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Abstract
Multivariate phenotypes may be characterized collectively by a variety of low level traits,

such as in the diagnosis of a disease that relies on multiple disease indicators. Such multi-

variate phenotypes are often used in genetic association studies. If highly heritable compo-

nents of a multivariate phenotype can be identified, it can maximize the likelihood of finding

genetic associations. Existing methods for phenotype refinement perform unsupervised

cluster analysis on low-level traits and hence do not assess heritability. Existing heritable

component analytics either cannot utilize general pedigrees or have to estimate the entire

covariance matrix of low-level traits from limited samples, which leads to inaccurate esti-

mates and is often computationally prohibitive. It is also difficult for these methods to

exclude fixed effects from other covariates such as age, sex and race, in order to identify

truly heritable components. We propose to search for a combination of low-level traits and

directly maximize the heritability of this combined trait. A quadratic optimization problem is

thus derived where the objective function is formulated by decomposing the traditional max-

imum likelihood method for estimating the heritability of a quantitative trait. The proposed

approach can generate linearly-combined traits of high heritability that has been corrected

for the fixed effects of covariates. The effectiveness of the proposed approach is demon-

strated in simulations and by a case study of cocaine dependence. Our approach was com-

putationally efficient and derived traits of higher heritability than those by other methods.

Additional association analysis with the derived cocaine-use trait identified genetic markers

that were replicated in an independent sample, further confirming the utility and advantage

of the proposed approach.

Introduction
Identifying genetic variation that underlies complex phenotypes has important implications
for genetics and biology [1, 2]. The power of most gene discovery studies is positively associ-
ated with the heritability of the trait [3]. Higher heritability of a trait implies that the trait varies
due to stronger genetic influence. Thus, there is greater chance to detect its genetic causative
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variants. The narrow sense heritability h2 is defined by the percentage of phenotypic variance
that is due to additive genetic effects. The broad sense heritability H2 is defined by the propor-
tion of phenotypic variance due to all genetic variation.

Many complex phenotypes comprise a variety of low level traits (or phenotypic features)
that are often highly variable. Association analysis of such a complex phenotype is impeded by
this phenotypic heterogeneity [4]. For example, the diagnosis of drug dependence is deter-
mined by various patterns of drug use, their effects, and related behaviors [5]. A binary multi-
variate trait defined by the diagnosis of cocaine dependence, which partitions the population
into cases (subjects with the disorder) and controls (subjects without the disorder), cannot dif-
ferentiate the heterogeneous manifestations of the disease. Because of this, the success of identi-
fying genetic variants is limited when using this binary trait in association analysis [6, 7].
Identifying highly heritable components of the disease could permit the detection of genetic
variants that are not detectable using the standard diagnosis-based traits [8–12]. Efforts have
been made to enhance the binary trait by capturing more phenotypic variation, such as defin-
ing a multivariate trait as symptom count [7]. However, this kind of multivariate trait can have
low heritability and may thus be sub-optimal for association analysis.

Heritable component analysis methods identify principal components of the data, i.e., linear
combinations of low level traits, that are heritable [13–16]. All current methods decompose the
identification of heritable components into solving two separate subproblems in sequence.
They first estimate two covariance matrices of the low-level traits: Sa, the variance due to addi-
tive genetic effects taking into account the relationships of individuals (family structure); and
S, the covariance matrix due to effects other than additive genetic effects. If there are d low
level traits in x, this means that two d-by-dmatrices need to be estimated from the sample.
Once the two covariance matrices are computed, a generalized eigenproblem is solved to iden-
tify the combination coefficients w so that the ratio of w>Sa w/w

>Sw is maximized, leading to
high heritability for the combined trait w>x.

A few methods have been developed in the literature to estimate the two covariance matri-
ces. In [14, 15], the two matrices are estimated based on the genetic effect of a single quantita-
tive-trait locus to all the low level traits. This method has limited utility when the variance-
covariance of the low level traits is due to multiple genetic loci (which is often the case for com-
plex phenotypes). In [13, 16, 17], the two covariance matrices are estimated from family pedi-
grees of the sample. The approach used in [13] takes only siblings in a family, so it is
inadequate to handle general (complex) pedigrees. The two approaches in [16] and [17] can
handle general pedigrees. The first one derives an analytic formula for the covariance matrices
based on Analysis of Variance (ANOVA). Although reducing the computational cost, the ana-
lytic formula is unable to take into account the fixed effects from covariates such as sex, age or
race, which is also a problem for the method in [13]. Currently, the most comprehensive
approach is a maximum likelihood method [17] that can estimate the fixed effects and covari-
ance matrices together, but this method is computationally prohibitive as discussed in [16].
Even when d = 20 low level traits are used, this method can run for days, and as observed in
our experiments, the method may not converge. It requires very large sample to obtain reliable
estimates of two covariance matrices and d combination coefficients, totally 2d2 + d parame-
ters, from a sample.

We show that, to obtain highly heritable components of a multivariate trait, the estimation
of two covariance matrices is unnecessary. We propose an optimization approach that directly
identifies a linear combination of low level traits whose estimated heritability is maximized.
This optimization problem is formulated by decomposing the maximum likelihood method
for estimating trait heritability. An sequential quadratic programming algorithm is developed
to optimize the problem. We then extend the basic formulation to correct fixed effects of
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covariates in the component analysis. Because we do not estimate any covariance matrix, our
approach is computationally much more efficient than those in [13, 17]. The proposed
approach is validated in both simulations and a case study on cocaine dependence. The effec-
tiveness of the approach is demonstrated not only by the higher cross-validated heritability of
the derived traits than the existing methods but also by a follow-up association study that com-
pares the utility of the derived traits with the commonly used phenotype. Specifically, a highly
heritable multivariate trait was derived for cocaine dependence. More statistically significant
associations were found for this trait than for a symptom-count phenotype.

Methods
We first introduce the standard methods for heritability estimation, and then derive our for-
mulation that maximizes the heritability of a linearly-combined trait. An efficient algorithm is
developed to optimize the formulation. At last, we extend the approach to take into consider-
ation the fixed effects of covariates.

