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Multivariate time series discrimination for evoked potentials from two cognitively differ-

ent populations is discussed. A method for constructing linear and quadratic discriminant

- functions in the spectral domain using a stepwise frequency selection procedure is described

and applied. Further, the effects of rank transformations on the estimated nonerror rates are

examined. Finally, the validity of the signal plus stationary noise model (SSN) is examined.

The performance of the SSN model is compared with the performance of a model (SNN)

which consists of a signal plus nonstationary noise and a model (Mix) which consists of
mixtures of subpopulations.

In this paper we will discuss multivariate time series discrimination for
evoked potentials (/) from two different populations. The approach that we will
use is that of spectral analysis as described in Shumway (2—4) when transient
signals are imposed upon stationary noise series. An important aspect of the
time series discrimination problem is the selection of variables to be used for
classification of future observations. We will present methods for variable se-
lection for the linear and quadratic discriminant functions which are based
upon certain likelihood ratio tests. Another aspect of the time series discrimina-
tion that must be considered is the dependence of results on the assumption of
multivariate normality. We will examine the use of rank-transformed data as a
method of obtaining time series that are more nearly Gaussian. The use of rank
transformations in discriminant analysis has been discussed by Conover and
Iman (5).

Finally, we will compare the transient signal imposed upon a stationary noise
model (SSN) described above with two other models. Gersch and Brotherton
(6) concluded that noise is not stationary or uniform over subjects and that the
average evoked potential is not as important in discrimination as the noise. We
will examine a signal embedded in a nonstationary noise model (SNN) by the
classical method of discrimination on the vector of observations collected over
time (7). The third model (Mix) is based on the assumption that each population
is a mixture of an unknown number of subpopulations. The approach that we
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MULTIVARIATE TIME SERIES DISCRIMINATION 353
will use to evaluate this model is nonparametric discrimination on the vector of
observations collected over time. The nonparametric discrimination method
used will be the kernel density method as described by Habbema ez al. (8).

MATHEMATICAL BACKGROUND
Consider the p-dimensional multivariate time series model
xi(8) = u(e) + my(2)

where:=0,. .., T—-1;j=1,...,q!l=1,. .., N;such that q is the
number of groups and N; denotes the number of independent time series in the
Jth group. m(r) are zero-mean stationary Gaussian processes with the cross-
correlation matrix Ri(t — u) = [y (¢t —u);m,n=1,. . . , p]land uy(z) denotes
the evoked potential for group j. The spectral density matrix, F;(A), for group j

K

is def ~4 by the representation R;(f — ») = (1/27) f_ﬂ eM=0F(N\)d\. The
multival;i_a}te finite Fourier transform (FFT) of x(¢#) is defined by %(k) =

(I/VT) D x()e~™ where \, = 2wk/Tfork =0, . ... , T — 1. When the FFT is
=0

applied to the above time series model, we obtain X;(k) = @;(k) + (k). From
Hannan (9), it is known that fi;(k) has a multivariate complex normal distribu-
tion, N(0, Fi\)), and for large T the vectors fi;(k) and fi;(k") are independent for
k # k’. Hence, the above model is the complex analog of the general linear
model problem, and Goodman (/0) and Khatri (//) derive the usual likelihood
ratio tests. Shumway (2) discussed the use of the likelihood ratio tests. L(A;)
and L'(\y), for testing the equality of group means at each frequency as well as
testing the equality of group spectral matrices at each frequency, respectively.
In Chang (12), the likelihood ratio test, L"(A), is derived for testing the hypoth-
esis of homogeneity of complex multivariate normal populations.

q
e [TICH
Jj=t

L'\ =

C+ 2 Nf%. (k) = %..0N&;. (k) = % ()"

q

pnj
H m
Jj=1

where

N:
C = Z (Xl — %X;. (k)(x (k) - X;. (k)™ and C= Z C,.

