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Principal components analysis has been a widely used method for the analysis of event-
related, electrical brain potentials (ERPs). Recent emphasis has been placed on measuring
the topography of ERPs, as derived from the instantaneous measurements from multiple
locations, and on defining diagnostic differences in ERPs among various clinical popula-
tions. One goal of the present paper is to discuss inherent difficulties in utilizing PCA as an
analytical technique in multiple location and multiple group studies. Another goal is 10
demonstrate the utility of spectral analysis and its equivalency to PCA when the signal
imbedded in stationary noise model is used. Spectral analysis readily permits analysis of
multiple lead and multiple group studies. © 1986 Academic Press, Inc.

The method of principal components analysis (PCA) has been widely used
for the analysis of event-related, electrical brain potentials (ERPs) (/, 2). ERPs
consist of characteristic changes in voltage over time with respect to a specified
stimulus. They show great variation depending on stimulus, task, and subject
variables. When recorded from the scalp, the ERP signal is embedded in unre-
lated noise in the form of spontaneous electroencephalographic (EEG) activity.
The signal-to-noise ratio is unfavorable and must be improved by some statisti-
cal procedure, usually by averaging over an ensemble of trails. Although the
signal-to-noise ratio is improved in proportion 10 the number of sweeps aver-
aged, some unaveraged noise is in practice, invariably present in the composite
wave form. In ERP research the ERP is considered to be a deterministic signal
while the spontaneous EEG activity process is considered to be a stochastic
process. In this article we adhere to the designation of this stochastic process
as noise. The term noise is utilized to emphasize the deviation from the deter-
ministic ERP signal. In any case the information contained in the EEG noise as
well as that contained in the ERP signal is utilized in the statistical procedures
outlined here. It should be noted that, physiologically, the ERP and EEG
components may share common origins. Both are believed to arise from syn-
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chronized graded potentials which are conducted by volume to the scalp. It is
thought that the observed EEG potentials arise from the dendrites aligned
perpendicular to the surface of the cerebral cortex. The precise origins of the
ERP signals are not presently known but there is some evidence that the P300
and later components of the ERP arise from both cortical and subcortical
regions of the brain (3, 4). Some attempts at developing models to explain the
generation of EEGs and ERPs are contained in Freeman (5) and Nunez (6).

One of the objectives of PCA is the decomposition of the complex ERP
waveform into a relatively few, and hence more manageable ‘‘components.”
Consequently, experimentally induced changes in these components seem €as-
ier to interpret than in the original ERP waveform. Although PCA has been
used successfully as a descriptive technique, attempts to relate these derived
components to latencies of some of the major original waveform peaks have
relied on arbitrary methodology and often appear to result in subjective inter-
pretation. Moreover, the appropriateness of PCA has been questioned on the
basis of mathematical (7) and empirical (8-10) issues.

Recent emphasis has been placed on measuring the topography of ERPs, as
derived from the instantaneous measurements from multiple locations, and on
defining diagnostic differences in ERPs among various clinical populations.
One goal of the present paper is to discuss inherent difficulties in utilizing PCA
as an analytical technique in multiple location and multiple group studies.
Another goal is to demonstrate the utility of spectral analysis and its equiva-
lency to PCA when the signal imbedded in stationary noise model (SSN) is
used. Spectral analysis readily permits analysis of multiple lead and multiple
group studies. Moreover, rigorous methods of statistical inference are available
for the SSN model. It should be pointed out that while there has been consider-
able research using ‘“spectral methods’ (/1-14) the mathematical methods
discussed in the present article are more general. In particular, our proposed
methods are especially powerful for statistical inference in multiple lead prob-
lems and simultaneously utilize ERP phase, ERP magnitude, and EEG power
spectra, EEG cross-spectra information in the rigorous analyses of multiple
time series. The earlier research using spectral methods concentrates primarily
on the estimation of power spectra and uses these estimates along with the
usual real-valued multivariate methods for statistical inferences.