Background: Heritability Estimation
To estimate the heritability of a quantitative trait y, the well established maximum likelihood
method is based on linear mixture models [3, 18]. The method assumes that the phenotype yi

of a family i follows a multivariate normal distribution with covariance Oi and separate means
for male and female family members, μm and μf, respectively. Separate means are used for
males and females based on the general observation that males and females present differences
in quantitative traits, such as height and weight. The (j, k)-th entry of Oi is the phenotypic
covariance of two family members j and k, given by

covðyij; yikÞ ¼ 2s2
aΦ

i
jk þ s2

dΔ
i
jk þ s2

eΓ
i
jk ð1Þ

where s2
a and s

2
d are the variance components due to additive and dominant genetic effects,

respectively, and s2
e denotes the variance component due to environmental factors. Eq (1) can

be extended to include other effects, such as an epistatic genetic effect s2
I . The quantity F

i
jk is

the kinship coefficient between members j and k. It is the probability that two alleles randomly
drawn from j and k at a genetic locus are identical by descent (IBD), i.e., that these two alleles
are identical copies of the same ancestral allele. An allele is one of the alternative forms at a
genetic locus. As the human genome is diploid, each individual has two copies of an allele that

may differ at a genetic locus. The quantity Di
jk is the probability that members j and k share

both alleles at a genetic locus. Both matrices Fi and Δi can be calculated from the family pedi-
grees [3]. Example entries of F and Δ between selected family members are illustrated in
Table 1 where randommating is assumed. The parameter Gi

jk is an environmental indicator

that encodes whether j and k live together (Gi
jk ¼ 1) or apart (Gi

jk ¼ 0).

The narrow sense heritability is given by h2 ¼ s2
a=s

2
p where s

2
p is the total variance in y, i.e.,

s2
p ¼ s2

a þ s2
d þ s2

e , while the broad sense heritability is given byH2 ¼ ðs2
a þ s2

dÞ=s2
p. In this

paper, we target at quantitative traits with higher narrow sense heritability, which we hence-
forth simply refer to as heritability. However, our formulation can be easily modified to derive
a quantitative trait of highH2.

The five parameters, μm, μf, s2
a, s

2
d and s

2
e , are estimated by maximizing the log likelihood of

the trait values over all sample families [18]. The log likelihood is computed by

LL ¼
X

i

� 1

2
ln jΩij �

1

2
ðyi � miÞ>Ω�1

i ðyi � miÞ; ð2Þ
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where μi denotes a vector of the means μm and μf for male or female members, respectively, in
the family i. The gradient and Hessian of Eq (2) with respect to μm, μf, s2

a, s
2
d and s

2
e can be cal-

culated, and a Newton-Raphson algorithm or a scoring method [18] can be applied to maxi-
mize the log likelihood Eq (2).

The heritability of a quantitative trait y is often estimated with correction for the effects of
covariates z, such as age, sex, or race. These covariate effects are modeled as fixed effects on y.
Thus, a linear regression model y = z>v + � can be built where v indicates the combination
weights for the covariates. The heritability of the residual � is then estimated using the
described maximum likelihood method and treated as the heritability of y after adjusting for
covariate effects.

Proposed Quadratic Optimization
In heritability estimation, a trait is given, and we search for the values of s2

a, s
2
d and s

2
e that max-

imize the likelihood of observing the trait values and compute the heritability as
s2
a=ðs2

a þ s2
d þ s2

eÞ. In our study, we solve the inverse problem that a trait must be derived so
that its heritability is maximized when estimated by the above maximum likelihood method.

For a given set of d phenotypic features x, we find a linearly combined trait y : y = x>w. If a
trait y has the highest possible heritability, the covariance of y among any family members in
family i, covðyij; yikÞ, should be due to the additive effect s2

a only, and s
2
d ¼ s2

e ¼ 0. In other

words, for such a trait, the covariance matrix of the phenotype yi of a family i relies only on the

additive effect parameter s2
a and the kinship matrix Fi, i.e.,Ωi ¼ 2s2

aF
i. Thus s2

a is equal to the
total variance s2

p of y. We need to search for the values of w that maximize the likelihood of

observing s2
d ¼ s2

e ¼ 0, or in other words, that maximize the likelihood ofΩi ¼ 2s2
aF

i.
Let Xi be the data matrix on the d features (as columns) for the subjects (as rows) in family

i. Then the trait values of the family members form a vector yi ¼ X>
i w. Because y is homo-

geneously dependent on the unknown w, w can be scaled so that the sample variance of y is 1,
which implies that s2

p ¼ 1 (and hence s2
a ¼ 1). Substituting the values of Oi, y

i and s2
a into the

log likelihood in Eq (2) yields the following maximization problem:

max
w;mm ;mf

X
i

� 1

2
ln j2Φij �

1

4
ðX>

i w� miÞ>Φ�1
i ðX>

i w� miÞ;

which is equivalent to the following minimization problem after eliminating constants (for

Table 1. Elements of the matricesΦ andΔ for selected relationships in a family when randommating
is assumed.

Relationship Φ Δ

Same person 1/2 1

Parent-Child 1/4 0

Full-siblings 1/4 1/4

Half-siblings 1/8 0

Monozygotic twins 1/2 1

Grandparent-grandchild 1/8 0

Uncle/aunt-nephew/niece 1/8 0

First cousins 1/16 0

Double first cousins 1/8 1/16

Spouses 0 0

doi:10.1371/journal.pone.0144418.t001
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example, 1
2
ln j2Fij does not vary in terms of w, μm or μf, and thus is a constant,)

min
w;mm;mf

X
i

ðX>
i w� miÞ>Φ�1

i ðX>
i w� miÞ: ð3Þ

We then consolidate the parameters w, μm and μf into a single column vector β = [w>, μm,
μf]

>. Note that μi is a vector of length of the number of family members with corresponding
entries equal to either μm or μf depending on the gender of the family member. We can simplify

Eq (4) to haveX>
i w� mi ¼ H>

i b andHi is defined by

Hi ¼ ½X>
i ; ½�1=0�mi ; ½�1=0�fi �>

where ½�1=0�mi and ½�1=0�fi are column vectors with length equal to the number of members
in family i. For males in the family, −1 is assigned at their corresponding entries in ½�1=0�mi
and 0 at other positions of the vector. The vector of ½�1=0�fi is similarly defined for female fam-
ily members. For instance, a family i has three members included in a study, and they are
ordered as a male member, a female member and then another male member. The vector

½�1=0�mi ¼ ½�1; 0;�1�> and the vector ½�1=0�fi ¼ ½0;�1; 0�>, which ensures that

½�1=0�mi mm þ ½�1=0�fimf ¼ �mi. Then, the objective function of Eq (4) becomes

X
i

ðX>
i w� miÞ>Φ�1

i ðX>
i w� miÞ ¼

X
i

ðβ>HiÞΦ�1
i ðH>

i βÞ ¼ β>ð
X

i

HiΦ
�1
i H>

i Þβ:

