
lable at ScienceDirect

Journal of Psychiatric Research 71 (2015) 1e7
Contents lists avai
Journal of Psychiatric Research

journal homepage: www.elsevier .com/locate/psychires
Genetic variants in the CPNE5 gene are associated with alcohol
dependence and obesity in Caucasian populations

Ke-Sheng Wang a, *, Lingjun Zuo b, Yue Pan c, Changchun Xie d, Xingguang Luo b, e

a Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
b Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
c Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
d Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
e Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
a r t i c l e i n f o

Article history:
Received 25 June 2015
Received in revised form
3 September 2015
Accepted 10 September 2015

Keywords:
Alcohol dependence
Obesity
CPNE5
Calcium
Polymorphism
Haplotype
Meta-analysis
Pleiotropic effect
* Corresponding author. Department of Biostatistics
Public Health, East Tennessee State University, PO Bo
City, TN 37614-1700, USA.

E-mail address: wangk@etsu.edu (K.-S. Wang).

http://dx.doi.org/10.1016/j.jpsychires.2015.09.008
0022-3956/© 2015 Elsevier Ltd. All rights reserved.
a b s t r a c t

Alcohol addiction may increase the risk of obesity due to shared genetic components. The Copine V
(CPNE5) gene is involved in Ca2þ binding and may play an important role in the development of the
central nervous system. This study tested the genetic associations of 77 single-nucleotide poly-
morphisms (SNPs) within the CPNE5 gene with alcohol dependence (AD) and obesity using a Caucasian
sample e The Study of Addiction e Genetics and Environment (SAGE) sample (1066 AD cases and 1278
non-AD controls, 422 obese cases and 1395 non-obese controls). The Marshfield sample (1442 obese
cases and 2122 non-obese controls) was used for replication of obesity. Multiple logistic regression
analysis was performed using the PLINK software. In the SAGE sample, we identified 10 SNPs associated
with AD and 17 SNPs associated with obesity (p < 0.05). Interestingly, 6 SNPs (rs9986517, rs9470387,
rs3213534, rs10456444, rs3752482, and rs9470386) were associated with both AD (OR ¼ 0.77, 0.77, 0.83,
0.84, 0.79 and 1.14, respectively; p ¼ 9.72 � 10�5, 1.1 � 10�4, 4.09 � 10�3, 5.26 � 10�3, 1.59 � 10�2, and
3.81 � 10�2, respectively) and obesity (OR ¼ 0.77, 0.77, 0.78, 0.77, 0.68 and 1.18, respectively;
p ¼ 2.74 � 10�3, 2.69 � 10�3, 2.45 � 10�3, 1.01 � 10�3, 5.18 � 10�3 and 3.85 � 10�2, respectively). In the
Marshfield sample, rs3752480 was associated with obesity (p ¼ 0.0379). In addition, four SNPs
(rs9986517, rs10456444, rs7763347 and rs4714010) showed associations with obesity in the meta-
analysis using both samples (p ¼ 0.00493, 0.0274, 0.00346, and 0.0141, respectively). These findings
provide the first evidence of common genetic variants in the CPNE5 gene influencing both the AD and
obesity; and will serve as a resource for replication in other populations.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Alcohol consumption is the third leading risk factor globally for
disease burden, and harmful use of alcohol leads to 2.5 million
deaths worldwide every year (WHO, 2010). In the United States
(US), 71% of the general US aged 18 or older reported that they
drank in the past year. One quarter (24.6%) reported engaging in
binge drinking, and 7.1% reported heavy drinking in the past month
(SAMHSA, 2012). Based on the 2009e2010 National Health and
Nutrition Examination Survey (NHANES) data, the age-adjusted
and Epidemiology, College of
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obesity prevalence among US adults 20 years and older was
35.7% (Flegal et al., 2012), with the absolute numbers of obese in-
dividuals globally projected to surpass 1.12 billion by 2030 (Kelly
et al., 2008). Previous epidemiological data suggest that moderate
alcohol intake may protect against obesity, particularly in women,
whereas higher consumption including binge-drinking may in-
crease the risk of obesity (Wilson, 2010; Yeomans, 2010;
Wakabayashi, 2014). Results are inconsistent, however. For
example, one study suggested that heavy drinking was not related
to obesity (Adachi et al., 2000), with another study reporting
frequent drinking was associated with reduced odds of obesity
(Rohrer et al., 2005). Using the 1988e1994 NHANES data in the
non-smoking US adult population, the odds of overweight and
obesity were significantly higher among binge drinkers and those
consuming four or more drinks/day. However, those who reported
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drinking one or two drinks per day, or less than five drinks per
week, had decreased odds of obesity (Arif and Rohrer, 2005). One
recent study using the NHANES registry of 1999e2002 suggested
potential gender differences in the link between alcohol con-
sumptionand obesity. Binge drinking was associated with signifi-
cantly higher odds of obesity, for both males and females, however,
moderate drinking (3 drinks/day in females and 4 drinks/day in
males) was associated with increased odds of obesity in females,
but decreased odds of obesity in males (Chakraborty, 2014).

