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Modeling multiple responses via bootstrapping
margins with an application to genetic association
testing

Jiwei Zhao and Heping Zhang
∗,†

The need for analysis of multiple responses arises from
many applications. In behavioral science, for example, co-
morbidity is a common phenomenon where multiple disor-
ders occur in the same person. The advantage of jointly ana-
lyzing multiple correlated responses has been examined and
documented. Due to the difficulties of modeling multiple re-
sponses, nonparametric tests such as generalized Kendall’s
Tau have been developed to assess the association between
multiple responses and risk factors. These procedures have
been applied to genomewide association studies of multi-
ple complex traits. Unfortunately, those nonparametric tests
only provide the significance of the association but not the
magnitude. We propose a Gaussian copula model with dis-
crete margins for modeling multivariate binary responses.
This model separates marginal effects from between-trait
correlations. We use a bootstrapping margins approach to
constructing Wald’s statistic for the association test. Al-
though our derivation is based on the fully parametric Gaus-
sian copula framework for simplicity, the underlying as-
sumptions to apply our method can be weakened. The boot-
strapping margins approach only requires the correct speci-
fication of the model margins. Our simulation and real data
analysis demonstrate that our proposed method not only in-
creases power over some existing association tests, but also
provides further insight into genetic association studies of
multivariate traits.

AMS 2000 subject classifications: Primary 62P10; sec-
ondary 62G09.
Keywords and phrases: Multiple traits, Marginal ap-
proach, Bootstrap, Gaussian copula.

1. INTRODUCTION

The advent of high-throughput genotyping technology
has led to discoveries of numerous disease genes, commonly
through genomewide association studies (GWAS). Most of
the GWAS data are analyzed using a single disease trait at a
time. However, comorbidity often occurs in genetic studies of
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complex diseases, particularly mental illness and substance
use [33]. Here, comorbidity refers to the occurrence of mul-
tiple disorders in the same subject. For example, more than
half of the persons with one substance use disorder suffer
from another form of mental illness [3]. Thus, it is scien-
tifically important to consider comorbidity in genetic stud-
ies. From the statistical perspective, [37] conducted compre-
hensive simulation studies and demonstrated that analyzing
multiple traits together generally improves the statistical
power over single-trait based tests.

While it is important and well motivated to analyze mul-
tivariate traits jointly, it also raises theoretical and com-
putational challenges. [34] proposed a generalized Kendall’s
Tau to test the association of any hybrid of dichotomous,
ordinal or quantitative traits with a genetic marker. Later,
[17] and [36] extended this method to consider the adjust-
ments of covariates. However, the nonparametric tests can
only report the significance of the association but not the
magnitude. Therefore, it is desirable, and the goal of this
article, to establish a parametric framework for genetic as-
sociation studies of multiple traits.

We propose Gaussian copula model [23, 28] with discrete
margins to analyze multivariate binary traits. Our model
has several advantages. First, this is a rich class of para-
metric models that includes some commonly-used models
such as the multivariate probit model [2, 1]. Second, our
model makes much weaker assumptions than the multivari-
ate probit model does, and hence is more broadly applica-
ble. Third, under the Gaussian copula framework, the model
components that characterize the marginal effects and the
correlations among the traits are readily separated. Before
we can deliver these useful features, we need to resolve the
computational challenge. To this end, we propose to fit this
model using a two-step semi-parametric approach. In the
first step, we compute the maximum marginal likelihood es-
timator (MMLE) of association coefficients, say, β̃. In the
second step, we estimate the variance of β̃ using the boot-
strapping technique [11]. This bootstrapping margins ap-
proach does not assume independence of the traits. Since it
only requires the correct specification of model margins, this
approach is robust to the misspecification of the correlation
information among the traits, and it can be extended to any
case as long as the model margins are correctly specified.
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Although there is a rich literature on modeling multivari-
ate discrete data through copula structure, including [18],
[23], [30], and the references therein, our work has distinc-
tive features in model feasibility and computational cost, es-
pecially in genetic association testings. As discussed above,
our modeling strategy only requires the correct specification
of the margins, and is more flexible to use. Also, as shown in
Sections 4 and 5, from the computational perspective, our
approach is much faster than multivariate probit model, es-
pecially when the dimension of multivariate discrete data
is large. This feature is particularly appealing in analyzing
high-throughput genotyping data.