By stacking theHi matrices of different families in columns, we get another matrixH. Simi-
larly, we can form a matrix X, so the trait values of all subjects y = X>w. The sample variance
of the trait y is, by definition, (1/n)(y − μ)>(y − μ). It is equal to (1/n)(X>w − μ)>(X>w − μ) =
(1/n)β>HH>β. Then, the condition of s2

p ¼ 1 corresponds to a constraint on β: (1/n)β>H

H>β = 1, which can be rewritten as β>HH>β − n = 0.
As a matter of fact, μm and μf are not free parameters, as they are determined once w is

determined. They are equal to the sample means of the trait, i.e., Mean(x>w), for male and
female, respectively. Let xm and xf be the two means of the data vector x respectively over male
and female samples. Then, x>

mw ¼ mm and x>
f w ¼ mf . These equations give two additional

constraints. Let am ¼ ½x>
m;�1; 0�>, af ¼ ½x>

f ; 0;�1�>, then the two constraints on β state that

a>
mb ¼ 0 and a>

f b ¼ 0.

Imposing all of these constraints on Eq (4) yields an optimization problem where a qua-
dratic objective needs to be minimized subject to a quadratic constraint and two linear equality
constraints as follows:

min
β

β>ð
X

i

HiΦ
�1
i H>

i Þβ;

subject to β>HH>β� n ¼ 0;

a>
mβ ¼ 0; a>

f β ¼ 0:

ð4Þ

According to statistical learning theory [19], optimizing only the empirical heritability on
the training sample as in Eq (4) will lead to the so-called overfitting problem, which means that
the resultant model y = x>w has low validation heritability despite a high training heritability.
To enhance the generalizability of the derived model to new samples, a regularization condition
on w, R(w), is required to control the complexity of the model. The objective function in Eq (4)
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thus becomes

β>ð
X

i

HiΦ
�1
i H>

i Þβþ lRðwÞ; ð5Þ

where λ is a pre-specified tuning parameter for balancing the two terms in the objective func-
tion, and R(w) can be realized in different forms and be application-specific. For example, R(w)

can be implemented with the ℓ1 vector norm: jjwjj1 ¼
Pd

j¼1 jwjj, which is known to create

shrinkage effects on w as shown in the Least Absolute Shrinkage and Selection Operator
(LASSO) method [20]. When features in x are clustered in multiple groups and sparsity in the
level of each feature group is desirable, R(w) can be implemented by the ℓ2,1 vector norm as

used in the group LASSO [21] and defined by jjwjj2;1 ¼
PL

‘¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j2G‘w

2
j

q
where G‘ contains

the indices of the features in the group ℓ.
Specifically, we develop an algorithm in the next section to solve the following optimization

problem with the ℓ1 norm regularization condition

min
β

β>ð
X

i

HiΦ
�1
i H>

i Þβþ ljjwjj1;

subject to β>HH>β� n ¼ 0;

a>
mβ ¼ 0; a>

f β ¼ 0:

ð6Þ

Note that Problem Eq (4) is a special case of Problem Eq (6) when λ = 0. Hence, a solver for
Problem Eq (6) can also solve Problem Eq (4).

Solving the Proposed Optimization Problem
The objective function in Eq (6) is not differentiable because of the ℓ1 norm regularization con-
dition. However, by a widely used change-of-variables strategy, we can convert it into an equiv-
alent differentiable form so gradient based solvers can be used. We introduce two sets of
variables u� 0 and v� 0 both of length equal to that of w. We set w = u − v, which gives

X>
i w ¼ X>

i u�X>
i v. Correspondingly, we replace the parameter vector β by γ = [u>,v>, μm,

μf]
>, and replaceHi by

Ki ¼ ½X>
i ;�X>

i ; ½�1=0�im; ½�1=0�if �>;

so we haveHi β = Ki γ.
Stacking all Ki’s in columns leads to the full matrix K. The quadratic constraint in Eq (6)

then becomes γ>K K>γ − n = 0. By setting b>
m ¼ ½xm;�xm;�1; 0�>, b>

f ¼ ½xf ;�xf ; 0;�1�>,
the linear constraints in Eq (6) become b>

mg ¼ 0 and b>
f g ¼ 0. We have bound constraints on

the new variables, i.e., u� 0 and v� 0. We hence design a matrix J = [I2d × 2d, [0]2d, [0]2d]
where I2d × 2d is the identity matrix of dimension 2d × 2d, and [0]2d is a column vector of all
zero entries with length of 2d. Then, the bound constraints can be written as Jγ� 0. Overall,
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with the new variables u and v, Eq (6) can be re-written as follows

min
γ

f : γ>ð
X

i

KiΦ
�1
i K>

i Þγ þ l
X2d
j¼1

gj

subject to g1 : γ>KK>γ � n ¼ 0;

g2 : b>
mγ ¼ 0;

g3 : b>
f γ ¼ 0;

g4 :e : Jγ � 0; ð7Þ

where e = 2d + 3 is the total number of constraints in the problem.
It can be proved mathematically that the optimal solution of Eq (7) is identical to the opti-

mal solution of Eq (6) in the sense that the optimal w = u − v. Note that the regularization con-

dition in Eq (7),
P2d

j¼1 gj, is just equal to
Pd

j¼1ðuj þ vjÞ. At optimality of Eq (7), either uj = 0 or

vj = 0 for the jth feature because otherwise they would not be optimal. If both uj > 0 and vj > 0
and assume uj � vj, then we have another solution, (~uj ¼ uj � vj, ~vj ¼ 0), that achieves lower

objective value than (uj, vj) because the first term of f remains the same whereas the second
term of f is reduced by 2vj. Thus, at optimality, the regularizer of Eq (7)P2d

j¼1 gj ¼
Pd

j¼1ðuj þ vjÞ ¼
Pd

j¼1 juj � vjj ¼
Pd

j¼1 jwjj.
Although Eq (7) is not a convex problem due to the quadratic equality constraint g1, we can

solve it efficiently by the framework of sequential quadratic programming (SQP) [22]. A SQP
algorithm solves the optimization problem iteratively. At each iteration, it approximates the
original problem by a convex quadratic program, for which a solution can be easily computed.
A quadratic program is defined as a minimization of a quadratic objective function subject to
linear constraints. To form the approximate subproblem, the Lagrangian function of Eq (7) is
used:

Lðg; aÞ ¼ f ðgÞ �
X
k

akgkðγÞ ð8Þ

where α contains all Lagrange multipliers and k indexes the constraints. We use the second-
order Taylor expansion to approximate the Lagrangian which forms the quadratic objective
function of the subproblem, and use the first-order expansions to approximate the original
constraints which form linear constraints for the subproblem.

