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Abstract

Aims—To understand the role of ancestral genomic background in substance dependence (SD) 

genome-wide association studies (GWAS), we analyzed population diversity at genetic loci 

associated with SD traits and evaluated its effect on GWAS outcomes.

Materials & methods—We investigated 24 genes with variants associated with SD by GWAS; 

and 82 loci with putative subordinate roles with respect to SD-associated genes.

Results—We observed high ancestry-related frequency differences in common functional alleles 

in GWAS relevant genes and their interactive partners. Common functional alleles with high 

frequency differences demonstrated significant effects on the GWAS outcomes.

*Author for correspondence: Tel.: +1 203 932 5711/3590, Fax: +1 203 937 3897, joel.gelernter@yale.edu. 

For reprint orders, please contact: reprints@futuremedicine.com

Financial & competing interests disclosure
This study was supported by National Institutes of Health grants RC2 DA028909, R01 DA12690, R01 DA12849, R01 DA18432, R01 
AA11330, R01 AA017535 and the VA Connecticut MIRECC. This work was also supported in part by the facilities of the Yale 
University Faculty of Arts and Sciences High Performance Computing Center. The publicly available dbGaP datasets used for the 
analyses were obtained from at http://www.ncbi.nlm.nih.gov/projects/gap/cgibin/study.cgi?study_id=phs000092.v1.p1 through dbGaP 
accession number phs000092.v1.p. Funding support for the Study of Addiction: Genetics and Environment (SAGE) was provided 
through the NIH Genes, Environment and Health Initiative [GEI] (U01 HG004422). SAGE is one of the genome-wide association 
studies funded as part of the Gene Environment Association Studies (GENEVA) under GEI. Assistance with phenotype harmonization 
and genotype cleaning, as well as with general study coordination, was provided by the GENEVA Coordinating Center (U01 
HG004446). Assistance with data cleaning was provided by the National Center for Biotechnology Information. Support for collection 
of data sets and samples was provided by the Collaborative Study on the Genetics of Alcoholism (COGA; U10 AA008401), the 
Collaborative Genetic Study of Nicotine Dependence (COGEND; P01 CA089392) and the Family Study of Cocaine Dependence 
(FSCD; R01 DA013423). Funding support for genotyping, which was performed at the Johns Hopkins University Center for Inherited 
Disease Research, was provided by the NIH GEI (U01HG004438), the National Institute on Alcohol Abuse and Alcoholism, the 
National Institute on Drug Abuse and the NIH contract ‘High throughput genotyping for studying the genetic contributions to human 
disease’ (HHSN268200782096C). The authors have no other relevant affiliations or financial involvement with any organization or 
entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those 
disclosed.
No writing assistance was utilized in the production of this manuscript.

HHS Public Access
Author manuscript
Pharmacogenomics. Author manuscript; available in PMC 2016 June 12.

Published in final edited form as:
Pharmacogenomics. 2015 August ; 16(13): 1487–1498. doi:10.2217/pgs.15.91.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ncbi.nlm.nih.gov/projects/gap/cgibin/study.cgi?study_id=phs000092.v1.p1


Conclusion—Population differences in SD GWAS outcomes seem not to be influenced by 

general variation across the genome, but by ancestry-related local haplotype structures at SD-

associated loci.
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Substance dependence (SD) is an important problem in the US population, and for many 

others worldwide, with a substantial impact on medical health, quality of life, security and 

economics [1]. Genetic epidemiology studies have shown that drug dependence has high 

hereditability, highlighting a genetic component regulating risk for these phenotypes [2,3]. 

Recent genome-wide association studies (GWAS) of SD traits have identified numerous 

significant risk alleles across the human genome [4–7]. Although replication studies and 

functional investigations have, in some cases, confirmed the role of these alleles in the 

predisposition to drug dependence [8–11], certain risk alleles have failed in replication 

efforts in independent study populations, likely due in part to the presence of heterogeneity 

and to other several confounding factors, including differences in ancestry in the samples 

being studied [12,13] (as well as, in some cases, the original results being false positives). 

