
test the assumptions or to select the forms of the
functions.

Moreover, even if the exact number of dipoles
may be known in an application, the estimators of lo-
cations and moments of the underlying dipoles may
be only a local optimal solution which are dependent
on selection of the initial values in a non-linear iter-

-ated algorithm. In general, there is no fully effective
way to select the initial values of the locations and
moments. Therefore, there remain problems to use
(1.1) for localization of dipole like analogous sources.

In reality, the possible number of the under-
lying dipoles, their locations and moments all are
unknown and need to be estimated. It is clear that
determining the possible number of dipoles and their
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locations of the underlying model are more impor-
tant than their moments since if the number of the
underlying dipoles and their locations are given,
then their moments can be immediately derived by
linear least-square method. The physical models
are quite difficult to improve due to the architec-
tural and functional complexity of the brain, and the
inhomogeneity of the conductive media which sur-
round it. We also adopt the aforementioned three-
shell model. However, we show that we can solve
the localization problem without having the refer-
ence dependency problem and a priori knowledge of
the exact number of the underlying dipoles.

In this paper, we use a rectangular coordinate
system with the origin at the center of the sphere,
the z-axis passing through the inion, the y-axis pass-
ing through the right ear, and the z-axis going
through the vertex. We propose the following model.

Let S = {Py, Ps,...,P,} be a grid on the hemi-
sphere, where n is dependent on the number of the
electrode sites w. We assume that

SSCD(P;,ty) = SCD(Pj, t, 9x(te)) + €5 (tu),
(1.3)

where SSCD(Pj,t,) denotes the value of empirical
SCD field at the point P; and time ¢, (the empiri-
cal SCD field is obtained by first finding a smooth-
ing spline on the sphere with the smallest bending
energy and passing through the recorded potential
differences at electrode sites on the scalp at sam-
pling time t,, and then taking the surface Lapla-
cian for the spline), SCDy(F;,ty, J(t,)) denotes
the value of theoretical SCD field at the point F;
and time ¢, created by the k dipoles (or ¥x) in the
brain (the theoretical SCD field is obtained by tak-
ing the surface Laplacian for SPg (-, ty, 9x(t4))), and
€j(:),j = 1,2,...,n, are independent white noise
with mean zero and a common finite variance o?.
Unlike the methods in the literature, we assume here
that k£ is unknown and needs to be estimated.

In our model, the empirical SCD field (repre-
sented by SSCD values at all points of S) is used
instead of finite recorded scalp potentials. It is well
known that recorded potential differences at elec-
trode sites on the scalp are spatially smeared data
due to the volume conductions of the different ana-
tomical structures (brain, skull, scalp, etc.), record
sites activity and reference site activity. In contrast,
SCD acts as a spatial filter which provides an esti-
mate of local skull current flow from the brain into
the scalp and dramatic improvement in spatial res-
olution (Nunez et al. 1991) and is also free of the

=12, .. ,nu=12...,m,



reference electrode. Therefore, the effect of smear-
ing is reduced in our model since we use SCD and
the reference dependency problem does not exist in
our model. The methods in the literature tried to
use the model (1.1) and the least-square method to
find a dipole model whoes theoretical potentials at
the finite electrode sites are close to the observed
potentials at the same sites. There are no restric-
tions on the other points on the hemisphere. In con-
trast, our model (1.3) implies that we require not
only that the theoretical potentials at the electrode
sites calculated from the fitted dipole model are close
to the observed potentials at the same sites, but also
"that the potential field on the hemisphere calculated
from the fitted dipole model is close to the empir-
ical potential field which has the smallest bending
energy and passes through the observed potentials
at the electrode sites. That is, our model requires
more restrictions. This in turn implies, from a nu-
merical point of view, that using our model will re-
duce the size of the solutions set in the backward
solution problem more than using the model (1.1).
Further, it is well known that the spline interpolated
SP (hence SCD) field is a good approximation of the
underlyipg SP (SCD) field if the number of recorded
sites is large enough. Therefore, (1.3) is reasonable
if the number of recording sites is large enough.

2. Model selection and dipole localization.

If we know the exact £ in (1.3), the least-square
estimator of ¥, may be obtained by chosing a suit-
able initial value of ¥;. But, if we know only a range
of k, say 1 < k < B, instead of the exact k, then
the least-square method will lead to an optimal B
dipoles model by the well known property of the
least-square method; that is, the more the regressors
are included in a regression equation, the smaller the
residue is. Therefore, the least-square method is not
suitable in this case. Here, we introduce the follow-
ing model selection criterion (Wang 1989) to handle
this case.