Copula has become a useful tool in genetic studies.
For example, [19] considered a Gaussian copula variance-
components method for linkage analysis with nonnormal
quantitative traits. [15] introduced a Gaussian copula based
approach to modeling the dependence between disease sta-
tus and secondary phenotypes in case-control association
studies. We exploit copula-based methods for further use in
genetic studies. In GWAS, the need of analyzing millions of
single nucleotide polymorphisms (SNPs) requires the algo-
rithm for each single SNP would be extremely fast, which is
the main motivation of our work. Our proposal of Gaussian
copula framework guarantees the MMLE is consistent and
asymptotically normal [28]. To account for the ignorance of
potential correlations among multiple traits, we further pro-
pose Bootstrap method correcting for the variance estima-
tion. Although our method of using MMLE seems simple for
Gaussian copula model itself, it works very fast and shows
substantial power gain over some nonparametric tests in our
numerical studies. More importantly, through the analysis
of a real data set on comorbidity, our proposed method iden-
tifies some significant SNP biomarkers reported in previous
related studies, illustrating the usefulness of our proposed
method.

This paper is organized as follows. We establish our model
in Section 2. In Section 3, we describe our two-step semi-
parametric estimation method for association testing. We
present our simulation studies in Section 4 and the SAGE
data analysis in Section 5. We compare our analysis results
with those based on multivariate probit model and another
existing nonparametric method [36]. We also provide the
estimates and their standard errors for genetic associations,
which reveal further scientific details for GWAS. The article
ends with a discussion in Section 6.

2. THE GAUSSIAN COPULA MODEL

Copula, a multivariate distribution function with uni-
formly distributed margins, is a useful tool for modeling
correlated variables. For the general introduction and ap-
plication of copula, we refer the readers to [23]. A common
choice is Gaussian copula, which is constructed from a mul-
tivariate normal distribution using Sklar’s theorem. Specif-
ically, the d-variate Gaussian copula is

CΦ(u1, . . . , ud|Γ) = Φd{Φ−1(u1), . . . ,Φ
−1(ud)|Γ},

where ui ∈ [0, 1], Φ is the cumulative distribution function
(c.d.f.) of a standard normal distribution, and Φd represents
the c.d.f. of d-dimensional normal vector with mean zero
and covariance matrix Γ. For instance, [28] used the Gaus-
sian copula to construct a class of multivariate dispersion
models for d-dimensional multivariate data (y1, . . . , yd) with
marginal distributions F1, . . . , Fd. That is,

(1)
CΦ(F1(y1), . . . , Fd(yd)|Γ)

=Φd{Φ−1(F1(y1)), . . . ,Φ
−1(Fd(yd))|Γ}.

Motivated by genetic case-control studies of complex dis-
eases, here we concentrate on the modeling of multiple bi-
nary traits W = (W (1), . . . ,W (L))T . By taking Radon-
Nikodym derivative for CΦ(F1(y1), . . . , FL(yL)|Γ) in (1)
with respect to the counting measure, we can show that

(2)

P (W (1) = w1, . . . ,W
(L) = wL)

=
1∑

j1=0

· · ·
1∑

jL=0

(−1)j1+···+jLCΦ(u1j1 , . . . , uLjL |Γ),

where wl = 0 or 1, ul0 = Fl(wl), ul1 = Fl(wl − 1), and Fl is
the c.d.f. for W (l), i.e.,

Fl(s) =

⎧⎨
⎩
0 s < 0
1− pl 0 ≤ s < 1
1 s ≥ 1,

where pl = P (W (l) = 1).
This model setting includes many commonly-used mod-

els. For example, the bivariate probit model has the follow-
ing probability mass function:

P (W (1) = w1,W
(2) = w2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ2(Φ
−1(1− p1),Φ

−1(1− p2)|Γ)
if w1 = 0, w2 = 0,

1− p1 − Φ2(Φ
−1(1− p1),Φ

−1(1− p2)|Γ)
if w1 = 0, w2 = 1,

1− p2 − Φ2(Φ
−1(1− p1),Φ

−1(1− p2)|Γ)
if w1 = 1, w2 = 0,

p1 + p2 +Φ2(Φ
−1(1− p1),Φ

−1(1− p2)|Γ)− 1
if w1 = 1, w2 = 1.

Let G denote a variable of interest (e.g., a genetic marker)
and X be a p-vector of covariates. To model the marginal
effects of G and X on W (l), we consider a generalized linear
model [GLM, 22], i.e., for each l,

(3) g(pl) = ηl = αl + βlG+ γT
l X,

where g is the link function. The choices include log{t/(1−
t)} (logit), Φ−1(t) (probit), and log{− log(1 − t)} (comple-
mentary log-log). Note that different choices of link func-
tions, i.e., models for margins, will not affect the Gaussian
copula correlation structure. Our model is flexible in that
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every single W (l) can have its own distinct choice of link
function. In addition, α = (α1, . . . , αL)

T , β = (β1, . . . , βL)
T ,

and γ is L × p matrix with γT
l as its l-th row. For conve-

nience, we also introduce θ = (α, β, γ) as the L × (p + 2)
matrix, with θTl as its l-th row.