The gradients of the objective function f and the constraints gi:i = 1:e with respect to γ can be
calculated as follows:

rf ¼ 2ð
X

i

KiΦ
�1
i K>

i Þγ þ lc;

rg1 ¼ 2ðKK>Þγ; rg2 ¼ bm;

rg3 ¼ bf ; rg4:e ¼ c

where c ¼ ½½1�>2d; 0; 0�> and [1]2d is a column vector of all ones with length of 2d. The Hessian
of L with respect to γ is calculated as:

r2
γγL ¼ 2

X
i

KiΦ
�1
i K>

i � 2a1KK>: ð9Þ

The subproblem at each iteration is formulated based on the current iterates γt and
Lagrange multipliers αt. At the iteration t + 1, the search directions for both γ and α can be
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computed by solving the following quadratic program

min
p

f ðγ tÞ þ rf ðγtÞ>pþ 1

2
p>r2

γγLðγt; atÞp

subject to rgkðγ tÞ>pþ gkðγtÞ ¼ 0; k 2 ½1 : 3�
rgkðγ tÞ>pþ gkðγtÞ≽ 0; k 2 ½4 : e�

ð10Þ

where p is the search direction of γ, along which the objective function f can be decreased. Let
p̂t be the solution to this subproblem and q̂t be the corresponding optimal Lagrange multipli-
ers of p̂t , the search direction of α is calculated as q̂t � at . Then, a line search method, such as
those described in [22], can be used to determine a step size of moving along the directions.
Then, γ and α are updated as follows:

gtþ1 ¼ gt þ sp̂t; atþ1 ¼ at þ sðq̂t � atÞ: ð11Þ

Algorithm 1 summarizes the SQP algorithm that we developed to solve Eq (7), and hence Eq (6).

Algorithm 1 A sequential quadratic programming approach to solving Eq (7)
Input: Ki, Φi, a0

m, a0
f, λ

Output: γ
1. Initialize γ with u = 1, v = 0, and μm, μf equal to the sample male and

female means of the obtained trait when w = 1.
2. Initialize α with α = 1.
3. Evaluate f,rf,rgk andr2

ggL with the current γ and α.

4. Solve Eq (10) to obtain p̂ and q̂.
5. Perform line search to find the learning step size s.
6. Update γ and α as in Eq (11).
Repeat 3–6 until γ reaches a fixed point.

Correction for Covariates
As discussed in the background section, the heritability of a quantitative trait y with effects
from covariates z is equal to the heritability of the residual � of the linear model y = z>v + �.
Therefore, our objective here is to find ŵ and v̂ that optimize the heritability estimate of �: � =
x>w − z>v, as y = x>w. Let Zp × n be the data matrix on z of length p for the n subjects, the
residual is calculated for all the subjects as � = X>w − Z>v.

Given the data Z and y, a linear regression model y = z>v + � is typically obtained through a

least squares method which has an analytical solution, v̂ ¼ ðZZ>Þ�1
Zy. As y = X>w, we have

v̂ ¼ ðZZ>Þ�1
ZX>w and

� ¼ ðX> � Z>ðZZ>Þ�1
ZX>Þw:

LetM = (X> − Z>(Z Z>)−1 Z X>)>, which can be pre-calculated from data, the calculation of �
can be rewritten as � =M>w. Then, the objective of optimizing the heritability of � can be trans-
lated to finding the optimal w that gives an � of highest estimate of heritability. Comparing to
the problem of finding w that gives a trait y = x>w with highest possible heritability, the only
difference we have here is that the design matrix has been changed from X toM for the param-
eters w. Therefore, we can use the same SQP algorithm (Algorithm 1) to find the w that opti-
mizes the heritability of �. An interesting observation in our derivation is that correcting a
quantitative trait to account for covariant effects is equivalent to correcting the data matrix that
used to derive the trait.
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Algorithm Evaluation
The proposed approach was first validated in simulations where we compared it with the cur-
rent two-step approaches, i.e., estimating the two covariance matrices from pedigrees first and
then solving an eigenproblem. We compared with all the three different methods that can be
used to estimate the variance-covariance matrices, which were referred to, respectively, as Ott
[13], Anova [16] and ML [17]. The following Results section provides the details of the simula-
tion and empirical evidence showing the superior performance of our algorithm.

After validated in simulations, the proposed approach was then used in a case study to ana-
lyze a real-world dataset that was aggregated from genetic studies of cocaine dependence (CD)
[7, 23]. Our algorithm was able to derive a quantitative trait with higher heritability than that
of commonly used CD phenotypes. To show how our approach could help genetic association
analysis, we compared the utility of the derived trait against the symptom-count phenotype as
traits in association analysis and replicated the findings on a separate sample. The narrow
sense heritability of all of the tested traits in this study was estimated by the widely-used poly-
genic function in the Sequential Oligogenic Linkage Analysis Routines (SOLAR) program [24].

Ethics statement. The Semi-Structured Assessment for Drug Dependence and Alcoholism
(SSADDA) dataset [7] was used in both our simulations and the case study to evaluate the pro-
posed algorithm. The SSADDA subjects were recruited from multiple sites, including the Uni-
versity of Connecticut Health Center, Yale University School of Medicine, the University of
Pennsylvania School of Medicine, McLean Hospital and the Medical University of South Caro-
lina. All subjects gave written, informed consent to participate, using procedures approved by
the institutional review board (IRB) at each participating site. Readers can consult with [7] for
the details of subject recruitment in those studies. The SSADDA data were de-identified and
the analyses in this present study were approved by the University of Connecticut IRB Protocol
H15-045 and the University of Pennsylvania IRB Protocals 804787 and 812856.

Results
This section provides the details of the simulation process and the case study of CD together
with the empirical evidence showing the superior performance of our approach.

Simulations
In order to make our synthetic data more realistic but with known patterns, we created the syn-
thetic data based on family structures in the SSADDA dataset. In this dataset, there were totally
6810 subjects, of which 1915 were from small nuclear families and the remaining subjects were
unrelated individuals. Based on the family structures in this data, we synthesized two quantita-
tive traits following the same assumptions used in the maximum likelihood method for herita-
bility estimation [18].

