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Genotyping Errors, Pedigree Errors, and Missing Data
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Our group studied the effects of genotyping errors, pedigree errors, and missing data on a wide range of techniques, with a
focus on the role of single-nucleotide polymorphisms (SNPs). Half of our group used simulated data, and half of our group
used data from the Collaborative Study on the Genetics of Alcoholism (COGA). The simulated data had no missing
genotypes and no genotyping errors, so our group, as a whole, removed data and introduced artificial errors to study the
robustness of various techniques. Our teams showed that genotyping errors are less detectable and may have a greater
impact on SNPs than on microsatellites, but recently developed methods that account for genotyping errors help reduce
false positives, and the assumptions of these methods appear to be supported by observations from repeated genotyping.
The ability to detect linkage disequilibrium (LD) was also substantially reduced by missing data; this in turn could affect
tagging SNPs chosen to generate haplotypes. In the COGA sample, genotyping measurements were repeated in three ways.
First, full-genome screens were performed on three sets of markers: 328 microsatellites, 11,560 SNPs from the Affymetrix
GeneChip Mapping 10K Array marker set, and 4,720 SNPs from the Illumina Linkage III panel. Second, the entire
Affymetrix marker set was typed on the same 184 individuals by two different laboratories. Finally, the Affymetrix and
Illumina marker panels had 94 SNPs in common. Our teams showed that both SNPs and microsatellites can be readily used
to identify pedigree errors, and that SNPs have fewer genotyping errors and a low inconsistency rate. However, a fairly high
rate of no-calls, especially for the Affymetrix platform, suggests that the inconsistency rate may be higher than observed.
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INTRODUCTION

Single-nucleotide polymorphisms (SNPs) have
typically been used for association studies, but
have more recently been considered for linkage
studies. Genetic Analysis Workshop (GAW) 14
presented participants with the opportunity to
analyze real and simulated data sets in order to
shed light on this topic. The real data set, taken
from the Collaborative Study of the Genetics of
Alcoholism (COGA), provided extended pedi-
grees with full-genome scans performed with
three markers sets: microsatellites, the Illumina
Linkage III panel, and the Affymetrix 10K
Mapping Array. The SNP genotyping was facili-
tated and partially duplicated by the Center for
Inherited Disease Research (CIDR). The simulated
data set provided several different populations
genotyped for both microsatellite markers and
SNPs. As a whole, GAW14 investigated the

extension to SNPs of many techniques tradition-
ally applied to microsatellites. The diallelic nature
of SNPs and the inherent linkage disequilibrium
(LD) found in dense marker maps complicated
many of these techniques. Our group studied the
effects of genotyping errors, pedigree errors, and
missing data on a wide range of techniques, with a
focus on the role of SNPs. The diallelic nature of
SNPs can be especially difficult in this area
because of the reduced information from each
marker considered individually. For example,
given a single highly polymorphic microsatellite
in a large sibship even without genotyped parents,
one has a chance of identifying genotyping errors
and (since there may be four different alleles
present in the sibship) directly determining
identity-by-descent (IBD) status. For a single
SNP, on the other hand, for any sibship without
genotyped parents, no genotyping errors can be
detected because two heterozygous parents would
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be completely compatible with any observed
genotypes. Because only two alleles occur, IBD
status is estimated with less accuracy. This
increased susceptibility to undetectable genotyp-
ing error and reduced information content make
SNPs an interesting challenge.

METHODS

SIMULATED DATA

Half of our group used the simulated data
[Barral et al., 2005; McCaskie et al., 2005; Thomp-
son et al., 2005]. Because the simulated data had
no missing values and no simulated genotyping
errors, the authors modified the data by removing
genotypes and randomly changing genotypes to
simulate errors. They then examined the impact of
the missing data and genotyping errors, and
methods to detect or correct for the errors, for
the transmission disequilibrium test (TDT), LD
detection, and linkage analyses.
Barral et al. [2005] modified the GAW14

simulated data (SNP genotypes only) to introduce
errors under the Sobel-Papp-Lange model (SPL)
[Sobel et al., 2002]. Under this model, for each of
the three possible genotypes of an SNP, one
specifies the probabilities of observing each of
the coded genotypes. Values used are presented in
Table I. Note the decreased probability of obser-
ving a 2/2 genotype, given a true 1/1 genotype
(and vice versa), in an attempt to simulate more
realistic genotyping errors than a simple uniform
probability. Barral et al. [2005] also removed 10%
of the parental genotypes independent of all other
variables, i.e., genotypes were missing completely
at random (MCAR) [Little and Rubin, 1987]. After
introducing these errors and removing data,
Barral et al. [2005] compared the traditional TDT
to a version of the TDT which allows for errors
(TDTae) [Gordon et al., 2001, 2004]. The TDTae
performs a likelihood-based TDT in which chance
of genotyping error is incorporated into the