PriNCIPAL COMPONENTS ANALYSIS

The rationale for utilizing PCA on time series data (i.e., voltage varying over
time) is a mathematical result known as the Karhunen—-Loeve expansion (15).
Let x(2) = u(z) + m(¢) denote a stochastic process on the interval [0,77] and let
EX(f) = u(t) where E denotes the mathematical expectation. The term 7(t) can
be considered a noise process such that En(¢) = 0. Only the discrete time case
fort=1t,...,H will be discussed. The stochastic process is an n-dimen-
sional vector x = (x(t1), . - . x(t,)) where ' denotes the transpose. The mean
is the vector u = (u(ty), - - « » w(t,)' and the covariance matrix is £ = E(x —
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w)x = p)'. The éigenvalues and eigenvectors of = are O, @)si=1,. .. n}.

The random process n(f) = x(f) — w(t) can be expressed as the expansion >

i=1
a/®; where the principal components are given by & = n'®;. It should be ob-
served that the {®;, i =1, . . . n} are deterministic while the a; are random

variables witth(a;) = 0. The process 7 can be approximated by using the ex-

pansion n = 2 a;®; and the following mean square error can be obtained E(n

i=1
n

-wh - = E<f§1 a,-(I),-) ,E(izl a,-(D,-) B E(i;:;rl a‘?) B E<i=§::+l cb;n-n’cb,-)
k (u'P)P; +
i

= S o3d; = » NfromEd;=\d; Sincep = > (wd)d; =
i~Kk+1 i=k41 i1 i
2 (u'®@)P; it is seen that by utilizing only the first k principal components
i=k+1
i can be approximated with an error of z (' P)P; (i.e., one obtains the
i=k+1
projection of the vector w onto the subspace spanned by the first k eigen-
vectors). From the properties of eigenvectors, the expression £ = ®Ad’ can
be derived where ® is the matrix composed of the columns ®; and A is the
diagonal matrix of eigenvalues A;. The above expression also can be written as
T = (GAP(DAM) = E(npm'). Define the random vector F' = (fi, . - -, 1)
with the properties E(FF') = I and E(F) = 0. Then the above matrix decom-
position can be written as S = E(@AV2F)@AF) = E(qn’). From the previous

Karhunen-Loeve expansion, m = z a;®; = da where a = (@, ..., an.

i=1
The vector F = A~"2q = A~2®'x so that the new variables are scaled princi-
pal components. These F values are called factor scores. 1 can be expressed as
®A2F and the matrix ®A'? is referred 1o as the factor loading matrix. For a
given orthogonal matrix B, n = (®PAV2B)(B'F) so that B'A"2d’'m = B'F.
Hence, a rotated factor loading matrix results in factor scores for rotated fac-
tors. The mean square error and the signal error described above remain the

same under orthogonal rotations. :
If we wish to study & groups in terms of common principal components, then

we require that 2, = . . . = S, = 2, so that a set of n common principal

components can be obtained. The signals gy, . . ., sk a0 be decomposed into

the following forms u; = > (u@pd;for i=1, ..., k. If it were known,
j=t

somehow, that the k signals made no significant contributions to the subspace
spanned by the last / eigenvectors then we could restrict our analyses to the
first n — | eigenvectors. However, since we have assumed no relationship
among the signals and the noise there is no justification for assuming that the u;
will lie in the subspace spanned by the first n — | eigenvectors. It is customary
in ERP research to restrict analysis to those eigenvectors with corresponding
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eigenvalues larger than some chosen value. While this procedure will result in
an acceptable mean square error for the noise, it will not necessarily result in an

acceptable error for the signal.”
The decomposition of u = > (u'®)®: by the Karhunen—Loeve expansion
i=1

