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Involvement of astrocyte metabolic coupling in
Tourette syndrome pathogenesis

Christiaan de Leeuw1,2, Andrea Goudriaan3, August B Smit3, Dongmei Yu4, Carol A Mathews5,
Jeremiah M Scharf4,6, Tourette Syndrome Association International Consortium for Genetics7,10,
Mark HG Verheijen*,3,11 and Danielle Posthuma*,1,8,9,11

Tourette syndrome is a heritable neurodevelopmental disorder whose pathophysiology remains unknown. Recent genome-wide

association studies suggest that it is a polygenic disorder influenced by many genes of small effect. We tested whether these

genes cluster in cellular function by applying gene-set analysis using expert curated sets of brain-expressed genes in the current

largest available Tourette syndrome genome-wide association data set, involving 1285 cases and 4964 controls. The gene sets

included specific synaptic, astrocytic, oligodendrocyte and microglial functions. We report association of Tourette syndrome with

a set of genes involved in astrocyte function, specifically in astrocyte carbohydrate metabolism. This association is driven

primarily by a subset of 33 genes involved in glycolysis and glutamate metabolism through which astrocytes support synaptic

function. Our results indicate for the first time that the process of astrocyte-neuron metabolic coupling may be an important

contributor to Tourette syndrome pathogenesis.

European Journal of Human Genetics (2015) 23, 1519–1522; doi:10.1038/ejhg.2015.22; published online 4 March 2015

INTRODUCTION

Tourette syndrome is a childhood-onset neuropsychiatric disorder
characterized by chronic, repetitive involuntary movements and
vocalizations, that is, motor and vocal tics. Although genetic factors
play an important role in the etiology of Tourette syndrome, and
results from twin and family studies have indicated strong familiality,1

the underlying pathophysiology is still unclear.2 Identifying genetic
factors and associated biological mechanisms would be a major step
forward, and could provide putative hallmarks for treatment.
To date, only one Tourette syndrome genome-wide association

study (GWAS) has been published.3 Their top signal was in the
COL27A1 gene with P= 1.85× 10− 6, and there were no genetic
variants that reached genome-wide significance. In addition, candidate
genes from earlier, smaller-scaled candidate gene studies were not
replicated, suggesting that these genes are either not causally related to
Tourette syndrome or are only important in specific subtypes of
Tourette syndrome. A recent study demonstrated that Tourette
syndrome is polygenic and likely influenced by hundreds, possibly
thousands, of genetic variants with small effects, and that 475% of
Tourette syndrome heritability is captured by common genetic
variants included in GWAS chips.4 An important question that arises
from this polygenic nature is whether these thousands of genes of
small effect cluster across cellular function or whether they are

distributed randomly across function. Gene-set analysis, which eval-
uates the combined effect of multiple genetic variants, has been
proposed as an efficient method to test functional clustering by
identifying sets of functionally related genes underlying polygenic
disorders.5 In the present study, we applied gene-set analysis for
Tourette syndrome using the current largest available Tourette
syndrome GWAS data set to elucidate the genetic factors involved in
Tourette syndrome. As Tourette syndrome is assumed to be a brain
disorder, we restricted ourselves to cellular function related to genes
expressed in the brain, and tested sets of genes involved in specific
synaptic, astrocytic, oliogodendrocyte and microglial functions.

MATERIALS AND METHODS

Subjects and quality control
The gene-set analysis was performed on the raw GWAS genotype data as

described in Scharf et al.3 Subject inclusion criteria required a Tourette

syndrome Classification Study Group diagnosis of definite Tourette syndrome

(a DSM-IV-TR diagnosis of Tourette syndrome plus tics observed by an

experienced clinician),6 and available genomic DNA were extracted either from

blood or cell lines. Exclusion criteria consisted of a history of intellectual

disability, tardive tourettism or other known genetic, metabolic or acquired tic

disorders. European ancestry controls were derived primarily from cohorts of

previously genotyped, unselected population controls, as previously described.3
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Principal components computed from the data were used to control for
population stratification. After quality control, the full data set contained 1285
cases and 4964 controls, divided into three samples according to genetic
ancestry: European ancestry, non-isolates (778 cases, 4414 controls) from
North America and Europe; Ashkenazi Jewish (242 cases, 354 controls) from
the US and Israel; and French Canadian (265 cases, 196 controls). Quality
control was the same as for Scharf et al, except with more stringent SNP filters
(removing SNPs with: MAFo0.01 or HWE P-valueo1e-4 for the European
non-isolate sample; MAFo0.05 or HWE P-valueo1e-3 for the Ashkenazi/
French Canadian isolate samples).