Alcohol dependence (AD) is a psychiatric diagnosis evidenced
by physical or psychological dependence on alcohol. According to
the Diagnostic and Statistical Manual of Mental Disorders (DSM) IV
criteria for AD, at least three out of seven of the following criteria
must be manifest during a 12-month period: tolerance, withdrawal
symptoms, use in larger amounts or for longer periods than
intended, persistent desire, loss of control, reduction or cessation of
social, occupational and recreational pursuits, continued use
despite knowledge of alcohol-related harm. (http://www.
alcoholcostcalculator.org/business/about/dsm.html). Among
American adults, approximately 12% have had an AD problem in
their lifetime, with 4% classified as having an AD problem in the
previous 12-months (Hasin et al., 2007). Family, twin, and adoption
studies have indicated that genetic and environmental factors, as
well as their interactions, all contribute to the development of AD,
with a heritability of more than 0.5 (Heath et al., 1997; Schuckit,
2000; Goldman et al., 2005; Bierut et al., 2010). Recently, several
genome-wide association studies (GWAS) have been completed
and a number of candidate genes have been found to be associated
with the risk of AD and alcohol consumption (e.g., Bierut et al.,
2010; Edenberg et al., 2010; Schumann et al., 2011; Wang et al.,
2011; Zuo et al., 2012; Gelernter et al., 2014).

Binge eating disorder, and overeating as an addictive disorder,
are also psychiatric disorders in DSM-V and are often comorbid
with obesity (James et al., 2004; Volkow and O'Brien, 2007;
American Psychiatric Association, 2013). Alcohol addiction may
also be comorbid with obesity, and those with AD may be at
increased risk of obesity due to shared genetic components (Wang
et al., 2013).

The Copine V (CPNE5) (also known as CPN5, COPN5) gene is
located at 6p21.2 (Creutz et al., 1998; Tripodis et al., 1998). Copines
are a family of calcium-dependent lipid-binding proteins
comprised of 2 N-terminal C2 domains (C2Ds) and a C-terminal A
domain. The C2Ds contain aspartate residues important for calcium
and phospholipid binding (Ramsey et al., 2008). The CPNE5 is one
of several genes that encode a calcium-dependent protein con-
taining two N-terminal type II C2 domains and an integrin A
domain-like sequence in the C-terminus. A recent study showed
that CPNE5 is expressed in both neural progenitor cells and the
differentiated neurons during the neural development, suggesting
that CPNE5 might play an important role in the development of the
central nervous system (Ding et al., 2008). Although alcohol's ef-
fects on the central nervous system, including neuro-cognitive
deficits, neuronal injury and neurodegeneration, are well docu-
mented, the biological and genetic mechanisms remain elusive
(Mukherjee, 2013). Hence, CPNE5 is a suitable candidate gene for
study in AD. In the present study, we hypothesized that CPNE5
plays a role in AD, with some genetic variants within the CPNE5
gene potentially associated with both AD and obesity. This study
explored the associations of 77 single-nucleotide polymorphisms
(SNPs) within the CPNE5 gene with both AD and obesity in The
Study of Addiction e Genetics and Environment (SAGE) sample
(1066 AD cases and 1278 non-AD controls, 422 obese cases and
1395 non-obese controls). The Marshfield sample (1442 obese
cases and 2122 non-obese controls) was used for replication of
obesity.
2. Materials and methods