provides an orthogonal decomposition of a signal in relation to a specific sto-
chastic noise process m. For another stochastic noise process 1y, an orthogonal
decomposition of u in terms of a different set of orthogonal functions will
generally be obtained. Thus, it is not generally possible to compare the ERPs
from several leads on the basis of common components. Also, comparing the
ERPs from the same lead under different experimental conditions is difficult
because it must be assumed that 7 and 1, are not different if we wish to
compare common components. When comparing g leads, if one assumes that
S =...=2,=2then it is possible to obtain a single set of eigenvalues and
eigenvectors for all the leads. However, this requires the assumption that the
noise processes for each lead are the same. Consequently, PCA does not pro-
vide a methodology which can practically handle multiple electrodes with dif-
ferent noise processes, thereby enabling a component to be described in terms

of scalp distributions.
STATISTICAL PROPERTIES OF PCA

The above discussion has been concerned with the probability model of the
stochastic process 7. Since, in general, population parameters are not known,
statistical estimates must be determined. For the single population problem the
parameters u,(Ai, ®),i=1,...,n must be estimated from a sample ¢f N
observation vectors xi, . . ., XN If the observation vectors x; are obtained
from a multivariate nox;vmal distribution thenN the usual maximum likelihood

estimates are 4 = UN Y x and (VN = D) 2 (6 = ) = &) = 3. The es-
i=1

i=1
timates {(X,-, &), i=1,...n}are obtained from S If rotated factors are ob-
tained for analysis then it should be noted that the rotation matrix B is random
because it is sample dependent. From the factor analysis literature there are
various *‘rules-of-thumb’’ in terms of the ratio N/n for specifying a sample size
large enough to provide stable estimates for factor loading matrices. Because of
the large number of time points and the small number of subjects in the typical
ERP study, the ratio N/n will usually not be large enough to obtain stable
estimates of the factor loading matrix. This implies that the interpretation of the
components is not very reliable. In particular, there can be considerable varia-
tion in the amplitudes and latencies of waveform peaks from sample to sample
or study to study. Because of the limited sample size a subset of the eigenvec-
tors is all that is estimable resulting in, at best, a subspace S spanned by this
subset of eigenvectors. Consequently, only the projection of the signal onto §
can be studied. As discussed above, since we have not assumed a relationship
between u and m, there is no particular reason to assume that p will lie in S.
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From above it is seen that x = > (WD + > ad; = Sa; + u' O =
i=1

i=1 i=1

n
2 y; where the y; are independent with E(y) = u'®i = v Using the N
=1
observation vectors we can test the hypothesis {v;=0;i=1,.. ., n} by
performing independent ¢ tests. However, as discussed above, we can only
~ examine a subset of the v;.

In the k-group problem we can estimate the parameters for each group ina
manner similar as the above. In order to be able to compare identical principal
components in the k groups it is often assumed in ERP studies that =L ..
=3, = 2 so that the common principal components can be obtained from . If
. the observation vectors {x;z i =1,. . ., kij=1,...,N}are obtained from
k multivariate normal gistributions then the usual maximum likelihood esti-

mates are f; = (I/N,-)Ex,-j,i= ..., kand = (/(Ny +. . .+ N—
k N; =t
k)) 2 2 (xij — A)xij — 4i)'. The estimates {X,, d; =1, ... n}are ob-
i=] j=1
tained from 2. From above, for observation x in group i, it is seen that x = >
j=1
n
([L{cbj)q)_, + 2] a,d)j .
j
with E(y;) = p@ = vy. Using the N =N, + . ..+ Niobservation vectors
we can test the hypotheses {v;; = . . . = Uk} j=1,...,nby performing
analyses of variance. Usually, because of the limited sample sizes involved
only a limited number of principal components can be examined. A question
that frequently arises is whether or not one should use unrotated factors or
rotated factors when comparing groups. If the group differences are examined
with a multivariate analysis of variance then the results will be the same. This
result follows from the fact that the MANOVA tests are invariant with respect
to orthogonal transformations (16).