Genotyping and annotation
Genotyping was conducted on the Illumina Human610-Quadv1_B SNP array
for the majority of the subjects and on the Illumina HumanCNV370-Duo_v1
for 148 cases. Annotation of SNPs to genes was based on NCBI human
assembly build 37.3 and dbSNP release 135. SNPs were assigned to genes when
they lay between the transcription start and stop sites, with no window around
the gene.

Gene-set creation
Because of the neuropsychiatric nature of Tourette syndrome, the gene-set
analysis focussed on brain cell-specific gene sets, which were taken from
previously published, expert curated gene sets. A total of 96 gene sets containing
4666 different brain-expressed genes were used, divided into four cell-based
groups representing synaptic (neuronal), astrocyte, oligodendrocyte and
microglia function.
The synaptic gene sets were taken from Ruano.7 These were defined on the

basis of assignment of subcellular function as determined by previous synaptic
protein purification experiments and data mining for synaptic genes and gene
function, where genes were considered ‘synaptic’ on the basis of proteomic
analysis of synaptic preparations.8–11 This resulted in a subdivision into 17
functional synaptic gene sets, plus one additional gene set of otherwise
unassigned synaptic genes.
Glial gene sets (oligodendrocyte, astrocyte and microglial sets) were taken

from Goudriaan.12 Goudriaan et al conducted an in-depth literature study to
select astrocyte, oligodendrocyte and microglia genes on the basis of microarray
gene expression patterns. Specificity was further increased by removing overlap
between the three glial cell types, as well as removing general neuronal genes.
The resulting lists of cell-specific genes were then subdivided into gene sets
using the Gene Ontology biological process annotations, resulting in 30
astrocytic, 29 oligodendrocytic and 19 microglial hierarchically organized
gene sets.

Statistical analysis
The gene-set analysis was conducted using JAG.13 First, a self-contained test
was performed for each gene set, testing for the evidence of association with
Tourette syndrome, under the null hypothesis of no association. For gene sets
found to be significant after correction for multiple testing, a competitive test
was performed to test whether the observed association was stronger than
expected by chance for gene sets of the same size. P-values were computed
using at least 15 000 permutations for the self-contained tests, and 150 random

matched gene sets (with at least 15 000 permutations each) for the competitive
test. In addition, the impact of each gene on the gene-set association was
assessed, by computing the change in association when removing that gene
from the analysis.
Analyses were performed separately for each of the three ancestry groups

described above. The resulting P-values were combined using Stouffer’s Z-score
method,14 weighted by the square root of the sample size. Bonferroni
correction (and a significance threshold of α= 0.05 for corrected P-values)
was used within each of the four cell-type-based groups, to compensate for
multiple testing.

RESULTS

Gene-set analysis of the synaptic, oligodendrocytic and microglial gene
sets uncovered no significant association with Tourette syndrome
(Supplementary Tables S1–S3). However, within the astrocyte group, a
single gene set, representing the astrocyte carbohydrate metabolism
pathway, was found to be significantly associated with Tourette
syndrome risk in the self-contained test (corrected P= 0.04;
Supplementary Table S4). The secondary competitive test was also
significant (P= 0.0067, based on 150 random matched gene sets).
A follow-up analysis was performed to determine whether the

association signal of the astrocyte carbohydrate metabolism gene set
might be concentrated within a subset of genes with more specific
function. For this purpose, the 85 genes in the gene set were subjected
to manual data mining based on published data. This resulted in
further specification of this gene set into three specific subprocesses
related to (i) astrocyte-neuron metabolic coupling (ANMC; 33 genes,
coding for enzymes or transporters involved in glycolysis or glutamine
metabolism), (ii) extracellular matrix (EM; 10 genes, coding for ECM
proteins or proteins that modify ECM) and (iii) glycosylation (GS; 29
genes, coding for enzymes involved in biosynthesis or degradation of
glycoproteins); the 15 remaining genes were combined into a fourth
‘miscellaneous’ subset (see Supplementary Table S5). Gene-set analysis
of these four subsets showed that the association was localized to the
33 genes comprising the ANMC gene set, with a corrected P-value of
0.011 for the self-contained test, and P= 0.0067 for the competitive
test (Table 1).
We further assessed the effect of each of the 33 genes on the gene-

set association (Table 2 and Supplementary Table S6). The results
show that none of the individual genes would have survived correction
for multiple testing, suggesting that the association of the ANMC gene
set is not driven by a single gene but rather is due to the combined
effect of multiple genes of similar function.