J=1

By using the expression for the Ath moment of L"(\;) given in (/2) and by using
Box’s asymptotic expansion, as in Anderson (7), we obtained the distribution
for the test statistic. The distribution function is given by

P(=2pInL" = 2) = Gl2) + waGrea(2) — GL2)) + O(n™?)
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where

_1_> 2p2+3p —1 1<p—q+2>-

6g—Dp+3) n\ p+3

1 1
w2 = 11§2p2 [6 (27 - p) P+ Dp-Dp+2)

,=1nj
s 1 _1p@r+3p-12 (1 1
'(j_Zlnj n) @- D + 93 lz(gnj"ﬁ>
Qp2+3p —1)(p—q+2) 36(g—1(p—qg+2)
n(p +3) n¥p + 3)
12(q - 1
_an_)(—2q2+7qﬂ-3pq—2p2—6p—4)]

f=pHg* -1+ pRq-2)

and G{(z) is the cumulative distribution function for a chi-square distribution
with f degrees of freedom. ’
Now define -

1 4q
Frid) = E; niFir(Ae)
=
as the pooled estimator of the spectral density matrix where
14
Fir(\) = ;2 (k) — %;. ()Ku(k) — %;. (k)*
1=

is the estimate of the spectral density matrix for the jth population. When we
construct the quadratic discriminant function, the estimate of the density func-
tion for the /th time series in group j at frequency k is given by

Fi&i(k) = 7P| Fp(A)| e~ %tk =% gyriy (ot =5: k),
SN JT\ Nk J

When we construct the linear discriminant function, we obtain the same ex-
pression with Fr(A,) replaced by Fr(\;). The density estimate for frequencies
ki, . . ., kn is given by fi(Ry(k)) . . . f;(Xu(kn)) since different k’s have
independent statistics. The posterior probability for assigning time series x to
group i is given by
P(lx) = qﬂ,f,(X)

2 mfix)

j=1
where r;, denotes the a priori probability for membership in group i, and fi(x)
denotes the estimate of the density function in group i for a specified set of
frequencies. We shall obtain resubstitution and leaving-one-out estimates of the
nonerror rates. In order to select frequencies for the linear discriminant func-
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tion, compute L(\;) for each A;. Since the statistics are uncorrelated at the
different frequencies, we need only select the m frequencies corresponding to
the m smallest values of L()\;). Likewise, in order to select frequencies for the
quadratic discriminant function, compute L"(\;) for each A, and select the m
frequencies corresponding to the m smallest values of L”. Only a small value of m
should be chosen; otherwise, the frequency selection process can lead to biased
estimates of the nonerror rates. The selection of an appropriate value for N; is
dependent upon the value of p. From empirical runs in the present study, it
appears that we can obtain reliable estimates of the nonerror rates for N; = 7p
for the quadratic discriminant function. The linear discriminant function would
be expected to require fewer observations.

Consider the T-dimensional multivariate normal vector of random variable,
Yy, wherej=1,. .. ,qgandl=1,. .., N;are defined as above. The SNN
model does not assume that the covariance matrices, Z;, possess the special
form required for a stationary process. The linear form of the SNN model
assumes that 3, = - - - = 2, while the quadratic form of the SNN model does not
make this assumption. The Mix model assumes that an observation, Yy, from
group, j, has arisen from a population consisting of a mixture of distributions.
The BMDP7M linear discriminant analysis program (/3) is used for variable
selection for the linear SNN model. For the quadratic SNN model, the variable
selection method, as described in Rawlings et al. (14), is used. The variable
selection procedure used for the Mix model is the procedure described in (8)
for the kernel discriminant method.

EXPERIMENTAL DESIGN

Investigators studying human brain potentials called event-related potentials
(ERPs) have reported that the amplitude and/or latency of the P300 component
is related to the ‘‘significance’ or ‘“‘utility’’ a stimulus has for the subject (15,
16).

We designed a P300 study in the visual modality, with task difficulty deter-
mined by the complexity of processing equally physically deviant stimuli. The
subject was seated in a sound-attenuated chamber facing a computer-controlled
display (CRT), with his head resting on an adjustable chin rest. He was told to
look at a fixation point displayed in the center of the screen. The experimental
design consisted of a visual head orientation task. The nontarget stimulus was a
frequently occurring circle presented in the center of the CRT, to which the
subject did not respond. The target stimulus was an aerial view of the head with
the nose and only one ear drawn in on either the right or left side; the subject
pressed the corresponding button indicating whether a right or left ear was
present as quickly as possible (reaction time). In the ‘‘easy’ condition, the
head was facing forward (nose up on screen), and left or right ear appeared
directly on the side corresponding to the appropriate button. In the ‘‘hard”
condition, the head was facing back (nose down on screen), and either the left
or right ear appeared on the opposite side of the screen to the corresponding
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FiG. 1. Averaged event-related potentials recorded from a midline parietal location for control (N
= 24) and experimental (N = 23) porulations. CHAN = Pz.
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button. A total of 240 stimuli were randomly presented—160 nontargets and 80
targets (20/target condition). The stimuli were 25 msec in duration and sub-
tended 2.9° of arc; interstimulus intervals varied randomly between 2 to 4 sec.