2.1. Samples

2.1.1. The SAGE sample
SAGE is a comprehensive genome-wide association study

(GWAS) of approximately 4000 unrelated subjects of European and
AfricaneAmerican descent. It was funded as part of the Gene
Environment Association Studies (GENEVA) initiative supported by
the National Human Genome Research Institute (dbGaP study
accession phs000092.v1.p1). Cases used for this report were 1066
Caucasian subjects with the primary phenotype of a lifetime history
of AD using DSM-IV criteria (Bierut et al., 2010). Controls consisted
of 1278 Caucasian subjects who had used alcohol, but never diag-
nosed as having AD or drug dependence (DD) (due to the likely
genetic overlap between AD and DD). A subset of 1817 individuals
had height (in inches) and weight (in pounds), with body mass
index (BMI) calculated by dividing weight in pounds by height in
inches squared and multiplying by a conversion factor of 703.
Obesity was determined as a body mass index (BMI) � 30 (WHO,
1998). The SAGE sample contains about 1 million Illumina SNPs.
Samples were genotyped at the Johns Hopkins Center for Inherited
Disease Research (CIDR). Genotypingwas performed using Illumina
Human1Mv1_C BeadChips and the Illumina Infinium II assay pro-
tocol (Gunderson et al., 2006). Allele cluster definitions for each
SNP were determined using Illumina BeadStudio Genotyping
Module version 3.1.14 and the combined intensity data from the
samples. A SNP call rate of 98% was required. Within the CPNE5
gene, 77 SNPs in the SAGE sample were available.

2.1.2. The Marshfield sample
The Marshfield sample produced publicly available data from “A

Genome-Wide Association Study on Cataract and HDL in the
Personalized Medicine Research Project Cohort” - Study Accession:
phs000170.v1.p1 (dbGaP). The primary goals of this project are to
develop and validate electronic phenotyping algorithms, to accu-
rately identify cases and controls while maintaining a positive
predictive value (PPV) of >95%, and to conduct a genome-wide
association study that advances the understanding of two specific
yet interrelated disease states, while simultaneously engaging the
community in these research efforts. The details about these sub-
jects were described elsewhere (McCarty et al., 2005, 2008). While
AD status was not available in the Marshfield sample, for the 3564
Caucasian individuals available, all of had height (in centimeters)
and weight (in kilograms), allowing for calculation of BMI and
determination of obesity status. Genotyping data using the ILLU-
MINA Human660W-Quad_v1_A was available foe the entire sam-
ple, with samples genotyped at the Johns Hopkins Center for
Inherited Disease Research (CIDR). Within the CPNE5 gene, 59 SNPs
were available.

2.2. Statistical analyses

HAPLOVIEW software was used for quality control (Barrett et al.,
2005). First, HardyeWeinberg equilibrium (HWE) was tested for all
of the SNPs in controls. Then, minor allele frequency (MAF) was
determined for each SNP. Third, the linkage disequilibrium (LD)
structure based on D0 values was constructed. For the SAGE sample,
logistic regression analysis of AD and obesity separately, adjusted
for age and sex, was performed. For the Marshfield sample, logistic
regression analysis of obesity, adjusted for age and sex, was con-
ducted. The asymptotic p-values for the logistic regression models
were calculated while the odds ratio (OR) and its standard error
were estimated using PLINK v1.07 (Purcell et al., 2007). Since the
two samples shared the same genotyping platform, results for
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obesity were directly meta-analyzed by combining the separate
results of obesity from two samples (OR and standard error of OR)
into overall effects. For this meta-analysis of the two datasets, the
basic meta-analysis function in PLINK was applied. Fixed-effect
meta-analysis p-value and fixed-effect ORs were estimated. The
between-study heterogeneity was tested by the c2-based
Cochrane's Q statistic (Higgins and Thompson, 2002). Haplotype
analyses of AD and obesity were separately performed in the SAGE
sample using the PLINK software.

3. Results

3.1. Genotype quality control and descriptive statistics

All 77 SNPs in the SAGE sample and 59 SNPs in the Marshfield
sample were in HWE in the controls (p > 0.01). Participant char-
acteristics for two samples are presented in Table 1. There were
more obese females than males in both cases and controls in both
samples, as well as within AD controls in the SAGE sample. How-
ever, there were more males than females among AD cases in the
SAGE sample. The mean ages for the Marshfield sample were
substantially higher than those in the SAGE sample.