DISCUSSION

We set out to test the hypothesis that the many genes of small effect
thought to underlie Tourette syndrome are clustered across cellular
function. Despite the relative modest sample size, our gene-set analysis

Table 1 Results for association with Tourette syndrome from gene-set analyses for four specific subgroups of the astrocyte carbohydrate

metabolism gene set

Gene set No. of genes No. of SNPs Corrected self. P Competitive P

Astrocyte carbohydrate metabolism 85 1200 0.0402 0.0067

Astrocyte-neuron metabolic coupling 33 276 0.0106 0.0067

Extracellular matrix 10 345 0.117 —

Glycosylation 29 385 1 —

Miscellaneous 15 306 1 —

Abbreviations: corrected self. P, P-value from the self-contained test corrected for multiple testing; competitive P, P-value from competitive test. Note that competitive tests were only conducted and
interpreted for gene sets that survived multiple testing on the self-contained test.
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revealed a significant association between the astrocyte carbohydrate
metabolism pathway and Tourette syndrome. Competitive testing
showed that this gene set was more strongly associated to Tourette
syndrome than expected for a gene set of that size. This association
could be further narrowed down to the ANMC subprocess, and we
showed the effect of this gene set was not because of an effect of a
single gene, but was because of an overall, combined effect of many
genetic variants of small effect. This is the first study to point to the
involvement of ANMC function in Tourette syndrome, probably
through altered glycogen and glutamate/GABA metabolism, and in
line with previously hypothesized mechanisms underlying Tourette
syndrome pathogenesis that involve perturbations in the balance
between excitatory glutamatergic and inhibitory GABAergic transmis-
sion within regulatory cortico-striato-thalamocortical circuits.15–17

The ANMC gene set contains astrocyte-enriched genes involved in
various energy metabolism processes that support synaptic function18

(Figure 1). First, whereas neurons have a low glycolytic rate, astrocytes
actively take up glucose from the circulation, store it as glycogen and
subsequently convert glycogen to lactate for release into neurons
under neuronal command.18 The ANMC gene set contains GBE1,

PGM3, PYGM and PYGB, coding for enzymes involved in glycogen
storage; PPP1RA1, coding for a protein involved in hormonal control
of glycogen metabolism; and PFKFB3 and ENO1, coding for glycolytic
enzymes for the production of pyruvate and subsequently lactate.
Second, astrocytes take up glutamate (or to a lesser extent GABA)

from the synaptic cleft using astrocyte-specific glutamate transporters.
A small portion of this glutamate is used in the astrocyte TCA cycle for
oxidative energy metabolism and for the production of pyruvate and
lactate, in a manner proportional to extracellular glutamate
concentration.19 The larger portion of glutamate is converted to
glutamine and shuttled back to neurons for conversion into glutamate
(or GABA), independent of extracellular glutamate concentrations and
astrocyte energy status.20 The ANMC gene set also contains CPS1 and
ALDH5A1, coding for enzymes involved in glutamine and GABA
metabolism, respectively; the genes coding for TCA cycle enzymes
MDH2, CS and IDH2; and for the key enzyme ME1, which links the
TCA cycle with the glycolytic pathway. Interestingly, astrocyte
glutamate uptake is known to drive glycolysis and subsequent shuttling
of lactate to neurons.6

Tight regulation of neuronal energy supply by astrocytes in response
to synaptic activity is crucial for proper neuronal function.18,20 Thus,
genetic alterations in glycolysis and glutamate metabolism can have
profound influences on astrocyte modulation of synapse function.
Such perturbations in the balance between excitatory glutamatergic
and inhibitory GABAergic transmission within regulatory cortico-
striato-thalamocortical circuits have long been hypothesized as a core
defect in Tourette syndrome pathogenesis.15–17 Taken together, our
findings highlight an often underestimated function of astrocytes in
supporting synaptic function and suggest that abnormalities in this
process may contribute to the etiology of Tourette syndrome.
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Gene P-values are not corrected for multiple testing. The impact reflects the decrease in
gene-set significance if that gene is removed from the gene set (positive impact means the
gene-set P-value increases if the gene is removed, negative impact that the gene-set
P-value decreases).

Figure 1 Schematic overview of the astrocyte-neuron metabolic coupling
gene set, showing genes positively contributing to the gene-set association
with Tourette syndrome. Genetic alterations in astrocyte-neuron metabolic
coupling may have downstream effects on various neuronal energy
metabolism processes, particularly at synapses: (1) glycolysis-dependent
lactate release to the synapse where it is used for ATP generation and (2)
glutamate (or GABA) uptake from the synaptic cleft by astrocytes where one
part is converted to glutamine and returned to neurons for conversion back
to glutamate (or GABA), and another part is used for production of pyruvate
and lactate. See main text for further explanation.
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