likelihood calculation. The method assumes that
genotyping errors are random and independent,
and that the genotypes have not been cleaned to
remove Mendelian inconsistencies.
Similarly, McCaskie et al. [2005] deleted geno-

type values (MCAR) from the Aipotu data set at
rates of 1%, 5%, and 10%. They applied their new
LD plotting program, JLIN [Carter et al., 2004], to
study the effect of missing data on computation of
the disequilibrium coefficients D0. They also
examined the role of missing data in haplotype
association analyses, using their SIMHAP soft-
ware [McCaskie et al., 2004]; this software uses an
expectation-maximization algorithm to impute
diplotypes (i.e., a pair of haplotypes: the haplo-
type equivalent of genotype), and then simulates
multiple data sets to determine the empirical
distribution of parameter estimates. Using the
simulated data set with missing data, analyses
were performed with tagged SNPs that had been
shown to be associated with affection status.
Coefficients (with significance values), as well as
means and 95% confidence intervals, were ex-
tracted from 10,000 simulations.
Thompson et al. [2005] assessed the ability to

detect genotyping errors in sibships without
genotyped parents. They used the three simulated
nuclear family populations (Aipotu, Danacaa, and
Karangar) and removed all parental genotyping
data. Random genotyping was simulated at error
rates of 0.14% and 2.8%. For their analyses,
genotypes were chosen randomly at the specified
error rate, and one of the two alleles was selected
at random: in the case of SNPs, the chosen allele
was replaced with the other allele; in the case of
microsatellites, the chosen allele was replaced
with an adjacently sized one (either one more or
one less repeat). Although different from the SPL
error model, this attempts to mimic laboratory
conditions, and disallows transitions from one
homozygote to the other. As previously men-
tioned, no genotyping errors are detectable with a
single SNP in this circumstance, because all
possibilities are consistent with Mendelian inheri-
tance. However, microsatellites were screened
using each marker individually and testing for
Mendelian inheritance. Although double recom-
binants (a recombination occurring immediately
before and after a marker) are possible, due to
their scarcity, a search for double recombinants is
also often used to identify genotyping errors. The
authors used GENIBD, part of the SAGE package
[Statistical Solutions, 2004], to compute the change
in sharing probabilities both before and after each

TABLE I. Sobel-Papp-Lange error model penetrance
values [Barral et al., 2005]

Observed genotype

True genotype 1/1 1/2 2/2

1/1 0.989 0.01 0.001
1/2 0.01 0.98 0.01
2/2 0.001 0.01 0.989
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locus in turn. If the change in probabilities was
high (above a predetermined threshold) on both
sides of the marker for two or more sib pairs that
included the same individual, then the marker
was deemed to be the site of a double recombinant
and a potential genotyping error. By this defini-
tion, it would be impossible to detect genotyping
errors for the first or last marker on a chromosome
or for a sibship containing only a single sib pair.
False-positive and false-negative rates of genotype
error detection were computed for the microsa-
tellite and SNP markers. The Shannon information
content (SIC) was computed to evaluate error
rates as a function of the SIC.
Thompson et al. [2005] also examined power

and type I error rates for microsatellite and SNP
markers. They computed power to detect a signal
exceeding a predefined threshold within 20 cM of
the true location of a disease gene. Type I errors
were considered to be signals above a given
threshold at least 40 cM from a true location of a
disease gene, and more than 20 cM from any other
signal (to allow for multiple false positives on a
chromosome). They also examined the power and
type I error rate under reduced genotypic pene-
trances, to simulate mistyping.