3.2. Association with alcohol dependence in the SAGE sample

Single marker analysis showed that 10 SNPs within the CPNE5
gene in the SAGE sample were associated with AD (p < 0.05)
(Table 2). The top three SNPs showing significant associations with
AD were rs9986517, rs9470387, and rs929051 (OR ¼ 0.77, 95%
CI¼ 0.68e0.88 with p¼ 9.72� 10�5; OR¼ 0.77, 95%CI¼ 0.68e0.88
with p ¼ 1.1 � 10�4; and OR ¼ 1.24, 95%CI ¼ 1.10e1.4 with
p ¼ 5.18 � 10�4, respectively). Results remained significant after
Bonferroni correction (a ¼ 0.05/77 ¼ 6.49 � 10�4). Haplotype an-
alyses showed the T-C haplotype from rs9986517 and rs1064827
(D' ¼ 1.0 between two SNPs in Fig. 1) was significantly associated
with AD (p ¼ 9.79 � 10�5) (Table 3).

3.3. Association with obesity in the SAGE sample

A total of 17 SNPs associated with obesity were identified in the
SAGE sample (p < 0.05) (Table 2). The most significant SNP for
obesity was rs10456444 followed by rs3213534 and rs9470387.
Haplotype analysis showed the CeC haplotype from rs1064827 and
rs10456444 (D' ¼ 1.0 between two SNPs in Fig. 1) was significantly
associated with obesity (Table 4).

3.4. Replication study of obesity and meta-analysis

In the Marshfield sample, single marker analysis showed that
rs3752480 was associated with obesity (p ¼ 0.0379) (data not
shown). We then focused on the 21 SNPs associated with AD or
Table 1
Descriptive characteristics of cases and controls.

SAGE sample

ADa Control Obesity

Number 1066 1278 422
Sex, N (%)
Males 646 (61%) 376 (29%) 179 (42
Females 420 (39%) 902 (71%) 243 (58

Age, years
Mean ± SD 38.1 ± 9.9 38.6 ± 9.4 41.1 ±
Range 18e77 18e65 22e65

a AD: Alcohol dependence.
obesity in the SAGE sample (Table 2). Among the 21 SNPs in Table 2,
16 SNPs overlapped in both samples. Four SNPs (rs929051,
rs7763347, rs763046, and rs4714010) were associated with obesity
in the Marshfield sample with borderline significance
(0.05 � p � 0.10). In addition, four SNPs (rs9986517, rs10456444,
rs7763347 and rs4714010) were associated with obesity in the
meta-analysis of the SAGE and Marshfield samples (Table 2).

3.5. Shared SNPs among alcohol dependence and obesity

Table 2 shows that 6 SNPs in the SAGE sample (rs9986517,
rs9470387, rs3213534, rs10456444, rs3752482, and rs9470386)
were associated with both AD and obesity. In addition, 2 SNPs
(rs9986517 and rs10456444) associated with AD in the SAGE
sample also revealed associations with obesity in the meta-analysis
of the two samples (OR ¼ 0.88 and 0.91, respectively;
p ¼ 4.93 � 10�3 and 2.74 � 10�2, respectively). The allele effects of
these 6 SNPs on AD and obesity all have the same directions.

4. Discussion

To our knowledge, no studies investigating associations of
CPNE5 polymorphisms with comorbid AD and obesity have been
published. In this study, we identified 10 SNPs associated with AD
and 17 SNPs associated with obesity in the SAGE sample. Interest-
ingly, 6 SNPs (rs9986517, rs9470387, rs3213534, rs10456444,
rs3752482, rs9470386) were associated with both AD and obesity
in the SAGE sample; while 2 of the 6 SNPs (rs9986517 and
rs10456444) also showed associations with obesity in the meta-
analysis of two samples. Haplotype analyses further supported
the single-marker analysis results of AD and obesity in the SAGE
sample. In addition, some of the obesity results in the SAGE sample
were replicated in the Marshfield sample and meta-analysis.