The β-coefficients reflect the association between W and
G. The hypothesis of great interest is

H0 : β = 0 versus H1 : β �= 0.(4)

3. BOOTSTRAPPING THE MARGINS

The maximum likelihood based approaches, based on the
maximum joint likelihood estimator β̂, are generally used
to test the hypothesis in (4). However, these approaches are
difficult to implement because the likelihood function under
the Gaussian copula model can be so complicated that there
do not exist effective methods to compute β̂ and Var(β̂).
To overcome this difficulty, we adopt the following two-step
procedure:

1. Compute β̃, the maximum marginal likelihood estima-
tor (MMLE);

2. Bootstrap samples, and execute Step 1 repeatedly to

obtain an estimator of Var(β̃), ̂

Var(β̃). Then use the
following Wald statistic to test (4):

β̃T ̂

Var(β̃)
−1

β̃.

3.1 Step 1

From the general discussion of Gaussian copula model,
the MMLE β̃ is consistent and asymptotically normal [28].
The assumed regularity conditions are quite standard and
easily satisfied. Specifically,

β̃
p−→ β,

√
n(β̃ − β)

d−→ N(0,Ωm),(5)

where Ωm is asymptotic covariance matrix of β̃.
Let β̂ be the maximum likelihood estimate of β using the

joint likelihood and Ωj be its asymptotic covariance matrix.

It is of interest to find out under what conditions that β̃ = β̂
and Ωm = Ωj . In general, we expect a tradeoff in computa-

tion and efficiency. In theory, β̂ is more efficient than β̃, but
we prefer β̃ for the computational sake provided that the ef-
ficiency loss is relatively small. Interestingly, our numerical
studies reveal a very small level of the efficiency loss by β̃.

An alternative of β̃ in the first step could be the esti-
mator from maximizing pairwise composite likelihood using
the method of inference functions for margins (IFM), as dis-
cussed in [18] and [35]. If this alternative is adopted, correct
specification of pairwise composite likelihood is required,
which is stronger than the correct specification of univari-
ate margin likelihood. In addition, our method is different
from IFM on two aspects: first, IFM computes the estima-
tors from inference functions, while we concentrate on the

marginal likelihood; second, IFM uses Jackknife for variance
estimation, whose computational cost is getting greater as
the sample size increases, while we propose the Bootstrap,
as discussed in the following.

3.2 Step 2

Under H0, we have

β̃TVar(β̃)−1β̃
d−→ χ2

L.

Here we propose to use the bootstrap procedure [11] to es-
timate Var(β̃). The simplicity of bootstrap makes it very
straightforward to use in various applications for deriving
standard errors and confidence intervals. Asymptotically,
bootstrap is more accurate than the standard intervals ob-
tained using sample variance and assumptions of normality
[9]. Bootstrap can be easily extended to more complex sce-
narios. For example, it can be applied if our null hypothesis
H0 in (4) has a more complicated structure of unknown pa-
rameters. It can also be applied for the variance estimation
of maximum pairwise composite likelihood estimator.

We compute β̃∗b in the b-th bootstrap sample
(W∗b, G∗b, X∗b), b = 1, . . . , B. Then,

̂Var(β̃) = Var(β̃∗1, . . . , β̃∗B).(6)

Under our Gaussian copula model and standard regularity
conditions [26, 27], β̃ is consistent and asymptotically nor-
mal as presented in (5), and the Bootstrap variance estima-

tor ̂Var(β̃) is also consistent. As suggested by [12], we chose
B = 200 and also tried B = 500 and B = 1,000 to validate
that B is sufficiently large.

4. SIMULATION STUDIES

In this section, we conduct simulation studies to com-
pare the finite sample performance of our proposed method:
Bootstrapping the Margins with Probit link (BMP), with
multivariate probit model (mvProbit) and nonparametric
test based on generalized Kendall’s Tau (gKT, 36). Note
that, from the construction of our Gaussian copula model
in Section 2, the proposed method can be applied with any
link function at each margin. In the simulation studies, we
concentrate on probit link function only for comparison rea-
sons. Different link functions will be explored in SAGE data
analysis. The objective is two-fold. First, we compare the
performance of the three methods in terms of the type I
error rate and power. Three nominal levels of significance,
α = 0.05, 0.01 and 0.001, are used. Second, we examine
and compare the parameter estimates obtained from the two
parametric methods.

4.1 Settings

We generate the multivariate binary traitW following the
Gaussian copula model. We use two sample sizes: 500 and
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1,000. We first generate the environmental covariate X from
normal distribution N(1, 1) and the test-locus genotype G
from the distribution with the following probability mass
function

P (G = 0) = 0.5, P (G = 1) = 0.4, P (G = 2) = 0.1,

which mimics the distribution of SNP biomarker rs1573178
in Gene STXBP1 of Chromosome 9, one of the most interest-
ing findings in previous SAGE data studies. For simplicity,
we only consider L = 2 in this section, and we set

θ =

(
−0.5 0.25 0.5
−0.5 0.25 0.5

)
.