Experimental data and procedure. The values of the first trait y1 were randomly drawn
for each family from a multivariate Gaussian distribution: N(μ, O), where μ and O were deter-
mined as follows. The dimension of μ was determined by the number of subjects in the family,
such that each dimension corresponded to an individual in the family. The value of μ used in
the simulations may vary between families according to the gender of the members. Precisely,
if a family member is male, μ was set to μm; otherwise it was set to μf. The covariance matrix O
was given by the following equation:

Ω ¼ 2s2
aΦþ s2

dΔþ s2
eI; ð12Þ

where F and Δ were composed according to Table 1. Without loss of generality, in this study
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we used identity matrix I as the matrix Γ in Eq (1). The quantitative trait y1 was simulated with
the following choices of the parameters:

½s2
a; s2

d; s2
e ; mm; mf � ¼ ½0:8; 0:1; 0:1; 0:9; 0:3�: ð13Þ

Hence, 80% of the phenotypic variance was due to additive genetic effects, and the ideal herita-
bility is 0.8 according to Eq (13). By the random nature of the simulation, the actual heritability
of the simulated trait may vary a little.

In order to evaluate if our approach can correct for fixed effects of covariates, we created
another quantitative trait y2 by adding effects from age and race to y1. Let c1 and c2 measure the
effects of age and race respectively on y2, we calculated y2 as follows: y2 = y1 + c1 × age + c2 ×
race. The values of the two c’s were arbitrarily set to c1 = 1.1 and c2 = 0.7, (which can certainly
be set to any other non-zero values). Using SOLAR, we estimated the heritability of y1 with sex
as covariate (h2 = 0.796) and the heritability of y2 with sex, age, race as covariates (h2 = 0.797).

We next simulated data of phenotypic features for the two quantitative traits. For each trait,
we synthesized a dataset consisting of d = 10 relevant phenotypic features. We first specified
the weights w of the features; then we generated data for these features as follows. For each sub-
ject, we randomly picked d − 1 features and drew their values randomly from the standard
multivariate Gaussian distribution. Assume that the k-th feature is the remaining feature. Its

value for subject i was computed by ðyi �Pd
j¼1;j6¼k wjx

i
jÞ=wk (where wk 6¼ 0 because these 10 fea-

tures were created with non-zero weights in the linear model). This procedure guaranteed that

the trait y ¼ Pd
j¼1 wjxj, and because the feature computed from the values of other features var-

ied randomly among subjects, every feature had a portion of randomly-drawn data.
In practice, a multivariate trait may not depend on all of the considered phenotypic features.

In order to test if our approach can identify the relevant features, we created four other datasets
for each of the traits, respectively, consisting of d = 20, 30, 40 and 50 features where only the
first 10 of them were created following the above procedure, thus relevant to the simulated
traits. The other features were all randomly drawn from standard Gaussian distribution and
assigned a weight of 0. By simulating the data in this way, there was at least one linear combina-
tion of the features in each dataset that led to the simulated traits of high heritability. If our
approach is to work, it should find this linear combination which is considered as the ground-
truth model. There is a likelihood that another linear combination could give even higher heri-
tability due to the random nature of the data, but this likelihood is small. In our experiments,
none of the algorithms could locate any other combinations with higher heritability than the
implanted one.

In practice, a multivariate trait may also depend on some features that are not observed. In
our simulations, it implied that some of the ten relevant features might be absent. Therein, we
further explored how our approach performed in the situation where the data was incomplete
by randomly removing relevant features. We experimented with removing one to five relevant
features incrementally. Note that in this sensitivity test, there was no longer a groundtruth
model for the algorithm to test against because the implanted linear model had been broken
with missing features. In this case, if our approach is to work, it should find a combination that
leads to a heritability estimate no lower than that of the original features and that derived by
other known methods.

The three previous methods evaluated in our comparison all used a regularization condition
in their eigenproblem, so they also had a tuning parameter λ. In the experiments with each
dataset, the parameters λ of all methods were tuned in the same three-fold cross validation pro-
cess. More specifically, for each dataset, we randomly split the sample into three groups, and
each group had the same amount of unrelated individuals and families with multiple members
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whenever it was possible. Samples in each group were used in one of the three folds, respec-
tively, as the validation data to test the heritability of the trait derived by a method from the
rest of the samples. We repeated this three-fold cross validation with 10 random splits for each
choice of λ on each dataset. The choices of λ were pre-specified to the range of [0, 50] with a
step size of 1. For each method, the choice of λ that gave the best cross validated heritability
was used in the subsequent analysis.

In the experiments with the trait y1, all methods did not use covariate data as the trait was
not simulated with fixed effects. In the experiments with the trait y2, because Ott [13] and
Anova [16] could not take into account any covariate, we compared our approach with only
the maximum likelihood method (ML) [17] with sex, age and race as covariates for fair com-
parison. The ML software package, downloaded from http://www.genetics.ucla.edu/software/
mendel, had the default maximum number of iterations equal to 200, and we also experi-
mented with 500 and 1000. We observed that the ML method could not reach convergence in
the experiments with even 20 phenotypic features within a reasonable time limit (two days).
Due to this computational hurdle, the ML method could not be applied to datasets with over
20 features.

Observations from simulations. We first examined the algorithmic behavior of the pro-
posed approach. Fig 1 shows box plots of three-fold cross validated heritability (average values
over the 10 trials and standard deviations) of the linear models derived by our approach for the
simulated trait y1 from the five datasets. We observed that the proposed method was able to

Fig 1. Three-fold cross validated heritability of the linear models derived for the trait y1 (simulated without covariate effects) when λ varies from 0
to 50 with a step size 1, on synthetic datasets consisting of 10, 20, 30, 40 and 50 features.

doi:10.1371/journal.pone.0144418.g001
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recover the linearly-combined traits with a relatively wide range of λ choices. From Fig 1, when
λ = 1, 1, 13, 18, and 18 respectively for the five datasets, the best validation heritability was
obtained. This observation shows that when the underlying model gets sparse, larger λ is favor-
able to prevent overfitting by removing irrelevant features. We had similar observations in the
experiments with y2 as shown in Fig 2. Fig 2 reports the same box plots for the simulated trait
y2. The validation heritability of the derived traits were high (with a small decrease when more
irrelevant features were experimented), which demonstrated that the proposed approach could
effectively correct for covariates in finding heritable components.