The CPNE5 gene is one of the genes in a family of calcium-
dependent lipid-binding proteins comprised of 2 N-terminal C2
domains (C2Ds) and a C-terminal A domain. It has been reported
that the C2 domains of CPNE5 are capable of Ca2þ binding (Tomsig
et al., 2003; Cho and Stahelin, 2006; Hurley, 2006), which plays a
key role in the development of the nervous system. For example,
Ca2þ is a second messenger in neuronal signal transduction and is
implicated in many processes, especially apoptosis (Nutt et al.,
2002). Studies have demonstrated that CPNE5 transcripts are
abundant during the development of embryonic mouse brain, and
may play an important role during neurogenesis (Ding et al., 2008).
A recent study showed that CPNE5 is implicated in synaptic func-
tion, behavioral plasticity, or resource constraint and is moderately
expressed in the adult mouse striatum (D'Amours et al., 2011).
Furthermore, previous work reveals a possible association of
alcohol tolerance with increased synaptic Ca2þ sensitivity (Lynch
and Littleton, 1983), with alcohol potentially leading to calcium
ion (Ca2þ) overload (Altura and Altura, 1994). Further studies reveal
Marshfield sample

Control Obesity Control

1395 1442 2122

%) 587 (42%) 623 (43%) 852 (40%)
%) 808 (58%) 819 (57%) 1270 (60%)

8.7 39.4 ± 9.5 65.2 ± 10.4 67.1 ± 11.8
18e77 46e90 46e90



Table 2
SNPs within CPNE5 gene associated with alcohol dependence and obesity (p < 0.05).

SNP Positiona ALb MAFc HWEd OR_ADe P_ADf OR_OBg P_OBh OR_MFi P_MFj ORk P-metal Qm

rs9986517 36827057 T 0.31 0.247 0.77 (0.68e0.88) 9.72E-05 0.77 (0.65e0.91) 2.74E-03 0.93 (0.84e1.03) 0.141 0.88 0.00493 0.072
rs9470387 36821836 A 0.31 0.247 0.77 (0.68e0.88) 1.1E-04 0.77 (0.65e0.91) 2.69E-03 e e e e e

rs929051 36822469 A 0.40 0.99 1.24 (1.10e1.4) 5.18E-04 1.05 (0.90e1.22) 0.542 1.09 (0.99e1.2) 0.067 1.08 0.0597 0.648
rs7762245 36824207 A 0.33 0.575 1.22 (1.07e1.38) 2.39E-03 1.07 (0.92e1.26) 0.372 1.06 (0.96e1.17) 0.232 1.07 0.138 0.898
rs3213534 36819384 A 0.39 0.063 0.83 (0.73e0.94) 4.09E-03 0.78 (0.66e0.91) 2.45E-03 e e e e e

rs10456444 36830820 C 0.47 0.99 0.84 (0.75e0.95) 5.26E-03 0.77 (0.66e0.90) 1.01E-03 0.97 (0.88e1.07) 0.586 0.91 0.0274 0.013
rs12203137 36831894 A 0.23 0.789 1.20 (1.05e1.38) 8.02E-03 1.16 (0.97e1.37) 0.097 e e e e e

rs3752482 36841048 G 0.13 0.99 0.79 (0.65e0.96) 1.59E-02 0.68 (0.52e0.89) 5.18E-03 1.04 (0.91e1.2) 0.549 0.95 0.44 0.01
rs3213537 36823899 T 0.17 0.3 1.21 (1.03e1.42) 2.49E-04 1.04 (0.85e1.28) 0.685 0.99 (0.88e1.14) 0.99 1.01 0.835 0.73
rs9470386 36821698 G 0.48 1.0 1.14 (1.01e1.28) 3.81E-02 1.18 (1.01e1.37) 0.0385 1.01 (0.92e1.12) 0.847 1.05 0.217 0.1
rs10947627 36816967 A 0.46 0.291 1.09 (0.96e1.23) 0.182 1.24 (1.06e1.45) 7.97E-03 e e e e e