The probability mass function of bivariate trait W can
be written as

P (W (1) = w1,W
(2) = w2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CΦ(1− p1, 1− p2|Γ)
if w1 = 0, w2 = 0

1− p1 − CΦ(1− p1, 1− p2|Γ)
if w1 = 0, w2 = 1

1− p2 − CΦ(1− p1, 1− p2|Γ)
if w1 = 1, w2 = 0

p1 + p2 + CΦ(1− p1, 1− p2|Γ)− 1
if w1 = 1, w2 = 1,

where Γ = ( 1 ρ
ρ 1 ). We set ρ = 0.5 in this section.

For the marginal models, we consider two scenarios with
probit and logit link functions respectively, as

pl = Φ(ηl), pl =
exp(ηl)

1 + exp(ηl)
,

where ηl = αl+βlG+γlX, l = 1, 2. We should note that, in
the scenario with the probit link, both mvProbit and BMP
happen to use the correct link function, which is not the
case with the logit link.

4.2 Results

To evaluate the performance of the tests, we first report
the empirical type I error rate for both scenarios based on
10,000 simulation replications in Table 1. Although gKT
is slightly more conservative, whose type I error is almost
universally smaller than the corresponding α value, all three
methods approximately control the type I error at each nom-
inal level, for both correct and misspecified link scenarios.
For the misspecified link scenario, the probit link (used in
the model fitting) and logit link (used in the data genera-
tion) can be numerically similar [6]. As a result, mvProbit
and BMP perform similarly, and can control their respective
type I error rates.

In Table 2, we summarize the power comparison results
based on 1,000 replications. With the correct link, the power

Table 1. Type I Error Rate in Two Scenarios Based on 10,000
Replications. gKT: nonparametric test based on generalized

Kendall’s Tau. mvProbit: multivariate Probit modeling
approach. BMP: the proposed Bootstrapping Margins method

with Probit link

Scenario Sample
Size

Method
α

0.050 0.010 0.001

Correct n = 500 gKT 0.040 0.007 0.001
Link mvProbit 0.049 0.009 0.001

BMP 0.049 0.011 0.001
n = 1000 gKT 0.042 0.008 0.001

mvProbit 0.049 0.009 0.001
BMP 0.052 0.011 0.002

Misspecified n = 500 gKT 0.045 0.009 0.001
Link mvProbit 0.051 0.010 0.001

BMP 0.051 0.0112 0.001
n = 1000 gKT 0.046 0.009 0.001

mvProbit 0.051 0.012 0.001
BMP 0.054 0.012 0.001

Table 2. Power Comparison in Two Scenarios Based on 1,000
Replications. gKT: nonparametric test based on generalized

Kendall’s Tau. mvProbit: multivariate Probit modeling
approach. BMP: the proposed Bootstrapping Margins method

with Probit link

Scenario
Sample
Size

Method
α

0.050 0.010 0.001

Correct n = 500 gKT 0.808 0.601 0.309
Link mvProbit 0.873 0.722 0.460

BMP 0.875 0.708 0.450
n = 1000 gKT 0.994 0.959 0.820

mvProbit 0.998 0.979 0.906
BMP 0.998 0.976 0.906

Misspecified n = 500 gKT 0.451 0.229 0.062
Link mvProbit 0.488 0.256 0.088

BMP 0.484 0.259 0.087
n = 1000 gKT 0.781 0.552 0.245

mvProbit 0.795 0.584 0.314
BMP 0.788 0.578 0.301

of mvProbit is slightly greater than BMP; however, the dif-
ference fades as the sample size increases. With a misspeci-
fied link, it reduces the power for both mvProbit and BMP.
The two methods perform similarly, and are superior to the
nonparametric gKT method.

Tables 3–4 report the results for the parameter estimates
for the two scenarios, respectively, based on 1,000 replica-
tions. In each replication, we calculate the estimate, the bias,
the standard error (SE), and coverage probability (CP) of
approximately 95% confidence interval of the parameter, us-
ing estimate ±1.96SE. The reported Bias, SE and CP are
averaged across 1,000 simulation runs. We also report Monte
Carlo approximation of the standard deviation (SD) of the
parameter estimate across 1,000 runs. In Table 3, with the
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Table 3. Parameter Estimates Comparison for Correct Link Scenario. mvProbit: multivariate Probit modeling approach. BMP:
the proposed Bootstrapping Margins method with Probit link. Bias: the average of biases across 1,000 simulation runs. SE:
the average of standard errors across 1,000 simulation runs. SD: Monte Carlo approximation of the standard deviation. CP:

coverage probability of approximately 95% confidence intervals

α1 β1 γ1 α2 β2 γ2 ρ

n = 500 mvProbit Bias -0.0034 0.0057 0.0047 -0.0051 0.0073 0.0030 0.0022
SE 0.1031 0.0913 0.0654 0.1028 0.0910 0.0651 0.0623
SD 0.1038 0.0926 0.0662 0.1031 0.0911 0.0654 0.0601

