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The purpose of this article is to present some useful mathematical models for the analysis
of multiple electrode event-related brain potential (ERP) experiments. We describe a
multivariate spectral method for eye-movement removal and we also describe a multivariate
spectral method for the analysis of multiple lead repeated measures data. The complex T2
and the complex Behrens-Fisher Problem are also discussed. All of the above methods are
applied to experimental ERP data for four electrodes, two groups and two repeated
factors. © 1988 Academic Press, Inc.

Recent research (/—4) on event-related brain potentials (ERPs) has begun to
address questions concerning scalp distributions of ERPs collected from
multiple electrodes. In most previous research on ERPs, the statistical analyses
employed have considered one electrode location at a time rather than all of
them simultaneously. Also, the analysis of multiple lead data has resulted in
issues concerning statistical techniques (5-7). Statistical methods that have
been used are principal components analysis, amplitude and latency analysis of
defined components, and spectral analysis. Univariate methods are adequate if
the intercorrelations of potentials among leads are small, whereas multivariate
methods of analysis can be superior if the intercorrelations are moderate to
large. In (8) is shown that there are many statistically significant coherences
among electrodes. Likewise, in the data that we shall discuss in the present
study, there are many significant coherences between leads so that good
statistical performance of multivariate methods would be expected. In a
previous article, Rawlings (9) has discussed the utility of spectral methods in
multiple lead problems, and in (/0) multivariate spectral methods were used in
developing a technique for performing discriminant analyses between two
clinical groups.

In the present article the analysis of multiple lead data using the complex T?
statistic and the complex general linear model will be discussed. The methods
will be illustrated with data from an ERP experiment using visual evoked
potentials, and the experimental design will be of the repeated measures type.
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The analysis of the data leads to the use of a solution of the complex
Behrens—Fisher problem. Also, in this article a spectral analysis method for the
removal of eye-movement artifacts for multiple lead data will be presented.

MATHEMATICAL METHODS

In this article we are concerned with p-dimensional time series models of the

form Y(t) = m() + a;(t) + g (1) for two groups or Z(t) = ult) + i

At — wx(u) + g(t) for one group, wheret=0,....T—-1Lj=121=1,
. . . . N;.gy(t) and g(z) are zero-mean stationary Gaussian processes and (1)
and wu(r) denote the deterministic group effect and grand mean evoked
potentials. It is assumed that A(z — u), x,(t) satisfy the boundedness conditions
discussed in Chapter 6 of Brillinger (/7). The multivariate finite Fourier
A
VT
yok/Tfork=0,. .. ,T— 1. Whenthe FFT is applied to the above time series
models, we obtain Yi(k) = (k) + &(k) + &(k) and Zk) = k) + Atk)g(k) +
8,(k). From Hannan (I2), it is known that &;(k) and &(k) have multivariate
complex normal distributions, and for large T the vectors are independent for &
# k'. Hence, the above time series models can be analyzed with the complex
multivariate general linear model (GLM) described next.

A Tﬂ.l .
transform (FFT) of V(1) is defined by Vk) = 2 V(e ™, where Ny =
=0

A. Complex Multivariate GLM

The following results are derived in Khatri (I13): Let Sbeap X n complex
matrix of n independent p-variate observations. The density function for S is a
complex normal (/4) CN(Z; uM, Z), where Sisp X p,pnisp X q unknown
complex, M is g X n given complex matrix of rank g = n, and Zis p X n. The
maximum likelihood estimates_of u and T are given by B = ZM'(MM') " and
g = n'Zll - M'(MM') 'M]Z', where M' denotes the complex conjugate

transpose of M. Define u = (Li1p2)s M = (7\2,7\2&), A=MM = <—/},” A'2>,
An Ax

where w s p X q, p2 is p X @ @ = 4 — 4. M is
g1 X n, Myis g2 X n, Anis i X qr Anis @i X g, and Axn is ¢2 X qa.

Consider the test of the hypothesis Hy: u; = 0 versus the alternative H,: u, #
0. The likelihood ratio test is performed with the statistic Ay = [/ -+
n 'BroAn2Bio, where Aja = An — ApAn An, Bro = ZM}A, , and Brg =
(ZM| — B20A 1,)A 1. The distribution for —m In A, is givenby Pr(-mInA; =0
= Pr(x; = ) + ram (Pr(xfra =) — Pr(x} = )] + O(m*), where m = 2n + q\ —
p. f = 2pqy. and r, = pgi[p* + qi — 213

Let C denoteas X p matrix of contrast row vectors, and the hypothesis v, =
Cu, = 0 is to be tested. This can be accomplished as follows: First create the
s-dimensional variables Cz;,i=1,. . . ,n from the p-dimensional observation
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vectors z;. Next, test the hypothesis v; = 0 by using the new observation
vectors in the complex GLM with p replaced by s. This procedure will be useful
when performing repeated measures tests later.