1 m n
ROFC(m, k)= sup — YD F(Pit, 9)

_ j(k, m)log(nm)
nm ’

u=1i=1
2.1)

where

f(Pi,ty,¥r) = —(SSCD(P;,ty)

— SCDy(Pj,tu, 95(ts)))?, (2.2)

Oy is the set consisting of all possible ¥ and j(k, m)
is a positive function related to the total number of
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parameters in J;. Here, we take j{k,m) = 6km if
assuming that moments and locations of k dipoles
are changed across the sampling times; j(k,m) =
6k if assuming that both the moments and loca-
tions are not changed across the sampling times;
j(k,m) = 3km + 3k if assuming that the moments
are changed across the sampling times and locations
are not; j(k, m) = 3k+ {total number of parameters
in parametric functions for the moments } if assum-
ing that the moments are the parametric functions of
the sampling times and locations are not changed,
etc. The model selecting is simply to choose a k*
dipoles model for which

RCFC(m, k") = mazi<x<pRCFC(m,k). (2.3)
The corresponding estimator of J;« can be obtained
simultaneously from the k* dipoles model.

In the expression of RCFC(m, k), the first term
(supremum of negative average of squared residu-
als) represents the gain by introducing k dipoles
into the model and it will increase as k increases by
the well known property of the least-square method,
while the second term —j(k, m)log(nm)/nm repre-
sents the penalty which will decrease if the number of
dipoles increases. The negative first term is also an
estimator of the variance 02 of ¢;(-) in (1.3). In gen-
eral, the more parameters added to a fitted model,
the better the goodness-of-fit of the fitted model,
but the greater the instability of the fitted model in
prediction. Therefore, the selected k* dipoles model
by RCFC is the best balanced model, balanced be-
tween the gain and the penalty among all possible
one to B dipoles models.

Such kind of criteria are well-known in other
fields. such as regression analysis and time series
analysis (Akaike, 1974; Schwarz, 1978; Wang, 1989).
The discussions regarding statistical properties of
such criteria are beyond the scope of this article.
It is suggested that interested readers read papers
of Haughton (1988), Wang (1989) and Wei (1992).
We only indicate that the order (with respect to the
sample size) of the second term is determined by the
results of the larger number theorem to assure that
RCFC will lead to select the true underlying dipole
model consistently as the sample size mn tends to
infinity.

The calculation of the first term in (2.2) is in-
volved in non-linear optimization techniques. To
avoid such difficulties, we introduce the following it-
erated procedure. Define, for each fixed ay,

m n

1
RCFCI(m,k,ay) = S;lal.? — Z Z f(Piyty, ox, Br)

u=1i=1



_j(k,m) log(nm). (2.4)
nm

(1) Define a global grid D in the brain (or some
regions of the brain if one has some priori knowl-
edge about the locations of the underlying dipoles)
which represent all possible locations of the under-
lying dipoles. Then for any fixed oy € D, (2.1) is
a linear regression model in which the moments are
regression coefficients and the terms associated with
«y, are regressors. Therefore, RCFCI can be calcu-
lated by using linear regression techniques such as
RSQUARE.

(2) Choose for example six models, which corre-
spond to the six largest RCFCI(m,k, ay)’s among
all possible o € D and k € [1,B], and then de-
termine a further smaller region in the brain and a
further smaller interval for k based on the six mod-
els. Use the obtained new interval for k£ and define
a further denser grid in the obtained new region for
possible locations of the underlying dipoles; then re-
peat the first step. Finally, stop this iterated proce-
dure until the differences of dipole locations obtained
from two adjacent iterated steps are less than the
given error. The final model will give the estimated
number of the underlying dipoles, their locations and
moments simultaneously. If necessary, one can use
the estimated number of dipoles in the final model,
and treat the estimated positions and moments in
the final model as initial values in a nonlinear opti-
mal iterated algorithm to obtain a further solution.

There are some advantages to use this iterated
procedure. The grid D is reflexible and can be de-
fined in any region in the brain based on each ap-
plication; Step (1) represents a global search which
does not have the problem of initial values; for any
fixed a; € D, the regressors associated with a; in
(2.1) do not change in the procedure and only need
to be calculated and saved once for all later uses;
all procedure are only involved in linear algebra and
hence the computation is simple.