CP(%) 94.7 95.6 94.3 95.7 95.1 95.1 95.5
BMP Bias -0.0029 0.0056 0.0042 -0.0039 0.0068 0.0018

SE 0.1024 0.0907 0.0647 0.1024 0.0906 0.0646
SD 0.1040 0.0928 0.0663 0.1034 0.0913 0.0654

CP(%) 94.1 95.5 94.0 95.2 94.9 94.9

n = 1000 mvProbit Bias -0.0012 0.0024 0.0015 -0.0026 0.0020 0.0029 0.0036
SE 0.0724 0.0640 0.0458 0.0722 0.0639 0.0457 0.0439
SD 0.0729 0.0634 0.0457 0.0719 0.0614 0.0457 0.0460

CP(%) 95.1 95.5 95.2 95.6 96.3 95.2 92.7
BMP Bias -0.0012 0.0024 0.0015 -0.0018 0.0016 0.0021

SE 0.0722 0.0638 0.0456 0.0722 0.0638 0.0456
SD 0.0729 0.0637 0.0458 0.0720 0.0616 0.0459

CP(%) 95.2 95.4 94.8 95.5 96.4 95.2

Table 4. Parameter Estimates Comparison for Misspecified Link Scenario. mvProbit: multivariate Probit modeling approach.
BMP: the proposed Bootstrapping Margins method with Probit link. Bias: the average of biases across 1,000 simulation runs.
SE: the average of standard errors across 1,000 simulation runs. SD: Monte Carlo approximation of the standard deviation.

CP: coverage probability of approximately 95% confidence intervals

α1 β1 γ1 α2 β2 γ2 ρ

n = 500 mvProbit Bias 0.1848 -0.0928 -0.1871 0.1914 -0.0970 -0.1913 0.0014
SE 0.0979 0.0875 0.0600 0.0976 0.0874 0.0597 0.0595
SD 0.1025 0.0886 0.0619 0.1000 0.0893 0.0603 0.0600

CP(%) 51.1 81.3 14.6 50.4 79.8 12.1 94.7
BMP Bias 0.1852 -0.0929 -0.1874 0.1923 -0.0973 -0.1920

SE 0.0975 0.0871 0.0596 0.0974 0.0871 0.0595
SD 0.1027 0.0887 0.0620 0.1002 0.0896 0.0605

CP(%) 50.2 80.9 13.8 49.7 79.7 11.7

n = 1000 mvProbit Bias 0.1931 -0.0958 -0.1907 0.1893 -0.0943 -0.1882 0.0043
SE 0.0689 0.0616 0.0421 0.0688 0.0614 0.0420 0.0419
SD 0.0707 0.0605 0.0421 0.0701 0.0627 0.0418 0.0432

CP(%) 20.6 67.1 0.5 20.6 65.7 0.5 93.2
BMP Bias 0.1932 -0.0958 -0.1908 0.1898 -0.0947 -0.1888

SE 0.0688 0.0615 0.0420 0.0688 0.0615 0.0421
SD 0.0706 0.0605 0.0421 0.0702 0.0628 0.0418

CP(%) 20.6 66.4 0.5 20.5 65.9 0.6

correct link, mvProbit and BMP perform well and similarly,
and the CP is always around 95%. However, in Table 4,
with a misspecified link, the two methods perform similarly
again although not surprisingly, they yield large biases and
unreliable CPs.

In terms of computation time, the benefit from BMP in
the bivariate trait case is not obvious, and it becomes greater
as the dimension of the trait increases. For example, when
we consider a 6-dimension binary trait as presented in Sec-
tion 5, mvProbit uses about 12 times of computing time as
BMP does. We did not investigate the comparison between

BMP and mvProbit for a higher-dimensional-trait case in
this section, mainly due to the computational complexity of
mvProbit, when the dimension is high.

5. APPLICATION TO THE SAGE DATA

5.1 Background

The Study of Addiction: Genetics and Environment
(SAGE) aims to identify susceptible genetic factors that
contribute to substance dependence through a large scale
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Table 5. Descriptive Statistics of Substance Dependence for Each Subpopulation in SAGE. alc: alcohol dependence; coc:
cocaine dependence; mj: marijuana dependence; nic: nicotine dependence; op: opiates dependence; oth: dependence on other

drugs

Subpopulation Total
Substance Dependence

alc(%) coc(%) mj(%) nic(%) op(%) oth(%)