B. Complex T?

The following results are derived in Giri (/5):

Let n be a complex Gaussian random p-variate vector such that E(n) = o and
2 = E(m — a){n — a)* is the complex covariance matrix, where = denotes the
complex conjugate transpose. The maximum likelihood estimates & and 3, are

given by Né = 2 n;= Nnand N3 = 2 (ni — M)(n; — M)* = A, where N is the
i=1

i=1
number of independent, identically distributed p-variate complex Gaussian
random variables. Then under the null hypothesis Hy: o = 0

2IN-P)

T = Fapan-py,
p 2P2AN-P)

where T2 = Ny*A~'7.

C. Behrens—-Fisher Problem

Consider the problem of testing for the mean differences among groups. If
the covariance matrices for the groups are not equal, then the problem is called
the Behrens—Fisher problem. One solution for this problem is presented in
Eaton (/6) for real variables, and this solution also generalizes to the complex
variable case. Only the simple case of two groups with equal numbers of
observations will be discussed.

Let x;j; i =1, 2;j =1, ..., N denote the jth random p-dimensional
observation vector from group i, where x; derives from a p-variate complex
normal distribution. Now, create the new observation vectors y; = x;; — x,; for
matched subjects. Performing the complex T? test on the y, results in a test for
equal means even when the group covariance matrices are unequal. This
particular statistical solution of the Behrens—Fisher problem will be referred to
as the Scheffe method.

EXPERIMENTAL DESIGN

We have designed a P300 (/7) study involving an experimental (N = 25) and a
control group (N = 25) in the visual modality, with task difficulty determined
by the complexity of processing equally physically deviant stimuli. Subjects
were seated in a sound-attenuated chamber facing a computer-controlled
display (CRT), with head resting on an adjustable chin rest. Subject was told to
look at a fixation point displayed in the center of the screen. The experimental
design consisted of a visual head orientation task. The nontarget stimulus was a
frequently occurring circle presented in the center of the CRT, to which the
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subject did not respond. The target stimulus was an aerial view of the head with
the nose and only one ear drawn in, on either the left or the right side; the
subject pressed the corresponding button indicating whether a right or left ear
was present as quickly as possible (reaction time). Under the ‘‘easy’’ condi-
tion, the head was facing forward (nose up on screen), and the left or right ear
appeared directly on the side corresponding to the appropriate button. Under
the “*difficult’” condition, the head was facing back (nose down on screen), and
either the left or the right ear appeared on the opposite side of the screen to the
corresponding button. A total of 240 stimuli were randomly presented—160
nontargets and 80 target (20/target condition). The stimuli were 25 msec in
duration and subtended 2.9 degrees of arc; interstimulus intervals varied
randomly between 2 and 4 sec.

Monopolar ERPs were recorded from midline frontal (F,), central (C)),
parietal (P,), and occipital (O,) scalp leads. The linked ears served as reference
and the nasion served as ground. Eye movements were recorded by electrodes
placed above and below the right eye. ERPs were sampled (142 points/sec;
bandwidth 0.01-100 Hz) by a PDP 11/40 computer for 49 msec preceding the
stimulus (baseline) and for 700 msec following the stimulus. The prestimulus
baseline voltage level was subtracted from each ERP recording at each
electrode. Trials with excessive eye-movement contamination (50 'V or more)
were automatically discarded. The experiment continued until a total of 20
artifact-free responses were obtained for each target and nontarget.

MULTIVARIATE EYE-MOVEMENT REMOVAL

We now present a multivariate method for the removal of eye-movement
artifacts. This method is a generalization to multiple leads of the univariate
technique employed in (/8). Any additional eye-movement contamination from
a subject can be removed by using the complex GLM (the second model under
Mathematical Methods) at each frequency \;. In our case

i by

125 by
n=20,p=4q=1,q=1,u= = [mo  bol,
M3 b3

M4 by

where the first column corresponds to the four intercepts and the last column
corresponds to the four regression coefficients with the EOG lead. Also M =

[ ], where z;,; denotes the ith observed EOG value at A;. The
21,y 0 0

result of the test of A is a test of the hypothesis py = 0. uy corresponds to zero
input from the EOG lead. The estimate of wg, fig, at each frequency A, k = 0,

., T — 1, was obtained and the likelihood ratio test using A, at each
frequency was performed. The 4 X T dimensional matrix Q was constructed in
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FZ=D, C,=A. Pz=*'oz=+

AMPLITUDE IN MICROVOLTS

+
I1uv

FiG. 1. Estimated event-related potentials, unadjusted for eye movement, recorded for a single
subject from midline frontal, central, parietal, and occipital locations.