rs236427 36843044 A 0.15 0.752 0.92 (0.78e1.09) 0.35 1.32 (1.07e1.63) 8.47E-03 0.99 (0.87e1.14) 0.958 1.08 0.166 0.03
rs236441 36834976 G 0.25 0.939 1.01 (0.88e1.17) 0.857 1.27 (1.06e1.53) 1.12E-02 0.96 (0.85e1.08) 0.492 1.04 0.44 0.012
rs7763347 36819028 A 0.46 0.291 1.07 (0.95e1.21) 0.272 1.22 (1.04e1.43) 1.28E-02 1.1 (1.0e1.21) 0.0579 1.13 0.00346 0.261
rs763046 36821241 A 0.19 0.631 1.07 (0.91e1.25) 0.42 1.28 (1.05e1.56) 1.33E-02 0.89 (0.78e1.02) 0.0856 0.99 0.952 0.003
rs1010791 36823618 T 0.28 0.949 1.01 (0.88e1.17) 0.866 1.25 (1.04e1.49) 1.49E-02 0.98 (0.87e1.1) 0.71 1.05 0.317 0.03
rs236446 36830929 A 0.31 0.966 1.1 (0.96e1.25) 0.176 1.22 (1.03e1.45) 1.85E-02 0.94 (0.84e1.04) 0.227 1.01 0.801 0.01
rs1064827 36830125 T 0.28 0.949 1.01 (0.88e1.17) 0.881 1.24 (1.04e1.48) 1.87E-02 e e e e e

rs236432 36838396 T 0.17 1.0 0.95 (0.80e1.12) 0.52 1.25 (1.02e1.55) 3.34E-2 0.98 (0.86e1.12) 0.759 1.05 0.374 0.06
rs236444 36831682 T 0.28 0.949 0.99 (0.87e1.15) 0.993 1.21 (1.01e1.45) 3.75E-02 0.99 (0.88e1.11) 0.889 1.05 0.32 0.07
rs4714010 36855384 T 0.46 0.301 0.89 (0.79e1.01) 0.0564 0.85 (0.73e0.99) 0.0464 0.92 (0.84e1.02) 0.0967 0.9 0.0141 0.403

a Physical position (bp).
b Minor allele.
c Minor allele frequency.
d p-value for HardyeWeinberg equilibrium test.
e Odds ratio for the alcohol dependence in SAGE sample.
f p-value for alcohol dependence in the SAGE sample.
g Odds ratio for obesity in the SAGE sample.
h p-value for obesity in the SAGE sample.
i Odds ratio for obesity in the Marshfield sample.
j p-value for obesity in the Marshfield sample.
k Odds ratio for the meta-analysis of obesity.
l p-value for the meta-analysis of obesity.

m p-value for Cochrane's Q statistic.
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that AD can develop at the cellular level, with changes in calcium
homeostasis (Nagy, 2000), while alcohol-induced apoptosis may
contribute to alcohol-induced brain-vascular damage and stroke (Li
et al., 2004). Recent research shows that Ca2þ may play a role in
pancreatic cell death and acute pancreatitis induced by alcohol
metabolites (Criddle et al., 2006; Gerasimenko et al., 2009). In the
present study, 10 SNPs were found to be associated with AD, with
haplotype analyses further supporting the single-marker analysis
results of AD in the SAGE sample. These findings indicated that
CPNE5 SNPs and haplotypes could serve as potential molecular
markers for AD.

Previous animal models have shown that Ca2þ may be related to
the development of obesity (Chan, 1995; Kim et al., 1996). Other
studies suggest that regulation of intracellular Ca2þ ([Ca2þ]i) plays a
key role in obesity, insulin resistance and hypertension (Zemel,
1998; Zemel and Miller, 2004). Furthermore, it has been recently
reviewed that Ca2þ may induce apoptosis of cancer cells and adi-
pocytes, resulting in decreasing tumor size and long-term reduc-
tion in adipose tissue mass (Sergeev, 2013, 2014). In this study, we
performed the first genetic association study and meta-analysis of
obesity for CPNE5 gene, and identified 17 SNPs associated with
obesity in the SAGE sample and 4 SNPs associated with obesity in
the meta-analysis of the SAGE and Marshfield samples. Our results
indicate that the CPNE5 gene might also play a potential role in
obesity.