Black Men 535 332(62.1) 248(46.4) 136(25.4) 254(47.5) 44(8.2) 61(11.4)
Black Women 568 224(39.4) 206(36.3) 78(13.7) 271(47.7) 35(6.2) 37(06.5)
White Men 1131 704(62.3) 309(27.3) 285(25.2) 528(46.7) 112(9.9) 203(18.0)
White Women 1393 433(31.1) 174(12.5) 121(08.7) 572(41.1) 67(4.8) 131(09.4)
Overall 3627 1693(46.7) 937(25.8) 620(17.1) 1625(44.8) 258(7.1) 432(11.9)

genomewide association study. The SAGE data include
4,121 European and African Americans for whom the ad-
diction of alcohol, nicotine, marijuana, cocaine, opiates, and
other drugs and genomewide SNP data (ILLUMINA Human
1M platform) are available. The SAGE data set is composed
of three separate studies: the Collaborative Study on the
Genetics of Alcoholism (COGA), the Family Study of Co-
caine Dependence (FSCD), and the Collaborative Genetic
Study of Nicotine Dependence (COGEND). The dependence
of each subject on these six categories of substances was di-
agnosed in accordance with the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition (DSM-IV). The
main results of SAGE data can be accessed from [24], [14],
[21], [4].

We hypothesize that there exist common genetic factors
(SNPs) for the comorbidity including the addiction to all six
categories of substances. We thus use multivariate binary
trait, each representing for whether or not the subject is
addicted to a single substance.

In our study, we exclude 60 duplicate genotype samples
and remove nine subjects with ethnic backgrounds other
than African-origin (black) or European-origin (white). Af-
ter excluding the samples with call rate below 90%, we have
3,627 unrelated subjects for whom we have both genotype
and phenotype data. Motivated by [7], we separate the whole
data set for both race (black or white) and gender (female
or male), to allow for racial and gender specific genetic ef-
fects. The whole data set is composed of: 1,393 white women,
1,131 white men, 568 black women, and 535 black men [7].
We filter SNPs by setting thresholds for call rate (>90%),
minor allele frequency (MAF) (>1%), and Hardy-Weinberg
equilibrium (p-value > 0.001).

5.2 Data analysis

We first provide the substance dependence distribution
by gender and race in Table 5. It can be seen that the de-
pendence to some substances, for example, nicotine depen-
dence, is homogeneous across the four subpopulations, while
other substance dependencies differ by gender (e.g., alcohol
dependence, marijuana dependence) or race (e.g., cocaine
dependence). Therefore, we concur with the strategy of [7]
by examining the association within each of the four racial

and gender groups, removing racial and gender heterogene-
ity.

Following [32], we concentrate on chromosome 9. To in-
corporate the effect of age and population stratification, we
include the first principal component score and age as two
covariates, which constitute the X variable in our model.
We analyze the data using our proposed method with pro-
bit link (BMP), logit link (BML), multivariate probit model
(mvProbit), and the nonparametric method based on gen-
eralized Kendall’s Tau (gKT). The top SNPs with their p-
values are summarized in Table 6, and the genetic associa-
tion coefficients estimates are summarized in Table 7.

Previous animal studies suggested that STXBP1 (an or-
tholog of human STXBP1) may be linked to an alcohol pref-
erence drinking locus on a mouse chromosome [13]. More-
over, more recent studies [25, 8] suggested that mutations
in gene STXBP1 are associated with early infantile epileptic
encephalopathy with suppression-burst (EIEE), also known
as Ohtahara syndrome, which is one of the most severe and
earliest forms of epilepsy. [16] identified that SNP rs1573178
in gene STXBP1 is significant for substance use depen-
dence in black men, although the corresponding p-value,
6.44 × 10−7, is slightly larger than the commonly accepted
genomewide significance level 5× 10−7 [5]. Thus, we specif-
ically assess the association of this SNP with substance de-
pendence. With 200 bootstrap samples, the p-values from
our methods are 7.81×10−7 and 7.24×10−7 when the probit
and logit links are used. The p-values are relatively stable
when we choose more bootstrap samples. We should note
that, the p-values calculated from our method only need an
adjustment for multiple genetic markers across the whole
genome, thus, in this section, we simply compare each sin-
gle p-value with the genomewide significance level, demon-
strated by [5].

PTPRD is another gene that received a great deal of at-
tention in the literature. The protein encoded by this gene is
a member of the protein tyrosine phosphatase (PTP) fam-
ily. In neuroblastoma, PTPRD was identified as a candi-
date tumor suppressor gene [29]. [20] reported that PT-
PRD was associated with nicotine dependence through a
genome wide linkage scan. More recently, through GWAS
approaches, PTPRD was identified to be associated with
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Table 6. SNPs with p-values on Chromosome 9 for Multivariate Substance Dependencies in SAGE. gKT: nonparametric test
based on generalized Kendall’s Tau. mvProbit: multivariate Probit modeling approach. BMP2, BMP5, BMP10: Bootstrapping
Margins method with Probit link and 200, 500, 1,000 bootstrap samples respectively. BML2, BML5, BML10: Bootstrapping