T T T T T T

T T T T
(4] 70 140 210 280 350 420 490 560 630 700
TIME AFTER STIMULUS PRESENTATION IN MSEC

the following manner: If the test of A, is significant at A, then retain fi, as the
(k + 1)th column vector of Q. Otherwise, set the (k¥ + 1)th column vector of 0
to zero. After completing the construction of Q an inverse FFT was performed
for each row of Q. The result will be the four ERP estimates adjusted for
eye movement for that subject. In Figs. 1 and 2 the unadjusted and adjusted
ERP estimates for four leads for the hard-left stimulus are presented for one
subject.

COMPLEX REPEATED MEASURES

The complex GLM (the first model under Mathematical Methods) can be
used for the analysis of multivariate repeated measures tests. A comprehensive
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FZ=D,CZ=A, Pz=*'°z=+

AMPLITUDE IN MICROVOLTS

70 140 210 280 350 420 490 560 630 780
TIME AFTER STIMULUS PRESENTATION IN MSEC

0

FiG. 2. Estimated event-related potentials, adjusted for eye movement, recorded for a single
subject from midline frontal, central, parietal, and occipital locations.

discussion of these types of tests in the real variable case is contained in Timm
19).

The four electrode problem of two groups (G) and two repeated measures
factors, easy—hard (EH) and left-right (L.R), are considered. Define yiand y; =
E(y;), where

=

— S/ S | S SN [N/ S N/ S S N RO N R | R
Vir = (Y Ry nYuynynynyuyn Y ey sy yayeyhyi)

JENRZR SN N S R N S N N NN S SN N NN S AN R
Vi = (V11V12V13V14V2|V22V23V24V31V32V33V34V41V42V43V44) .

The second lower index designates the electrode, and the first lower index
designates the cell of the factorial design in the following sequence: easy-left,
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hard-left, easy—right, hard—right. In terms of the GLM we have p = 16, g = 2,
q =1,

_ ( A 200301400 1 0003004063 | (320330034004 | 420043044 )’
- b
L2 ]y 3L (4f02 1 22 L2 3 243 1 L3233 034 L 41 Jh42 L4344

where the parameters u;; denote the grand mean and the a;; denote the group
effect in the reduced model. In our case n = 50 since there are 25 observations

in each group. M = <1 o 1), where the top row
contains

25 ones and 25 negative ones while the bottom row contains 50 ones. The test of
the hypothesis u; = 0 in the above model is a test for group differences on any
of the 16 variables. In all of the tests discussed below, the contrast matrix C is
presented which is used to test the appropriate hypothesis.

(@) LR X EH X G interaction.

I 0 00 -1 o 0 o0 -1 0 0 01000
0100 0 -1 60 0 0 -1 0 00100
€= 0010 0 0 -1 0 0 0 -1 00010
0 0 01 0 0 0 -1 0 0 0 -1 00 01

(b) LR X G interaction.

C = (Iyilyi—1i=1y).
(¢c) EH X G interaction.

C = yi=1ili—1y).
(d) Group effect.

C = (Iyil4:14:1).
In order to test the within-groups cffects one must first modify M by
interchanging the rows of M. Then the GLM test for u; = 0 will correspond to a

grand mean test for all 16 variables.
(e) EH effect.

C =y -1l —~1).
(f) LR effect.

C =il —1:~1y).
(g) EH X LR interaction.

C = yi—1gi—1:1).
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One of the assumptions of the GLM model is that the complex covariance
matrices are equal. A test for the equality of spectral matrices is described in
Rawlings et al. (10), and this test was used on the observation vectors of 16
variables. Except at frequency 0 the test was significant at the level 0.0005 or
better. Hence, rather than proceeding with above tests, the within-groups tests
for one group at a time are considered. The tests described below are
performed by using the complex 72 test on the observation vectors C yiis J =1,
2;01=1,...,25 where C is the appropriate matrix of contrast vectors.

(h) EH effect.

C = Uyi—1 1~ 1),
(i) LR effect.

C = Uyilyi~1i—1y).
(J) EH X LR effect.