Indeed, in studies of other complex phenotypes, including SD, there are three situations in 

which ancestry confounding effects are seen: genes significantly associated with the 

phenotype in one ancestry group, but not in other ancestry groups; genes associated with the 

phenotype in more than one ancestry group, but with different groups presenting specific 

associated alleles; and alleles associated with the phenotype in different ancestry groups 

with ancestry-related differences in association strength. These confounders are largely 

attributable to the basic genetic differences that are present among human populations and 

that distinguish them. Indeed, large allele frequency differences (ΔF) are, of course, present 

among human populations, generating human phenotype diversity [14]. Many studies have 

investigated human genetic variation to understand the role that population demographic 

history or the environment plays in shaping the evolution of the human genome through 

natural selection [15,16]. Furthermore, some investigations have deepened the 

understanding of the role ancestry-related genetic variation plays in identifying the 

significant differences in genetic predisposition to health-related phenotypes among human 

populations [17–20]. Regarding drug dependence specifically, genetic studies have high-

lighted significant differences in genetic predisposition among populations, especially 

between European and African ancestries, which are the most studied [4,5]. Furthermore, 

epidemiologic studies indicated ethnic disparities in the prevalence of substance dependence 

traits among ancestry groups [21–23]. However, to our knowledge, no studies have 

endeavored to explain the genetic mechanisms at the basis of ancestry-related differences in 

genetic predisposition to drug dependence. To do this, we hypothesized that common alleles 

with large interethnic ΔFs and/or interethnic variation in rare variants occurrences (i.e., 

instances where multiple rare alleles are observed in a gene in only one population) in genes 

associated to substance dependence traits may have effects on risk alleles, partially 

explaining the association differences observed among human populations. These 

differences may also be attributable to the ancestry-related variation of genes encoding 
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proteins that interact with the protein products of other SD-associated genes via protein–

protein interactions.

To gain insight into the genetic mechanisms at the basis of ancestry differences in the 

significant outcomes of GWAS of traits related to alcohol (AD), nicotine (ND) and opioid 

dependencies (OD), we analyzed the relationship of ancestral genomic background to 

GWAS results. Specifically, we investigated common and rare variation in genes with 

alleles significantly associated with SD traits based on GWAS and the genes that interact 

with them in four ancestry groups: African, admixed American (defined in the Materials and 

methods), Asian and European. Then, to verify the effect of this genetic variation on GWAS 

findings, we analyzed our GWAS discovery samples (Yale–Penn) on AD [4] and SAGE 

(Study of Addiction: Genetics and Environment) samples available in dbGAP (accession 

number phs000092.v1.p) [24]. Specifically, we tested whether variants with high allele ΔFs 

show significant effects on the associations between GWAS-relevant alleles (i.e., genetic 

variants identified by GWAS) and AD, explaining the differences observed between 

African–Americans (AA) and European–Americans (EA) – by evaluating whether the 

inclusion of ancestry-differentiated variants as covariates significantly modifies the 

associations observed. To exclude the possibility that the nonreplication of GWAS between 

AAs and EAs in AD GWAS is due to power differences attributable to allele ΔFs for 

GWAS-relevant alleles, we considered GWAS-relevant alleles that do not have large ΔFs 

between African and European ancestry subjects, and that showed genome-wide 

significance in one ancestry (p < 5*10−8) and no significance in the other population (p > 

0.05).

Materials & methods

Identification of relevant genes via GWAS

To find alleles potentially associated with SD traits, we searched Medline in November 

2013 using combinations of the following keywords: ‘drugs’, ‘alcohol’, ‘nicotine’, ‘opioid’, 

‘addiction’, ‘dependence’, ‘genome-wide association studies’ and ‘GWAS’. We identified 

16 articles, in which at least a gene showed near-significant association with a trait related to 

at least one of the considered drug dependencies (p < 5*10−7). A total of 24 genes (hereafter 

indicated as GWAS-relevant genes) were identified, as shown in Supplementary Table 1. 

We observed that the GWAS results are more consistent within the ancestral groups than 

between them, as anticipated. This trend is clearer for SD traits that were investigated by 

independent GWAS.