Margins method with Logit link and 200, 500, 1,000 bootstrap samples respectively

SNP MAF Gene
p-values

gKT mvProbit BMP2 BMP5 BMP10 BML2 BML5 BML10

Black Men
rs1573178 0.295 STXBP1 6.44e-07 1.27e-05 7.81e-07 1.79e-06 4.69e-06 7.24e-07 1.52e-06 4.96e-06

Black Women
rs10977327 0.042 PTPRD 3.66e-02 2.78e-02 3.93e-08 3.63e-07 5.04e-07 1.08e-07 1.14e-06 1.60e-06
rs716573 0.068 1.78e-02 4.28e-02 6.62e-07 2.57e-07 4.32e-07 8.90e-07 6.01e-07 8.46e-07
rs2596412 0.019 4.02e-02 1.33e-02 9.42e-07 1.13e-07 6.15e-08 1.35e-06 2.17e-07 1.25e-07

White Women
rs7856948 0.018 PTPRD 6.04e-02 2.20e-02 6.12e-11 1.47e-10 5.05e-12 1.22e-09 2.01e-09 1.08e-10
rs12000151 0.013 7.54e-02 7.01e-01 8.85e-09 1.86e-08 8.19e-09 1.65e-08 4.68e-08 1.52e-08
rs7019602 0.047 C9orf3 3.69e-02 6.48e-02 8.60e-08 1.78e-07 1.36e-07 3.34e-07 6.53e-07 4.96e-07
rs12004497 0.013 PALM2-AKAP2 5.94e-02 4.89e-01 1.09e-07 1.44e-06 2.84e-07 7.05e-08 6.88e-07 1.73e-07
rs1543185 0.020 FBP2 3.19e-02 3.91e-01 1.44e-07 2.36e-07 9.10e-08 2.13e-07 7.85e-07 3.03e-07

smoking cessation success by [31]. Comorbid depressive syn-
drome and alcohol dependence were reported to be associ-
ated with PTPRD in [10]. Based on such mounting evidence,
the PTPRD gene is believed to be strongly associated with
addiction-related traits [10]. Again, we re-evaluate this as-
sociation using our methods.

It turns out that our findings are consistent with the
existing literature. Specifically, based on our bootstrapping
margins approach with the probit link and 1,000 bootstrap
samples, SNP rs10977327 in the PTPRD gene is signifi-
cant in African-origin women (p-value = 5.04 × 10−7) and
SNP rs7856948 in the PTPRD gene is highly significant in
European-origin women (p-value = 5.05×10−12). Note that
no SNP markers in the PTPRD gene are identified to be
significant in the men cohort, indicating a gender specific
effect.

In summary, we successfully identified gene PTPRD as
strongly associated with substance dependence in African-
origin and European-origin women, while other methods
failed to uncover this association. It is worth mention-
ing that this finding is consistent with previous studies,
where PTPRD was found to be associated with alcohol de-
pendence, nicotine dependence, and other addiction-related
traits.

6. DISCUSSION

Modeling multivariate dichotomous outcomes is impor-
tant and challenging. Although a fully parametric approach
is possible in principle, the dependence among the outcomes
makes it complicated to compute the joint likelihood and
obtain the maximum likelihood estimates. We propose a
Gaussian copula model with discrete margins that enables

us to model the binary outcomes jointly, and more distinctly,
separate the estimation of the marginal parameters perti-
nent to each trait from the complicated and unknown de-
pendence structure. This semi-parametric approach utilizes
commonly used link functions including probit and logit for
binary responses in the marginal model, for which there exist
well-tested computational methods and algorithms, avoid-
ing the complications with the joint likelihood. Not only
do we obtain consistent estimates for the marginal param-
eters, but also we adopt the bootstrap method to obtain
consistent variance estimation based on the marginal pa-
rameter estimates. While we present our method for mul-
tivariate binary outcomes, we expect it can be extended to
analyze a hybrid of continuous and discrete outcomes. The
specific development warrants a separate effort in the fu-
ture.

Our simulation studies demonstrate that our proposed
method and mvProbit perform similarly and the difference
is negligible for both power and parameter estimation com-
parisons, regardless of whether the correct link function is
used. This is reassuring because the advantage of our pro-
posed method is to dramatically reduce the computation
without compromising the performance. Our simulation re-
sults suggest that we accomplished this objective.