Rather than merely assuming that = .. .= =it would be better to
test this hypothesis as in Anderson (16). Also, it would beinstructive to exam-
ine the principal components in the k groups as in (/7) and to test for common
principal components (18, 19). Because of the small sample sizes it would
usually not be possible to perform these between-groups comparisons in ERP
studies.

Another aspect of PCA signal decomposition should be discussed at this
point. If it is assumed that a particular signal consists of the sum of several
component waveforms from physiological generators then the PCA analysis
will not necessarily provide estimates of the component waveforms. The eigen-
vectors are usually assumed to represent the component waveforms. These
eigenvectors are derived from the noise covariance matrix, and we have not
assumed any relationship between the signal and noise. In Van Rotterdam (7) it

1l

> (a; + pi@)®; = > yif@; where y; are independent
i= i=
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is shown mathematically that there is no justification for assuming that the
orthogonal principal components correspond to independent physiological gen-
erators. In (7) the derived principal components, from nonorthogonal compo-
nents, are essentially mathematical artifacts. In Woods and McCarthy (8) an
empirical investigation is conducted using PCA and nonorthogonal compo-
nents. Even though the derived components do not appear graphically to differ
greatly from the true component waveforms, the resultant analyses of variance
were considerably different from the true results. Since, the same 2 can be
obtained from many diverse models we should not expect PCA to provide a
unique solution. One of the reasons for utilizing PCA methodology in ERP
studies is to obtain orthogonal variables rather that correlated variables so that
more reliable statistical inference can be obtained from the multivariate vectors
of large dimension. However, because of the small sample sizes typically en-
countered, it is not possible to use all of the eigenvectors. In order to resolve
the problem of reliably estimating the large number of parameters another
approach is to restrict the class of noise processes to those with specially
structured covariance matrices containing fewer parameters. A commonly
used covariance matrix model is the Toeplitz matrix form which arises when
considering stationary time series. In the next section, it will be described how
the use of a stationary noise model will allow orthogonal components which are
deterministic (i.e., not sample dependent), and will allow rigorous methods of
statistical inference for multiple lead and multiple population problems. It will
also be shown how the principal components analysis of Toeplitz matrices is
related to the spectral analysis of stationary time series.

SPECTRAL ANALYSIS

Consider the p-dimensional multivariate time series x;(f) = p;(t) + nd)
wheret=0,1,. ... T—Lj=5L....a¢l=1... , N; such that g is
the number of groups and N denotes the number of independent time series in
the jth group. m;(f) are zero-mean stationary Gaussian processes with the
cross-correlation matrix R;(t — u) = [y7"(t — w)y m, n = I,...,pland m(?)
denotes the event-related potential for group j. The spectraldensity matrix F;(\)
for group j is defined by the representation R;(t — u) = | __ eN-@F(N)dN. The

T-1

multivariate finite Fourier transform (FFT) of x(f) is defined by &(k) = 2
=0

x()e~ ™ where A, = 2mkiTfork = 0,. .., T— 1. When the FFTis applied to
the above time series model, X;(k) = ik + 4 (k) is obtained. From Hannan
(20), it is known that 7 (k) has a multivariate complex normal distribution,
N(0,27TF;(\)) and for large T the vectors 1 (k) and 1 (k') are independent for
#* 7/;_ 'I. By performing the inverse FFT, the following representation of ) =1/