We next examined the comparison of our approach against the state of the art. To be more
thorough, we compared all four methods using four different metrics including validated heri-
tablity, sum of squared residuals to the simulated trait y1 or y2 (SE(trait)), squared difference

between the learned weights ŵ and the true weights w, i.e., jjw� ŵjj2 (SE(w)), as well as the
computation cost. Table 2 shows the cross validated heritability of the traits derived by each of
the methods in the two sets of experiments with y1 and y2. The performance was reported with
the best λ choice of each method. It is clear that the traits derived by our approach always
achieved the highest heritability.

Table 3 compares the values of SE(trait), SE(w), and the computation time in seconds. In
particular, the computation cost was measured by running each of the methods on the full
datasets when the best λ value was used. Across all the datasets, our approach obtained the
smallest errors as measured by SE(trait) and SE(w). Because Anova used analytic formula to

Fig 2. Three-fold cross validated heritability of the linear models derived for the trait y2 (simulated with covariate effects) when λ varies from 0 to
50 with a step size 1, on synthetic datasets consisting of 10, 20, 30, 40 and 50 features.

doi:10.1371/journal.pone.0144418.g002
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compute covariance matrices, and Ott used a single locus in the covariance estimation, both
methods required slightly less computation cost than our approach. However, they were lim-
ited only to the situations that had no confounding factors (covariates or other loci) in the heri-
tability calculation. Between the two comprehensive methods, our approach was significantly
more efficient than the ML method in computation, making the heritable component analysis
with a large number of phenotypic features feasible.

Our approach identified multivariate traits of much higher heritability than the commonly
used traits. We compared the heritability of the traits derived by our approach against that of
commonly-used features. We used the traits derived by our approach from the cross validation
process when the best λ values were used. As shown in Fig 3 (without covariates) and Fig 4
(with covariates), the validation heritability of the derived traits were significantly higher than
that of individual features and the average of them.

Without loss of generality, we used the 20 feature dataset that we synthesized for y1 to evalu-
ate if our approach could still find heritable components when the groundtruth models were
broken. The results are reported in Fig 5 where we compared the heritability of our derived

Table 3. Comparison of the methods on the sum of squared residuals (SE(trait)), squared difference of the true weights and the learned weights
(SE(w)), and the computation time (in seconds) in the experiments without covariates (results are presented in rows from 3 to 7) and with covari-
ates (results are presented in rows from 8 to 12).

Dataset SE(trait) SE(w) Computation Time (sec.)

Proposed Anova Ott ML Proposed Anova Ott ML Proposed Anova Ott ML

10 features 10.89 59.03 67.44 57.97 0.09 1.35 1.38 1.34 0.61 0.17 0.11 8.24e+02

20 features 16.62 60.83 63.08 128.01 0.17 1.37 1.39 2.54 0.85 0.19 0.15 1.16e+04

30 features 19.69 63.03 72.46 – 0.21 1.38 1.48 – 0.90 0.19 0.14 –

40 features 23.31 62.71 68.39 – 0.27 1.39 1.44 – 0.98 0.29 0.23 –

50 features 25.23 64.22 67.23 – 0.29 1.40 1.43 – 2.13 0.30 0.26 –

10 features 13.61 * * 85.98 0.11 * * 1.35 0.86 * * 8.85e+02

20 features 16.14 * * 173.40 0.18 * * 2.58 1.07 * * 1.20e+04

30 features 26.60 * * – 0.31 * * – 1.30 * * –

40 features 26.81 * * – 0.29 * * – 1.61 * * –

50 features 25.87 * * – 0.31 * * – 2.52 * * –

The “–” sign indicates that those experiments were infeasible due to prohibitive computation cost. The “*” sign indicates that the corresponding methods

were not tested due to the limitation of the methods that could not handle covariates. The computation time reported for the ML method was measured

when the maximum number of iterations was set to 200.

doi:10.1371/journal.pone.0144418.t003

Table 2. Cross validated heritability of the traits derived by different methods in the experiments without covariates (results are presented in rows
from 2 to 5) and with covariates (results are presented in rows 6 and 7).

Method 10 features 20 features 30 features 40 features 50 features

Proposed 0.777(0.009) 0.724(0.027) 0.707(0.018) 0.717(0.021) 0.670(0.024)

Anova 0.638(0.063) 0.581(0.043) 0.430(0.042) 0.551(0.050) 0.447(0.060)

Ott 0.378(0.049) 0.465(0.080) 0.292(0.048) 0.398(0.036) 0.352(0.065)

ML 0.755(0.020) 0.046(0.032) – – –

Proposed 0.775(0.010) 0.735(0.023) 0.738(0.030) 0.708(0.031) 0.644(0.051)

ML 0.708(0.097) 0.044(0.037) – – –

The “–” sign indicates that those experiments were infeasible due to prohibitive computation cost.

doi:10.1371/journal.pone.0144418.t002
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traits against the maximum heritability that other methods could reach and that of the original
features. Clearly, the traits derived by our approach achieved much higher heritability.

A Case Study: Cocaine Use and Related Behaviors
We applied the proposed approach to a genetic study of cocaine use and related behaviors.
Two independent sets of samples were used in our analysis: the SSADDA dataset [7], which
was used for discovery; and the Study of Addiction: Genetics and Environment (SAGE) dataset
[25], which was used for replication of the SSADDA findings. The SAGE data were aggregated
from multiple NIH-funded projects [26] by NIH’s dbGap system. We downloaded the data
from the dbGap public domain [25] through dbGap accession number phs000092.v1.p.

The SSADDA sample included 4895 unrelated individuals which were used in our analysis
to help estimate the total phenotypic variance even though they had no effect on the covariance
estimates. The SAGE dataset consisted of 58 individuals from nuclear families and 1603 unre-
lated individuals. The two datasets contained samples from two populations: African American
(AA) and European American (EA).