Monopolar ERPs were recorded from midline frontal (Fz), central (Cz), pari-
etal (Pz), and occipital (Oz) scalp leads. The linked ears served as reference and
the nasion served as ground. ERPs were sampled by a PDP 11/40 computer for
49 msec preceding the stimulus (baseline) and for 700 msec (142 points/sec;
bandwidth 0.01—100 Hz) following the stimulus. The prestimulus baseline volt-
age level was subtracted from each ERP recording at each electrode.

APPLICATION

We shall consider two groups of subjects (N; = 24, N, = 23) who were
suspected of being cognitively different and for whom we have obtained aver-
age evoked potentials (over 20 repetitions). For brevity of presentation, we
shall restrict our discussion to the results obtained for the four-lead and single-
lead analyses for the ‘‘hard left ear’” stimulus condition. An example of the
population-averaged potentials for Pz is shown in Fig. 1.
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TABLE I

SPECTRAL DOMAIN RESULTS
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Quadratic discriminant function

Linear discriminant function

Resubstitution  Leaving-one-out Resubstitution  Leaving-one-out
Location nonerror rate nonerror rate NONErTor rate nonerror rate

Fz, Cz, Pz, Oz 100 81.0 79.0 70.0
k= 18,44,27, 10 k=3,19,48

Fz 69.9 67.8 74.4 72.2
k=13,15,26 k=3,17,18

Cz 61.1 61.1 70.1 63.7
k=44,23,40 k=3,18,1

Pz 65.6 63.4 68.1 66.0

k=32 | k=10
Oz 74.5 72.5 66.0 64.0
k=13,1 =1, 10

Note. The k values indicate the frequencies used in constructing the discriminant functions in
units of 1.42 Hz.

In Table I, we present the results for the linear and quadratic discriminant
analyses. In order to arrive at each entry in Table I, we obtained a test of equal
means, a test for equal spectral matrices, and a test for equal populations for
each frequency. Using the selected frequencies, the resubstitution and leaving-
one-out nonerror rates were determined at each step of a forward-stepping
procedure. By observing the number of variables at which the leaving-one-out
estimate began to deteriorate, or diverge from the resubstitution estimate, a
decision was made in each case as to the number of frequencies to include.

It can be seen that the four-lead analysis gave the best nonerror rate with the
quadratic discriminant function. This result was anticipated since, when we
performed the tests for equal spectral matrices, we found significant group
differences at many frequencies. In the single-lead analysis, the linear discrimi-
nant function was superior in three out of four cases.

In order to examine the dependence of the results on distributional devia-
tions from normality, we next present in Table II the same analyses as in Table
I, except that we first have performed a rank transformation on the observed
time series.

It can be seen that the four-lead analysis again gave the best nonerror rate
with the quadratic discriminant function. However, the nonerror rate was
smaller than in the analysis with the untransformed data. In the single-lead
analysis, the linear discriminant function was again superior in three out of four
cases, and for the same leads. When comparing the leaving-one-out analyses
using untransformed data with the analyses using rank-transformed data, it was
found that rank transformation decreased the nonerror rate in five cases, in-
creased the nonerror rate in four cases, and maintained the same resuits in one
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TABLE II

SPECTRAL DoMAIN RESULTS WITH RANK DaTta

Quadratic discriminant function Linear discriminant function
Resubstitution  Leaving-one-out Resubstitution  Leaving-one-out
Location NONerror rate nonerror rate nonerror rate nonerror rate
Fz, Cz, Pz, Oz 95.7 76.5 83.0 76.0
k=0,3,10 k=3,15,18
Fz 76.4 70.0 72.2 72.2
k=15,3 k=3,15
Cz 61.3 59.2 76.5 68.1
: k=126 k=15,2573
Pz 69.8 63.6 68.3 63.9
k=3 ’ k=0,3
Oz 72.5 70.0 66.0 63.9
k=131 k=1,10

case. It also should be noted that the rank transformation often resulted in
different frequencies being selected. In particular, higher frequencies tended
not to be selected.