COGA DATA

Half of our group used the real COGA data.
Suarez et al. [2005] and Tintle et al. [2005]
examined replicated genotyping for the SNP
genotypes. Wang et al. [2005] compared pedigree
errors detected by SNPs and by microsatellites.
Suarez et al. [2005] identified 94 SNPs typed on

all individuals, using both the Illumina and
Affymetrix platforms. The authors studied varia-
tions in no-call rates and patterns of discrepancies
(where both platforms reported a genotype, but
the reported genotypes differed).
Tintle et al. [2005] examined a set of individuals

genotyped with the same platform but by two
different laboratories. In particular, CIDR and
Affymetrix genotyped the same set of 11,560 SNPs
on 184 individuals using the Affymetrix Gene-
Chip Mapping 10K Array. The authors distin-
guished between inconsistency (where two
genotypes for a particular SNP and subject exist
and are different) and nonreplication (two geno-
types for a particular SNP and subject exist and
are different, or one of the two genotypes is
missing). Of the 11,560 SNPs, 440 SNPs were
dropped from the analysis because they were not
included in the final map information. Five of 184

subjects were dropped: two with the same CIDR
identification numbers, and three genotyped only
on a subset of the SNPs.
Wang et al. [2005] examined the role of SNPs in

the identification of pedigree errors. They first
selected 239 unrelated founders of white, non-
Hispanic pedigrees to test the neutrality of the
autosomal markers, and 160 unrelated female
founders of white, non-Hispanic pedigrees to test
the neutrality of the X-chromosome markers. They
identified outlier loci-markers with deviation
from Hardy-Weinberg equilibrium under either
balancing selection (with lower than expected
homozygosity values) or directional selection
(with higher than expected homozygosity values).
They divided the data set into 21 pedigrees with
the majority of individuals of self-reported black
ethnicity (both Hispanic and non-Hispanic), and
122 pedigrees with the majority of individuals of
self-reported white ethnicity (again, Hispanic and
non-Hispanic). They ran PREST [McPeek and Sun,
2000] on these subsets separately for all three
marker sets, first including and then excluding the
outlier loci.

RESULTS

SIMULATED DATA

Barral et al. [2005] demonstrated a dramatic
inflation of the false-positive rate for traditional
TDT in the presence of undetected genotyping
errors and missing parental genotypes. They
further demonstrated increased precision using
TDTae compared to traditional TDT, i.e., the
distance between a disease gene position and
markers reaching a given significance level is
much smaller with TDTae.
McCaskie et al. [2005] found that missing data

might increase the amount of strong LD observed
in the data. The pattern of LD across a chromo-
some could thus become more fractionated,
causing the partitioning of haplotype blocks into
smaller blocks, affecting tag SNP selection and
haplotype formation. For haplotypic analyses,
they observed a trend toward increased 95%
confidence intervals for both odds ratios and
P-values as the amount of missingness increased,
i.e., average values of odds ratios and P-values
became less precise. However, there were no
obvious differences in the odds ratios and
P-values themselves for the haplotypes.
Thompson et al. [2005] found that, as expected,

none of the genotyping errors in SNPs were

S122 Hinrichs and Suarez

Genet. Epidemiol. DOI 10.1002/gepi



detected using a single-marker test of Mendelian
inheritance, and that 35.6% of the genotyping
errors in microsatellites were detected using a
single-marker test. The use of large changes in
estimated IBD (EIBD) to identify genotyping
errors performed poorly, with high false-positive
rates at low thresholds, and low true-positive rates
at higher thresholds. Under the most rigorous
condition (delta5 0.9, i.e., a change of EIBD by at
least 0.9 before and after the marker in question),
53.1% of genotyping errors were detected for the
microsatellites, whereas only 2.4% of genotyping
errors were detected for the SNPs. The authors
found that even after adjusting for different
levels of SIC within a pedigree, genotyping
errors were still easier to detect with microsatel-
lites than SNPs.
Thompson et al. [2005] also showed that for all

levels of genotyping error, SNPs were more
powerful for linkage than microsatellites (spaced
at an average distance of 10.5 cM), but also had a
higher false-positive rate in the presence of
genotyping errors compared to microsatellites.
They suggested that different thresholds may be
useful for declaring significant evidence of linkage
for the two different types of markers. Because
SNP genotyping error rates may be lower than
microsatellites, the authors compared a 0.14% SNP
error rate to a 2.8% microsatellite error rate. In this
case, the SNPs were still slightly more powerful
for linkage, but had a false-positive rate similar to
the microsatellites. Finally, the authors suggested
that allowing for genotyping errors in linkage
analyses will result in a greater increase in power
for microsatellites than for SNPs.