All subjects were reported to have used cocaine in their lifetime, and were assessed on the
following 13 features of cocaine use and related behaviors:

Fig 3. Heritability comparison between the trait derived by the proposed approach, individual features and the simple average of features (without
covariate effects).

doi:10.1371/journal.pone.0144418.g003
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• F1—tolerance to cocaine;

• F2—withdrawal from cocaine;

• F3—using cocaine in larger amounts or over longer period than intended;

• F4—persistent desire or unsuccessful efforts to cut down or control cocaine use;

• F5—great amount of time spent in activities necessary to obtain, use or recover from the
effects of cocaine;

• F6—gave up or reduced important social, occupational, or recreational activities because of
cocaine use;

• F7—cocaine use despite knowledge of persistent or recurrent physical or psychological prob-
lems likely to have been caused or exacerbated by cocaine;

• F8—number of cocaine symptom endorsed;

• F9—age when first used cocaine;

• F10—age when last used cocaine;

Fig 4. Heritability comparison between the trait derived by the proposed approach, individual features and the simple average of features (with
covariate effects).

doi:10.1371/journal.pone.0144418.g004
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• F11—age when first being diagnosed with DSM4 cocaine dependence;

• F12—age when last being diagnosed with DSM4 cocaine dependence;

• F13—transition time in years between the first time cocaine use and the first cocaine depen-
dence diagnosis.

Features F1–F7 were binary variables that took a value of “yes = 1” or “no = 0”, and F8–F13
were continuous variables, which we normalized to the range of [0, 1] in the analysis.

The majority of the 6810 subjects interviewed with the SSADDA, were genotyped on an Illu-
mina microarray for 988,306 autosomal single-nucleotide polymorphisms (SNPs). Genotypes
for additional 37,427,733 SNPs were imputed using IMPUTE2 [27] from genotyped SNPs and
1000 Genomes reference panel released in June 2011 (http://www.1000genomes.org). Both
subjects and SNPs were undergone stringent quality control (readers can consult with [7] for
details). After data cleaning, there were a total of 4,845 subjects (2674 AAs, 2171 EAs) and
30,078,279 SNPs (695,308 genotyped) remained for analysis. Top three ancestral principal
components were computed using 145,472 SNPs that were common to discovery samples and
the Hapmap panel. All of the 1661 SAGE subjects (640 AAs, 1021 EAs) in the replication data-
set were genotyped for 1,072,657 SNPs.

Fig 5. Heritability comparison between the traits derived by the proposed approach, by other methods, and original features when relevant
features were randomly selected and excluded from the training data.

doi:10.1371/journal.pone.0144418.g005
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We derived a multivariate trait based on the 13 features of cocaine use and related behav-
iors. This trait was derived from the SSADDA data by Algorithm 1 with a correction for the
fixed effects of age and race. Three-fold cross validation was performed to find the optimal λ,
which was subsequently used to find a linearly combined trait from the 13 features based on
the entire SSADDA data. The heritability of the derived trait was estimated and compared to
that of individual quantitative features in the data, including the cocaine symptom count (F8).
The feature F8 was recognized as a better trait than the binary trait induced by the diagnosis of
cocaine dependence in a recent genomewide association study (GWAS) [7]. We compared the
utility of the derived trait and the symptom count as traits in an association analysis. Associa-
tion tests were performed on the SSADDA sample for both traits and separately for EAs and
AAs to identify significant genetic markers at p< 5 × 10−6. We then computed the derived
trait for the subjects in the replication SAGE sample. The markers identified from the SSADDA
data were tested using the replication subjects. All tests included age, sex and the first three
ancestral principal components as covariates. The association test results on discovery and rep-
lication data were combined by performing meta analysis using Metal [28]. Genomewide asso-
ciations were identified from the meta analysis. Note that the heritability of the derived trait
was not estimated on the SAGE data because 97% of the SAGE subjects were unrelated
individuals.

Fig 6 shows the box plots of the cross validated heritability of the traits derived by Algorithm
1 when λ varied from 1 to 50 with a step size 1. When λ = 2, we observed the highest heritability

λ
Fig 6. Validation heritability of the multivariate traits derived by our approach for cocaine use and related behaviors using different values of λ.

doi:10.1371/journal.pone.0144418.g006
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on average in the cross validation. We hence used λ = 2 in Algorithm 1, and derived a linear
combination of the features from the entire SSADDA data. The heritability of the derived trait
and all individual quantitative features was estimated using SOLAR and reported in Table 4.
The quantitative trait derived by our approach has substantially higher heritability than that of
all other traits.

Using a regularization condition based on the sparsity-favoring ℓ1 vector norm created
shrinkage effects on our model. In other words, our approach selected parsimonious features
to use in the linear combination. Fig 7 shows the combination weights of the features obtained
in our model. Five of the 13 features had weight of 0, thus were not used by the model. The fea-
ture—age when first used cocaine received the largest positive weight and therefore had the
strongest impact on the derived trait. The other four important features were F11—age onset of
DSM4 CD diagnosis, F4—persistent desire or unsuccessful efforts to cut down or control cocaine

Table 4. Heritability estimates for the multivariate trait derived by the proposedmethod and all individual quantitative features in the data.

Traits heritability p-value standard deviation

Trait derived by proposed method 0.70 4.36 × 10−22 0.06

Cocaine symptom count 0.41 1.52 × 10−08 0.07

Age when first used cocaine 0.39 2.41 × 10−09 0.07

Age when last used cocaine 0.35 6.70 × 10−06 0.10

Age when first CD diagnosis 0.43 1.15 × 10−10 0.07

Age when last CD diagnosis 0.38 5.99 × 10−09 0.07

Transition time between first cocaine use and CD diagnosis 0.42 8.09 × 10−10 0.07

doi:10.1371/journal.pone.0144418.t004

Fig 7. Weights of the eight clinical features in the linear model of the composite trait derived by our approach to the evaluation of cocaine use and
related behaviors.

doi:10.1371/journal.pone.0144418.g007
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use, F5—great amount of time spent in activities necessary to obtain, use or recover from the
effects of cocaine, and F3—using cocaine in larger amounts or over longer period than intended.
Features F6, F1 and F2 had some but limited effect on the derived trait.