3. Simulation Results.

As we mentioned in Section 1, determining the
possible number of dipoles and their locations of the
underlying model are more important than their mo-
ments since if the number of the underlying dipoles
‘and their locations are given, then their moments
can be immediately derived by linear least-square
method. Therefore, we now use simulation method
to only show how the proposed method improves the
methods in the literature in determining the possible
number of the dipoles and their locations of the un-
derlying model. A grid on the hemisphere was cho-
sen which consists of 775 points in the neighborhood
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of 31 electrode locations (25 points each). Simula-
tions were performed for a total of 35 different dipole
sources (five two-symmetric-dipole sources with seven
different orientations which cover almost all possible
kinds of orientations). All positions of dipoles here
belong to a grid which consists of 186 points (dipole
locations) in the hemisphere. For each source (two
symmetric dipoles), we used the three-shell model to
calculate potentials at 31 electrode locations, then
modified the calculated potential (CP) at each elec-
trode location by adding to it 5% of its value mul-
tiplied by U[—1,1] (an uniformly distributed ran-
dom variable ranging from -1 to 1) and treated these
values as “empirical” potentials (EP) (ie. EP =
CP+0.05*CP+U[~1,1]). Then we performed Steps
(1) in the iterated procedure of Section 2 to select six
models which correspond to the six largest RCFCI’s
among all possible one dipole to four dipole sources
(all one to four combinations of the 186 dipole loca-
tions). Note that for each source the total number of
models which have the same number of dipoles and
locations as that of the source is equal to 49 (= 7x7)
since we treat each nonzero components combina-
tion of six moments of the two dipoles as a differ-
ent model. Finally, we count the number of models
which have the same number of dipoles and locations
as that of the source in the six selected models. The
larger the counted number, the better the localiza-
tion ability (in determining the number of the un-
derlying dipoles and their locations) of the proposed
method. The counted number for each of the 35
dipole sources is shown at the corresponding row and
column in Table I. To show the advantages by using
SCD than by using SP, we also give in Table I the
corresponding results by the proposed method with
the SCD field replaced by the SP field (the values in
the parentheses); and the corresponding results by
the proposed method with the SCD field replaced by
SP at 31 electrode sites only (the values in the square
brackets). The first column in Table I shows, in the
spherical coordinate system, nominal dipole loca-
tions (7p, fp,tp) (we always take r, = 0.692, so only
(fp,tp) is shown in the column, where e.g. (%71’, :I:%w)
denotes two symmetric dipole locations (37, +%7)
and (&r,—2x) ); the first row shows, in the spheri-
cal coordinate system, corresponding nominal dipole
moments (7, fm,tm) (we always take r,, = 0.5,
so only (fm,tm) is shown in the row, where e.g.
(37,437) denotes two dipoles moments (37, +3m)
and (%W, —-;—71'), and (fp,t,) means that (fi,tn) =
(fp,tp)). Each of the 35 dipole sources is uniquely
defined by the corresponding row and column. For
each simulated underlying dipole source, our method



selects a model which has the largest RC F'CI among
all possible one dipole to four dipoles sources (all one
to four combinations of the 186 dipole locations).
To show the correctness of the proposed method in
model selection, we count the number of times that
the selected models have the same number of dipoles
and locations as that of the corresponding 35 under-
lying dipole sources. The number is 33 out of 35
by the proposed method with the SCD field and is
zero out of 35 by the proposed method with the SCD
field replaced by the SP field or with the SCD field
replaced by SP at 31 electrode sites only. From these
results and Table I, we see that the correctness and
-the localization ability of the proposed method by
using the SCD field is very good in itself and also
much better than by using the SP field or by using
SP at 31 electrode sites only. These also demon-
strate that the proposed method by using the SCD
field will reduce the size of the solutions set in the
backward solution problem more than by using the
SP field or by using SP at 31 electrode sites only,
which we claimed in Section 1.

We also did similar simulations by adding to the
calculated potential 10% of its value multiplied by
U[—1,1]. The corresponding results are showed in
Table I1, and the number of times, that the selected
models (with the largest RCFCI) have the same
number of dipoles and locations as that of the corre-
sponding 35 underlying dipole sources, is 26 out of
35 by the proposed method with the SCD field and
is zero out of 35 by the proposed method with the
SCD field replaced by the SP field or with the SCD
field replaced by SP at 31 electrode sites only. These
results and Table IT demonstrate further that our
method is not only a good method in its correctness
and localization ability, but also a stable method for
noising data. The stable property can be thought
due to both the filtering property of SCD and the
consistency property of the criterion.