COGA DATA

The real data were shown to have errors by
multiple techniques in multiple ways. However,
given the lack of an ‘‘infallible’’ data source, the
nature and localization of the errors were some-
what speculative.
After adjusting for differences in allelic desig-

nation between the Illumina and Affymetrix
platforms, Suarez et al. [2005] observed no cases
in which a homozygote observed under one
platform was scored as the opposite homozygote
with the other platform. They also found that
although the concordance rate was high (99.85%),
there was a substantially higher no-call rate with
the Affymetrix platform that appeared to be
genotype- and SNP-specific. The SNP with the
largest number of differences (rs958883) was near

an XbaI site that also contained an SNP
(rs17150546). Because the Affymetrix technology
uses the XbaI restriction enzyme to produce
fragments of 250–1,000 nucleotides, it may be that
individuals with the polymorphism in the XbaI
site will be missing the allele typed at the rs958883
SNP. Moreover, because all discrepant individuals
with the Affymetrix platform typed as ‘‘22’’
homozygotes, it is reasonable to hypothesize that
the SNP that obliterates the XbaI site is in strong
LD with the ‘‘1’’ allele at rs958883.
Tintle et al. [2005] found a low inconsistency rate

(0.2%), but a high nonreplication rate (9.5%). As
with Suarez et al. [2005], their evidence supports
the hypothesis that errors incorrectly reporting a
homozygote as the opposite homozygote are rare.
They found this quite encouraging, because
recently developed methods rely on this assump-
tion. Analysis of missing data suggests that some
may have dependencies, while other missing data
appear to be independent. Dependent missing
data suggest that particular individuals or SNPs
may be difficult to classify. Independent missing
data suggest the presence of no-call regions,
which were recently shown to have no value in
association tests [Kang et al., 2004].
Wang et al. [2005] found that outlier SNPs have

little impact on the identification of pedigree
errors. Furthermore, there were several clear
pedigree errors present in the COGA data set.
Although some of these pedigree errors were
detected in all three marker sets, some errors were
only detected in a single set. This suggests
possible sample swaps occurring only in one of
the three genotyping laboratories.

DISCUSSION

There are three themes throughout the papers in
this group. First, our group found that genotyping
errors are less detectable and may have a greater
impact for SNPs than for microsatellites. In the
presence of genotyping error, one team found that
single- and multiple-locus tests for Mendelian
inheritance, when parents were missing, detected
substantially fewer errors for SNPs than for
microsatellites (2.4% vs. 53.1%). Another team
found that the power to detect a true linkage
signal was greater for SNP (75%) than micro-
satellite (67%) marker maps, although there were
also slightly more false-positive signals using SNP
marker maps (five compared with three). The
ability to detect LD was also substantially reduced
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by missing data; this could in turn affect tagging
SNPs chosen to generate haplotypes. Second, our
group found that recently developed methods to
account for genotyping errors helped reduce false
positives, and the assumptions of these methods
appear to be supported by observations from
repeated genotyping. In a comparison of TDT and
TDTae, TDT showed substantially increased type I
error (rates of 28.8%, 14.8%, 5.4%, and 1.7% at the
5%, 1%, 0.1%, and 0.01% significance levels,
respectively), while TDTae maintained the correct
false-positive rate. TDTae also showed an in-
creased ability to localize disease loci. Third,
although SNPs appear to have fewer genotyping
errors than microsatellites and can be readily used
for detecting pedigree errors, the Affymetrix
platform appears to suffer from a high no-call
rate that is concentrated in a subset of SNPs that
are difficult to genotype. A search for pedigree
structure errors using three marker sets separately
identified 15 errors in 143 pedigrees. However,
some of these errors appeared only with one set of
markers, indicating a potential sample mix-up in
one genotyping laboratory. A comparison of
genotyping performed by both CIDR and Affy-
metrix showed that while the inconsistency rate
(two different genotypes for the same subject) was
low (0.2%), the nonreplication rate (two different
genotypes for the same subject, or one identified
genotype and one missing genotype) was sub-
stantial (9.5%). This also suggests that the actual
inconsistency rate is higher than reported and
may have a significant impact on power. Analysis
of 94 SNPs common to both platforms showed
significant agreement when both platforms made
a call (99.85%); however, the no-call rate for the
Affymetrix platform was approximately 8.6 times
higher than for the Illumina platform. When
genotypes were inconsistent, the number of
inferred recombinants for Affymetrix genotypes
was substantially higher compared to Illumina
genotypes. Finally, for at least two SNPs, familial
clustering of inconsistency may have been due to
the presence of a second segregating SNP that
obliterated an XbaI site (the restriction enzyme
used in the Affymetrix platform), resulting in a
fragment too long (41,000 bp) to be amplified.
Taken together, these themes suggest that
although SNPs may eventually replace the role
of microsatellites for many applications, they also

present new problems for missing data and
genotyping errors.
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