We identified three SNPs for the AA population and four SNPs for the EA population that
passed our p-value threshold (5 × 10−6) in the genomewide association tests with the discovery
sample. These SNPs are listed in Table 5. In recent GWAS of substance use disorders, meta
analysis was commonly used to identify genomewide significant associations, e.g., [7, 23, 29].
Following the same strategy in [7], we identified significant markers from the meta analysis
results. Another recent study that used the same 1000 Genomes reference panel identified that
10−8 is an appropriate p-value threshold for use in a GWAS that employs imputed SNPs [30].
Based on this threshold, the markers rs833936 and rs7224135 in Table 5 were significantly
associated with the derived trait at the genomewide level, respectively for AAs and EAs, but not
with the commonly-used cocaine symptom count. The other five markers in Table 5 were
nominally significantly (1 × 10−8<meta p-value< 5 × 10−6) associated with the derived trait
only. In other words, using the standard phenotype in association tests would not discover
these SNPs that are associated with a specific subtype (a quantitative subphenotype) of cocaine
dependence. The marker rs833936 is located at the TXNIP gene which may act as an oxidative
stress mediator when its expression is suppressed by synaptic activity in brain [31]. Two mark-
ers rs11079045 and rs7224135 are located at the PTRF gene which has been identified to be
associated with cocaine abuse in an early transcriptional change study [32]. The EFEMP1 gene
has not been reported in the genetic analysis of cocaine dependence. Since all the identified
SNP markers have not been thoroughly studied in genetics of cocaine dependence, our findings
may promote subsequent investigations for these genes as well as subtypes of cocaine depen-
dence. The proposed heritable component analysis for multivariate phenotypes may provide a
new strategy to improve genomewide association studies of complex disorders.

Discussion and Conclusion
In this paper, we have proposed a quadratic optimization formulation that is capable of identify-
ing highly heritable components of complex phenotypes. The multivariate trait is derived as a
linear function y = x>w of lower level traits x by explicitly maximizing its heritability. Specifi-
cally, we search for the optimal w that maximizes the likelihood of observing a high value of her-
itability. This is equivalent to finding the best w, so that the projected trait x>w will be best
aligned with the kinship matrixF of the pedigree. An efficient algorithm based on sequential

Table 5. Top findings obtained by the genome-wide association analysis with the derived subphenotype.

SNP Chr Gene Discovery Replication Meta

MAF pderived psymp MAF pderived psymp pderived psymp

AA

rs769065 6 DNAH8 0.26 6.14 × 10−6 9.62 × 10−2 0.03 8.74 × 10−3 3.58 × 10−2 1.85 × 10−7 1.57 × 10−2

rs833936 1 TXNIP 0.36 7.90 × 10−8 2.51 × 10−2 0.12 2.22 × 10−2 1.76 × 10−2 5.59 × 10− 9 2.43 × 10−3

rs75621732 11 MLSTD2 0.06 1.89 × 10−6 1.85 × 10−1 0.35 4.95 × 10−2 5.60 × 10−1 2.70 × 10−7 1.48 × 10−1

EA

rs11079045 17 PTRF 0.40 2.48 × 10−6 2.24 × 10−1 0.42 1.48 × 10−3 2.24 × 10−1 1.33 × 10−8 1.82 × 10−1

rs7224135 17 PTRF 0.40 7.61 × 10−7 1.50 × 10−1 0.41 2.29 × 10−3 1.50 × 10−1 6.51 × 10− 9 1.08 × 10−1

rs10490394 2 EFEMP1 0.20 8.78 × 10−7 1.53 × 10−1 0.19 9.15 × 10−3 1.53 × 10−1 3.22 × 10−8 2.33 × 10−1

rs7330895 13 DACH1 0.39 7.50 × 10−6 6.00 × 10−2 0.34 2.81 × 10−2 6.00 × 10−2 8.00 × 10−7 2.80 × 10−3

Notes: Chr—chromosome; MAF—minor allele frequency; pderived—the p-value obtained with the trait derived by the proposed method; psymp—the p-value
obtained with the cocaine symptom count. SNPs with p-values that reach genome-wide significant level (< 10−8) are in bold font.

doi:10.1371/journal.pone.0144418.t005
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quadratic programming has been developed to optimize the proposed formulation. The algo-
rithm is extended to allow the correction for covariate effects when deriving a heritable
component.

Our simulation study provides evidence of the effectiveness of the proposed approach as a
means to find highly heritable components of multivariate phenotypes. Then a case study on
the phenotypes of cocaine use and dependence was conducted. A quantitative trait was identi-
fied based on thirteen cocaine use symptoms and behaviors. The trait had a heritability esti-
mate of 0.7 (with p = 4.36 × 10−22, std = 0.06), which was much higher than a standard
cocaine-use phenotype, e.g., the symptom-count trait, with heritability of 0.41. The subsequent
phenotype-genotype association study demonstrated important utility of the derived trait for
use in association analysis. Our results show that seven SNPs were significantly or nominally
significantly associated with the derived subphenotype, but were not associated with the symp-
tom count phenotype. Two out of the seven associated SNPs reached genome-wide significant
level after correction for multi-testing following the procedure in [7, 30].

Our formulation has a hyper-parameter λ. Using a hyper-parameter is common in machine
learning algorithms such as support vector machines [33]. As a hyper-parameter, λ is not
determined by solving the formulation itself and instead needs to be pre-specified. Both our
simulation study and our case study showed that our formulation is fairly robust to the value of
λ when it is chosen from a reasonably wide range. In real-world applications, hyper-parameters
are often determined by a cross-validation process, which was used in our experiments.

Discovering heritable components of a multivariate phenotype can also improve genomic
prediction [34]. If a trait is highly heritable, a model that is based on genomic markers to pre-
dict the trait value can achieve high accuracy [35]. In agricultural science, heritability of the
breeding trait is considered to be one of the most important factors for the performance of a
breeding program. Breeding programs targeted at conceptual but economically important phe-
notypes, such as feed efficiency or heat tolerance of animals, are confronted with a wide variety
of available measures for the phenotype [36, 37]. Residual body weight gain, residual feed
intake, or relative growth rate are feed efficiency measures for dairy cattle with heritability
ranging from 0.28 to 0.45 [36, 38]. Each of these measures forms a multivariate trait that is
defined by a linear function of low level traits, such as body weight, diet and feed energy intake,
and days in milk. Our new algorithm can help the identification of more heritable measures for
conceptual phenotypes of animal or plant.

There are limitations of our proposed technique. The non-convex quadratic optimization for-
mulation requires a complex solver, such as sequential quadratic programming. For a sample
that contains millions of subjects, it may become computationally prohibitive. More efficient
solvers or approximations may be needed to scale up the proposed approach. In some applica-
tions, complex grouping structures may exist in the data between different lower level traits. A
formulation that takes into account the special data structure may be more useful in producing
biologically and clinically meaningful traits. As discussed in the paper, alternative regularization
conditions exist, including some that may deal well with complex data structures, such as the
one based on ℓ2,1 vector norm. Algorithms that can solve the formulations with alternative regu-
larization terms need to be developed. Additional empirical studies across different disciplines
are needed to evaluate the capability and effectiveness of the proposed approach.
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