Previous epidemiological studies reveal heavy drinking or
binge-drinking may increase the risk of obesity (Arif and Rohrer,
2005; Wilson, 2010; Yeomans, 2010; Chakraborty, 2014;
Wakabayashi, 2014). Furthermore, some previous studies also
support a link between substance use, abuse or dependence, with
obesity, but results are inconsistent (Barry et al., 2009; Grucza et al.,
2010; Pickering et al., 2011). For example, a relationship between
being overweight and nicotine and alcohol dependence or abuse
was found amongmen, but not amongwomen (John et al., 2005). In
addition, obesity was associated with psychiatric disorders and
suicidal behavior in a Canadian sample (Mather et al., 2009).
Another study suggested that depression, obesity and alcohol use
disorders were interrelated conditions for women, but a greater
understanding of reasons underlying the co-occurrence of these
conditions would benefit prevention and intervention efforts
(McCarty et al., 2009). In the present study, 6 SNPs were associated
with both AD and obesity in the SAGE sample, with 2 of these also
associated with obesity in the meta-analysis. The effects of these 6
SNPs had the same directions: the minor alleles of 5 SNPs showed
risk effects on both AD and obesity while the other one showed
protective effect on both AD and obesity. These results provide
evidence that the CPNE5 gene has a pleiotropic effect on AD and
obesity. Our results also support previous studies that obesity or
uncontrolled eating disorder may share some pathways with
excessive ethanol consumption or AD and addiction (Thiele et al.,
2003; Tomasi and Volkow, 2013; Lichenstein et al., 2014). Previ-
ous findings and our present results suggested that Ca2þ may be
one of the mechanisms linking AD and obesity.

The current study has a number of strengths. First, to our
knowledge, this is the first candidate gene studywhich investigated
the associations between CPNE5 polymorphisms and comorbidities
of AD and obesity. Second, our sample sizes were relatively large
and the two samples were ethnically homogeneous. Third, we
examined 77 SNPs within the CPNE5 gene in the SAGE sample, and
used 59 SNPs in the Marshfield sample to replicate our findings.
Fourth, we implemented a meta-analysis to increase the study
power and precision by combining two study samples. Finally, we
were able to detect pleiotropic effects of CPNE5 gene on two
complex diseases e AD and obesity.



Table 3
Haplotype analysis of alcohol dependence in the SAGE sample.

Haplotype Alcohol dependence

Casea Controlb c2c pd

rs7762245 rs9986517
C T 0.27 0.33 14.68 0.000127
C C 0.37 0.34 7.69 0.00555
rs9986517 rs1064827
T C 0.28 0.33 15.18 9.79 � 10�5

C C 0.48 0.43 11.47 0.000706

a Haplotype frequency in cases.
b Haplotype frequency in controls.
c Chi-square value for each haplotype using PLINK.
d p-value for each haplotype using PLINK.

Table 4
Haplotype analysis of obesity in the SAGE sample.

Haplotype Obesity

Casea Controlb c2c pd

rs9986517 rs1064827
C T 0.26 0.22 5.4 0.0202
T C 0.27 0.33 9.76 0.00178
rs1064827 rs10456444
C C 0.43 0.50 11.38 0.000744
T T 0.26 0.22 5.52 0.0188

a Haplotype frequency in cases.
b Haplotype frequency in controls.
c Chi-square value for each haplotype using PLINK.
d p-value for each haplotype using PLINK.

Fig. 1. Linkage disequilibrium structure of thirteen SNPs within a block including rs9986517 and rs10456444. The numbers indicate the D0 values between the corresponding two
SNPs.
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The current study is not without limitations, however. First, only
one sample had information on AD. Second, this study focused on
obesity classified simply as BMI �30. Additional research should
compare subcategories of obesity such as Class I obesity
(BMI ¼ 30e34.9), Class II obesity (BMI ¼ 35e39.9), and Class III
obesity (BMI� 40), as differences may exist in observed findings.
Third, our current findings might be subject to type I error due to
the number of comparisons made. Fourth, unequal distribution of
gender across AD and obesity groups may have impacted findings.
Finally, the mean ages for the Marshfield were higher than those in
the SAGE samples. Replication of current findings in additional
samples is clearly needed.
5. Conclusion

These findings provide the first evidence of genetic variants in
the CPNE5 gene influencing both AD and obesity. Results of the
current study could serve as a resource for replication in other
populations. Future functional studies within CPNE5 may help to
better characterize the genetic architecture of these two complex
diseases. The findings also provide evidence for the utility of po-
tential joint intervention and prevention efforts among patients
with AD and obesity.
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