T D, fi(k)e™ can be obtained in terms of the complex trigonometric terms e,
k=0
The sampling interval is determined by the choice of the highest frequencies
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to be included in the analyses (Nyquist frequency). If there is little power at
frequencies beyond the Nyquist frequency then the effects of aliasing can be
avoided. Otherwise, the power at the higher frequencies should be removed by
preceding A-D conversion by analog filtering. Empirically, we have found that
a sampling interval of 7 msec is satisfactory with a corresponding Nyquist
frequency of 71 Hz. The length of the sample, T, in PCA analysis is usually
determined by the ‘‘components’’ of interest (e.g., P300). Much of current
interest in ERP research is with the P300 and later components (21). Reasona-
bly large values of T are necessary since the P300 component can have peak
latencies of 450 msec or more, and is followed by later components. Empiri-
cally, sample lengths of T = 100 (700 msec) have been found to be satisfactory
with the lowest nonzero frequency available being 1/T cycles/unit time (1.42
Hz). Otherwise, one may be required to ‘“‘taper’’ the data to reduce the bias
produced by using a finite 7. In Shumway (22) it is shown that the spectral
density matrices can be approximated with a bias of only 0(T~"). While this
sample length is large enough for good statistical estimates it is not so large that
a change in stationarity is a major problem (the issue of stationarity will be
discussed later). The choice of the number of replications, N, is determined, as
usual, by the types of statistical analyses to be performed (e.g., discriminant
analysis or multivariate analysis of variance at a specific frequency). In this
case, however, we must consider complex multivariate normal distributions
rather than real multivariate normal distributions. If only small numbers of
replications are available then it is possible that statistical estimates and tests
can be improved by frequency averaging as described in Shumway (22).

The relationship of the above representation for p(¢) to the principal compo-
nents analysis of the Toeplitz matrix for the noise process n(?) will be discussed
for the univariate case. In Brillinger (23) it is shown that the eigenvectors for

the Toeplitz matrix are approximately

1 | [ ' 1

— MO, —= ™!, L ,——e"‘k‘T‘”} = ——yy fork=0,...,T—1L
e 7 VT Vit

The principal components are givenby a; = (1/\/7")41,1.*17 wheren = (n(0),. . .,
n(z — 1))’ and VTag, . - -»0r-1) = /T4 is the FFT for n. An approxim)a_—1

tion to n in terms of principal components of the Toeplitz matrix is (1IIVT) X
k=0

ay = (1/\/7')1[;(1. It should be observed that the eigenvectors for this special
covariance structure are not sample dependent. It is noted in (23) that the

-
Cramer representation, x(f) = fo eMdz(\), is the limit, as T increases, of

the principal component representation of n(7). It is also shown that eigenvalues
of the Toeplitz matrix are approximately 27f QnkiT) for k=0, ...,
T ~ 1, where f(A)is tlrm_el spectral density matrix of n(1). The mean u, has the re-

presentation (I/\/f ) Z bay; in terms of the complex trigonometric functions,
i=0
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where VT(by, . . ., br-1) is the FFT for . Using the result by = by, it can
be shown that u has a representation in terms of real trigonometric functions.
Let T be odd and let b; = ¢; + id; where ¢; and d; are the real and imaginary

components of b;. Consider the expression

I 7= _ -—1—— —.1.— (T—1¥2 .

\/7.12% bﬂ!‘_f ﬁbollfo + \/7. 2:1 (bj‘pj + b/ lp_] )

It can be shown that bjeM? + bfe ™' = 2(c;cO8 At — djsin A;t). The Polar repre-
sentation of a complex number results in ¢; = ¥;c08 0;, d; = Asin 6; where ;
= V¢! + dj and djc; = tan ©; so that ©; = tan™! (dj/c). We obtain bt +
b} e\t = 2(y;cos B;cos At — ysin @sin Af). Let @; = —6; so that 2(yicos
dcos At + sin Psin Ap) = 2ycos (At + @) is obtained. Hence, u can be rep-
resented as a sum of cosine functions with different amplitudes, phases, and
frequencies, or we can say that u can be represented by a sum of harmonic
oscillators. A similar result holds in the case that T is even.

It should be nc")tued that in the stationary noise case it is not necessary to
compute the eigenvalues and eigenvectors by the usual Principal components
methods since these estimates can be obtained by utilizing the simpler FFT
methods. In any case, the usual PCA methods will not be correct uniess the
Toeplitz matrix form of the covariance matrix is taken into consideration. An
estimate of the covariance matrix can be obtained by utilizing the FFT of the
spectral density function of the noise (23).