As expected, our proposed method is computationally
more efficient when the dimension of the trait increases, as
evident from the analysis of the SAGE data. Compared to
parametric mvProbit, our method is 12 times faster; and
compared to nonparametric gKT, our method provides ad-
ditional and essential results that are not available from the
nonparametric test. Specifically, our method estimates the
strength and direction of the association as well as its pre-
cision. Besides, our method is convenient for real data anal-
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Table 7. Genetic Association Coefficients Estimates Comparison for SNPs on Chromosome 9

SNP Gene alc coc mj nic op oth

Black Men
rs1573178 STXBP1 mvProbit Est -0.134 0.146 0.149 0.270 0.062 0.370

SE 0.089 0.089 0.094 0.090 0.143 0.120
BMP Est -0.111 0.145 0.148 0.265 0.057 0.375

SE 0.087 0.086 0.092 0.086 0.123 0.110
BML Est -0.179 0.232 0.255 0.423 0.122 0.711

SE 0.139 0.138 0.156 0.139 0.245 0.205
Black Women

rs10977327 PTPRD mvProbit Est -0.566 -0.190 -1.266 -0.418 0.001 0.020
SE 0.242 0.221 0.532 0.197 0.493 0.359

BMP Est -0.547 -0.200 -0.978 -0.404 0.002 0.006
SE 0.212 0.202 0.415 0.195 0.295 0.297

BML Est -0.906 -0.329 -2.102 -0.655 0.005 0.021
SE 0.366 0.338 1.019 0.319 0.617 0.618

rs716573 mvProbit Est -0.444 -0.342 -0.003 -0.337 -1.015 -0.831
SE 0.175 0.162 0.220 0.165 0.497 0.375

BMP Est -0.443 -0.326 0.065 -0.316 -0.743 -0.780
SE 0.166 0.165 0.191 0.157 0.398 0.400

BML Est -0.726 -0.543 0.114 -0.504 -1.714 -1.779
SE 0.280 0.277 0.351 0.254 1.020 1.021

rs2596412 mvProbit Est -0.337 -0.655 0.277 -0.526 -1.693 -0.043
SE 0.903 0.987 1.555 0.500 0.794 2.858

BMP Est -0.156 -0.125 0.593 -0.417 -0.167 -0.147
SE 0.292 0.300 0.306 0.292 0.483 0.483

BML Est -0.253 -0.211 1.035 -0.672 -0.343 -0.319
SE 0.478 0.499 0.516 0.477 1.052 1.054

White Women
rs7856948 PTPRD mvProbit Est -0.881 0.186 -0.143 -0.403 -0.495 -0.579

SE 0.314 0.292 0.316 0.203 0.495 0.386
BMP Est -0.682 0.207 -0.021 -0.389 -0.383 -0.438

SE 0.231 0.219 0.266 0.193 0.420 0.326
BML Est -1.230 0.351 -0.044 -0.633 -0.870 -0.925

SE 0.440 0.400 0.534 0.322 1.021 0.729
rs12000151 mvProbit Est -0.182 -0.284 -0.497 -0.314 -0.371 0.309

SE 0.251 0.406 0.421 0.244 0.445 0.332
BMP Est -0.141 -0.160 -0.601 -0.275 -0.346 0.290

SE 0.221 0.277 0.424 0.215 0.443 0.246
BML Est -0.229 -0.287 -1.345 -0.445 -0.712 0.528

SE 0.369 0.526 1.011 0.352 1.008 0.443
rs7019602 C9orf3 mvProbit Est -0.230 -0.088 0.221 -0.044 -0.806 0.013

SE 0.130 0.149 0.161 0.120 0.391 0.171
BMP Est -0.223 -0.080 0.234 -0.048 -0.832 0.019

SE 0.123 0.148 0.144 0.114 0.377 0.153
BML Est -0.367 -0.154 0.425 -0.078 -1.972 0.028

SE 0.208 0.281 0.270 0.184 1.008 0.298
rs12004497 PALM2-AKAP2 mvProbit Est 0.023 -0.311 -0.235 0.149 0.686 -0.237

SE 0.242 0.341 0.385 0.240 0.411 0.332
BMP Est 0.079 0.079 0.026 0.147 0.760 0.026

SE 0.218 0.257 0.289 0.213 0.251 0.283
BML Est 0.139 0.167 0.094 0.235 1.494 0.056

SE 0.354 0.462 0.546 0.341 0.450 0.542
rs1543185 FBP2 mvProbit Est 0.107 0.146 -0.648 -0.092 0.100 -0.744

SE 0.184 0.209 0.391 0.182 0.269 0.466
BMP Est 0.119 0.130 -0.719 -0.074 0.135 -0.787

SE 0.180 0.217 0.406 0.177 0.283 0.409
BML Est 0.201 0.242 -1.630 -0.121 0.217 -1.736

SE 0.293 0.397 1.016 0.287 0.612 1.014
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ysis. We allow different link functions for different margins,
if necessary and reasonable for the data.

Lastly, we analyze one single SNP each time in our pro-
posed method. The generalization to incorporating multi-
ple SNPs warrants further effort in the future. Addition-
ally, an application of our method to the SAGE data re-
veals some significant SNP markers in the genes C9orf3,
PALM2-AKAP2 and FBP2, that have not been reported
before, demonstrating the usefulness of the proposed para-
metric framework in genetic association studies.
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