We now consider the problem of model validation. We will first analyze the
results from the SNN and Mix models in the time domain, after which we shall
compare these results with the results of the SSN model in the spectral domain.
Because of the large number of time points involved, we will only analyze the
four single-lead problems. Presented in Table III are results of the linear and
quadratic discriminant analyses for both the untransformed and rank-trans-
formed data, as well as the results of the kernel discriminant function analyses.
In all cases, we have selected only the first two time points, which were ob-
tained by the appropriate variable selection process, because of the correla-
tions among the variables at different time points. The results of the analyses
with the untransformed data show that the quadratic discriminant function had
the larger nonerror rate in three out of four cases. The results of the analyses
with the rank-transformed data show, however, that the linear discriminant
function had the larger nonerror rate in three out of four cases. It is also seen
that the kernel discriminant function was not superior for any of the leads.
When we compare the spectral domain (Table I) and time domain (Table III)
results for the untransformed data, we find that for the linear discriminant
functions the SNN model was superior to the SSN model in three out of four
cases. The results for the quadratic discriminant functions show that the SSN
model was superior in two out of four cases, inferior in one case, and had the
same nonerror rate in one case. When we make similar comparisons for the
rank-transformed data, we find that for the linear discriminant functions the
SNN model was again superior to the SSN model in three out of four cases.
The results for the quadratic discriminant functions show that the SNN model
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TABLE III

TiME DoOMAIN RESULTS

Rank Rank
Location Linear Quadratic linear quadratic Kernel
Fz 63.8 72.2 70.2 74.8 —
63.8 67.8 66.0 68.9 63.8
T = 105, 210 T = 462, 343 T = 350, 448 T = 441, 483 T = 175, 294
Cz 68.1 59.2 72.3 66.2 —
66.0 50.7 72.3 64.1 66.0
T = 567, 693 T = 336, 329 T = 588, 686 T = 567, 686 T = 336, 266
Pz 70.2 76.6 70.2 70.1 —
70.2 76.6 70.2 65.9 72.3
T = 189, 322 T=2315392 T=322,455 T = 315, 273 T = 301, 343
Oz 74.5 80.8 76.6 78.7 —_
68.1 72.3 74.5 72.3 70.2

T = 315, 546 T = 315, 441 T = 322,434 T =322, 364 T = 329, 63

Note. The upper number is the resubstitution nonerror rate, and the lower number is the leaving-
one-out nonerror rate. The values of T given are the time points, in milliseconds, of the processes
which were selected.

was also superior to the SSN model in three out of four cases. When we
compare the best nonerror rates for each lead, we find that the SNN model was
superior in three out of four cases, the SSN model was superior in one case,
and the Mix model was not superior in any case. From Table III, it can be seen
that the linear discriminant model was superior for leads Cz and Oz, while the
quadratic discriminant model was superior for leads Fz and Pz. These results
imply that both the average evoked potentials and the noise can contribute to
the discrimination for the SNN model. The Mix model performed reasonably
well for all of the leads, although it did not result in superior nonerror rates. In
Rawlings et al. (17), the kernel method was shown to perform very well in
some mixture problems, but larger numbers of subjects were utilized in that
investigation. In the present study, there were substantial between-subject var-
jations, and there were statistically significant differences for many between-
subject comparisons. This would suggest that a mixture model would be a more
appropriate model, although more complicated. However, the SSN and SNN
models appear to be adequate for the present problem.

CONCLUSIONS

We have demonstrated in this paper easily implemented methods for con-
structing linear and quadratic discriminant functions in the spectral domain
which provide useful nonerror rates for multiple-lead problems. It has also been
shown that the nonerror rates obtained are reasonably close to the nonerror
rates obtained by more complex time domain models. The analyses of the SSN
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and SNN models indicate that both the average evoked potentials and the noise
can provide discrimination. The results of the analyses of the SSN and SNN
models with rank-transformed data indicate that these data transformations can
enhance discrimination in some problems. Close examination of the observa-
tions from individual subjects strongly suggests the presence of a number of
subpopulations making the Mix model most appropriate. However, application
of the Mix model did not result in superior nonerror rates in any case. The
success of the simpler SSN and SNN models may be a result of the small
numbers of subjects that we utilized. With additional subjects, the Mix model
might prove to give better classification accuracy. However, in studies of this
nature, large numbers of subjects are generally not available. The extension of
the SNN and Mix models to multiple leads is difficult at present because of the
large numbers of variables involved, while the SSN model is easily applied to
multiple leads.
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