An important question is whether the signal imbedded in stationary noise
model, SSN, can provide useful results in ERP studies. In Rawlings (24) dis-
criminant analyses were performed on both the SSN model, and the signal
imbedded in nonstationary noise model, SNN. These analyses were performed
specifically to determine if there was any evidence of deterioration of perfor-
mance due to nonstationarity. While there was indication that the SNN model
performed better in some cases, it was also evident that the SSN model per-
formed well relative to the SNN model. More importantly, for the muitiple lead
(four scalp electrodes) problem, for which the SNN model cannot practically be
used, the spectral discriminant analysis obtained the best overall nonerror rate
(81%) using the leaving-one-out estimate. The model %;(k) = fk) + A,;(K) dis-
cussed at the beginning of this section, is the complex analog of the general
linear model, and Goodman (25) and Khatri (26) have derived the usual likeli-
hood ratio tests. Shumway (22) discussed the use of the likelihood ratio tests,
L(\) and L'(A) for testing the equality of group means at each frequency, as
well as testing the equality of group spectral matrices at each frequency, re-
spectively. Rawlings e? al. (24) used the likelihood ratio test, L"(Ay), for testing
the homogeneity of complex multivariate normal populations, while Giri (27)
derived the complex analog of the multivariate T2 test. The tests L(\), L'(\)
and L"(\,) allow one to perform multivariate analysis of variance, and linear or
quadratic discriminant analysis. The Giri (27) results provide for mean compar-
isons among correlated variates at each frequency (i.e., provides for a test of
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equal power of a signal at several leads at each frequency). There is consider-
able evidence in ERP research that stationarity of EEG activity varies over
time as a function of cerebral state. The result of this is that the spectral density
matrices will be different under different cerebral states. These spectral matrix
differences can be tested using L’(\) and the spectral quadratic discriminant
functions as constructed in (24) take efficient advantage of these EEG cerebral
state differences. The SSN model has been utilized successfully by Woesten-
berg et al. (28) in developing a statistical Wiener filter for a single lead in ERP
experiments. This type of filter can be easily generalized to multiple leads by
using the results of Giri (27) so that a filter for the entire ERP scalp distribution
can be developed. Also, Woestenberg et al. (29) utilized spectral regression

. methods and the SSN model to adjust for eye movement evoked potentials in

EEGs.

CONCLUSIONS

While the Karhunen—Loeve method provides an orthonormal expansion for
a general stochastic process in the case where the parameters of the process are
known, it is not generally possible to obtain a complete orthonormal expansion
when utilizing the small sample sizes usually encountered in ERP studies be-
cause of the large number of parameters involved. Hence, one cannot represent
arbitrary ERP waveforms in terms of the derived orthonormal basis. In the case
of multiple leads, each lead has its own principal components expansion and
each expansion will generally be in terms of different orthonormal bases. Con-
sequently, unless one assumes that the covariance matrices are the same for
each lead, it is not possible to compare identical components across leads.
Similar problems are encountered when studying multiple populations with
quadratic discriminant analysis.

If instead of considering a general noise process, a stationary noise process is
used the difficulties described above can be overcome. Principal components
analysis and spectral analysis have been shown to be equivalent in this case.
We have also discussed some of the methods of statistical inference which are
available for this model. We have available the multivariate general linear
model for complex variables, so that it is possible to analyze rigorously any
ERP experiments designed according to the multivariate general linear model
format. We have also discussed literature in which the SSN model has per-
formed well and we are certain that this model can be usefully applied in many
more complex studies. BY utilizing the SSN model we can test scientifically
useful multivariate hypotheses not meaningful in the case of a general noise
problem. Perhaps when more is understood about the physiological mechanism
generating the ERP and noise we can restrict the noise process to a class of
ponstationary processes with few parameters (€.g., nonstationary autoregres-
sive), and we can restrict the ERP to a functional form with few parameters

(e.g.. exponentially damped sine waves).
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