Simulations are also conducted for the 35 sources
by using only the aforementioned empirical poten-
tials at 31 electrode sites and fitting a model based
on the residual only for 1 < k < 4. In all 35 cases,
the best fitted models are some four-dipole models
which are not the corresponding underlying 35 mod-
els. Therefore, fitting a model based on the residual
is poor if the exact number of dipoles is unknown
or the possible number of dipoles is in an interval.
This is not surprising as we mentioned early in Sec-
tion 2. Figure 3 shows the spherical-spline inter-
polated SP fields based on the calculated potentials
at 31 electrode locations (the top left), the empir-
ical potentials EP = CP + 0.05 « CP * U[~1,1]
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(the middle left) and the empirical potentials EP =
CP+0.1xCP*U[-1,1] (the bottom left), and their
corresponding SCD fields (the right column) created
from two simulated symmetric dipoles with nominal
position (7, fp,%p) = (0.692,0.257, :l:%ﬂ') and nomi-
nal moment (rm, fm,tm) = (0.5,0,0).

Table 1. The total number of models which have
the same number of dipoles and locations as that

of the underlying dipole source in the six selected
models by the proposed method with the noise
0.05«xCP*U[-1,1].

, . 00 (rEn G0y (n0)
(3m:2m) 0O)0] SO0 4(0)0] 0(O)0]
(m3m) Q0 400 60)f0] 1(0)0]
(Frx2m) Q0] 500 6O 4()0]
(Imgm) 3Q0] 500 600 3(0)0]
Gmxin 300 300 201 3]

L GnEm Grn ()
(gm3m) 300 400 60)0]
(3r.23m) 400 6O0] 6(L)]
(gmxfm)  5O)0] 6O (L[]
(Imkgm) SO0 6O 4O)[0]
Grin 300 200 20)[0)

(-): The corresponding results by the proposed
method with the SCD field replaced by the SP field.

[-}: The corresponding results by the proposed
method with the SCD field replaced by SP at 31
electrode sites only.

Table I1. The total number of models which have
the same number of dipoles and locations as that

of the underlying dipole source in the six selected
models by the proposed method with the noise
0.1xCPx*U[-1,1].

0.0 (rin) (Gm0) (x,0)
(3r.£3m) 0000 5O0]  5(0)[0] 0(0)[o]
(3mEim) 2000 400 40)0] 2(0)[0]
(3r.4m) 000 5] 5)01] 0(0)[o]
(r2gm) 400 6] 40)0] 4(0)0]
drxln o0 2000  6@)] o))

L, GnED Gnn ()
(3rx3n) 500 500 300
(r.3m) 400 4O 512
(3rE1m) SO0 5@ 6]
(rem) 600 4] 500
Grain 200 6@)U 00

(-): The corresponding results by the proposed
method with the SCD field replaced by the SP field.
-]: The corresponding results by the proposed
method with the SCD field replaced by SP at 31
electrode sites only.




4. Conclusions.

In this paper we have presented a novel model
and a method for localization of the underlying
dipole generators potentially involved in event-relat-
ed potentials. This method is different from the cur-
rent methods in the literature in that it does not
require a priori knowledge of the exact number of
dipoles; it uses the entire SCD field which possesses
better properties than SP; it does not have the ini-
tial values problem; and it estimates the locations,
orientations and the total number of the underlying
dipoles simultaneously. While this approach may
not provide us with a veridical reflection of the phys-
ical model of the brain due to the imperfact physical
model assumption, the simplistic shape assumption
of the head and finite number of recorded electrode
sites, it nevertheless appears to possess advantages
over currently available methods. Indeed, the dipole
localization techniques currently available work if
the exact number of the underlying dipoles is known
in an application. In reality, the number of dipoles
is unknown, and the number of electrodes imposes
some undue restrictions on the potential number of
equivalent dipoles to be identified. These serious
limitations are likely to result in a gross distortion
of the real number of brain generators responsible
for the production of event-related potentials in the
human brain. ‘

Upon improving the physical mode] of the brain
and the model of head, and increasing properly the
number of recorded electrode sites, this method will
work well and be worthy of further investigation.
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