C = yi—1g3—-1i1).

In order to perform the between-groups tests, the Scheffe method was used
on the observation vectors Cy;;; j = 1,2;1 =1, ..., 25, where C is the
appropriate matrix of contrast vectors.

(k) LR x EH % G effect.

C =y —1y:—14i 1),
(1) LR X G effect.
C = (;il;i~ 1 —1).
(m) EH X G effect.
C = (=11 - 1y).
(n) Group effect, G.
C = (i 11141 1).
(0) Easy group effect, G.
C = (1,:0:1;:0).
(p) Hard group effect, Gy.
C = (0:1;:0:1y).

RESULTS

The results of the above tests are presented in Table 1 for probability levels
0.05, 0.01, and 0.00S. Since there are so many tests performed, it would be
advisable to use 0.005 levels or better to avoid spurious significant results. It is
then observed that there are no significant matched groups effects, but there
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TABLE 1

SIGNIficANT (*0.05, **0.01, ***0.005) RESULTS FOR SINGLE
GROUP AND MATCHED GROUP TESTS FOR THE FOUR LEAD
(F,, C,, P,, O,) PROBLEM

HZ G1 G2 61 G2 Gy G2

ggmmmsncggécﬂ%

0.0 -
1.43 o
2.86 » o
4.29 *
5.71
7.14
8.57
10.00 waon
11.43
12.86
14.29
15.71 - -
17.14
18.57 »
20.00
21.43
22.86
24.29 L
25.71
27.14 *
28.57 - » -
30.00
31.43 =
32.86
34.29 - -
35.71
37.14 *
38.57 * »*
40.00
41.43
42.86
44,29 L b
45.71
47.14
48.57 i -
50.00 =
51.43 »
52.86 * »
54.29 -
55.71 *
57.14
58.57 -
60.00
61.43
62.86 » *
64.29
65.71 *
67.14
68.57 *
70.00
71.43

are two significant single group effects. For group 1 (experimental) the
significant EH effects are at low frequencies, 2.86 and 10.00 Hz. For group 2
(controls) the significant EH effect is at the high frequency 48.57 Hz.

Since the sample size (N = 25) is not very large for the problem of four
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electrodes one should be concerned about the power of the tests. In Table 2 the
results for the above tests are presented for the two lead problem, P;and O, . It
can be seen that there are several more significant results than for the four lead
problem. There is a significant matched group effect, EH x G effect, Gg effect,

TABLE 2

SIGNIfICANT (¥0.05, **0.01, ***0.005) RESULTS FOR SINGLE
GROUP AND MATCHED GROUP TESTS FOR THE Two LEAD
(P,, O,) PROBLEM

HZ Gl G2 Gl G2 GI G2

ggmmzﬂmc gggc“cz

1.43 o * =
2.86 —
4.29
5.71
7.14 -
8.57 -
10.00 owon
11.43 - =
12.86 »
14.29
15.71 - =
17.14 -
18.57
20.00 -
21.43
22.86
24.29 - —on
25.71
27.14 - -
28.57 E e o
30.00
31.43 -
32.86 -
34.29 s » o »
35.71
37.14 b - -
38.57 - - wox
40.00
41.43
42.86
44,29 » - - -
45.71
47.14 - - -
48.57 - L -
50.00 * - - - -
51.43 o e
52.86 -
54.29 - - -
55.71 L * -
57.14 -
58.57 - -
60.00
61.43 -
62.86 = - -
64.29 *
65.71 -
67.14 - »
68.57 - »* - -
70.00 == - "
71.43 -

*

% % x

% w % ¥
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and LR X EH X G effect. For group 2 there are no significant effects while for
group 1 there are significant EH x LR effects and EH effects. Hence, one
would expect to find several more significant results for the four lead problem if
a larger sample size were available.

The above results suggest that the two groups differ with group 2 having a
smaller number of significant effects than group [. The easy-hard factor
appears to be the major significant factor for group 1. The left-right factor does
not appear to differ between the groups.

CONCLUSIONS

In this article we have demonstrated methods for eye-movement removal
and analysis of repeated measures ERP experiments for multiple leads. For the
study of group differences when there are large spectral matrix differences (as
in our data) then the complex T2 and Scheffe’s method can be used. Using
resuits from a typical four lead experiment we have shown the utility of the
mathematical methods described. However, the results from a two electrode
model suggest that we might find even more significant effects in the four lead
model if we had a larger sample size. If the above methods are to be used for
large numbers of leads then it appears that larger sample sizes will be necessary
for the groups.
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