Identification of interacting genes/proteins

We used several interaction/pathway tools to identify genes and proteins interacting with the 

identified GWAS-relevant genes: STRING (Search Tool for the Retrieval of Interacting 

Genes/Proteins) [25], MINT (Molecular INTeraction Database) [26], KEGG (Kyoto 

Encyclopedia of Genes and Genomes) [27] and Pharm-GKB (The Pharmacogenomics 

Knowledgebase) [28]. For STRING analysis, we excluded text-mining from the active 

prediction methods and considered outcomes with the highest confidence (STRING score 

>0.900). For the MINT analysis, we considered Homo sapiens, as the reference organism, 
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and interactions with a score greater than 0.50. For KEGG and PharmGKB, we considered 

interacting genes/proteins those involved in direct interactions: either involvement in the 

same catalytic reactions or immediately preceding/subsequent catalytic reactions with 

proteins encoded by GWAS-relevant genes. With these criteria, we identified 82 interacting 

proteins. Supplementary Figures 1, 2 & 3 portray the interacting networks based on study of 

AD, ND and OD, respectively.

Population information & genomic data for ancestry analysis

Phase 1 of the 1000 Genomes (1KG) Project was used to obtain genotypic data. Specifically, 

we downloaded Variant Call Format files relevant to each GWAS-relevant or interacting 

gene. The 1KG Phase 1 consisted of 1092 individuals from 14 human populations. 

According to the 1KG project definition, they can be classified into four continental ancestry 

groups, as follows. The African group included: African ancestry in Southwest USA (ASW), 

Luhya in Webuye, Kenya (LWK) and Yoruba in Ibadan, Nigeria (YRI); the American group 

included: Colombian in Medellin, Colombia (CLM), Mexican ancestry in Los Angeles, CA 

(MXL) and Puerto Rican in Puerto Rico (PUR); the Asian group included: Han Chinese in 

Beijing, China (CHB), Han Chinese South (CHS) and Japanese in Tokyo, Japan (JPT); the 

European group included: Utah residents with northern and western European ancestry 

(CEU), Finnish from Finland (FIN), British from England and Scotland (GBR), Iberian 

populations in Spain (IBS) and Toscani in Italy (TSI). Since 1KG American populations 

reflect an admixture of Amerindian, African and European ancestries [29], we refer to them 

in the text as ‘admixed Americans’.

Functional annotation analysis

We used three different tools for functional annotation analysis. To distinguish between 

variants with functional effects (i.e., variants that affect gene regulation and/or protein 

activity) and variants with no regulatory or activity effects, we used VARIANT (VARIant 

ANalysis Tool) [30]. Based on the information obtained from VARIANT, we distinguished: 

variants likely to be nonfunctional (i.e., variants mapping to putative nonfunctional regions), 

variants with low potential for functional effect (i.e., variants with only a generic annotation: 

‘located in a regulatory region annotated by Ensembl’) and variants with high potential for 

functional effect (i.e., variants with a specific annotation: ‘CpG island’, ‘miRNA target site’, 

‘splice site’, ‘splice donor variant’, ‘RNA polymerase promoter’, ‘transcription factor 

binding site’, ‘splice acceptor variant’, ‘non-synonymous variant’ or ‘stop codon’). In the 

annotation analysis performed by VARIANT based on in silico evidence, we considered 

only information related to transcripts annotated in the Consensus Coding Sequence (CCDS) 

database. We also used rSNPBase (database for curated regulatory SNPs) and RegulomeDB 

[31,32] to further investigate variants potentially associated with epistatic effects on SD risk 

alleles. Both rSNPBase and RegulomeDB perform functional annotation on the basis of in 

silico and experimental evidences.
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Identification of ancestry-related differences in common & rare variants

To identify the ancestry-related differences in GWAS-relevant genes and their interacting 

partners, we performed distinct analyses for variants with minor allele frequency (MAF) 

≥1% (common variants) and variants with a MAF <1% (rare variants; RVs).

To identify the allele ΔF for common variants in the ancestry groups, we used the method 

proposed by Hofer and colleagues [14]. We chose this metric based on allele ΔF rather than 

others commonly used in population genetics (e.g., Wright’s fixation index) in order to 

make our analysis clear also to nonexperts in the field. For each allele i, we computed the 

average allele frequency pij within each ancestry group j, as well as the difference with the 

average frequency computed over all other populations as ΔF = |pij − p−ij|, where p−ij is the 

average frequency of allele i in all populations not belonging to the ancestry group j. A 

permutation test (n = 10,000) was performed to determine whether the MAF between the 

populations within ancestry groups and the rest of the populations was significantly different 

than expected by the chance.

For RVs, we analyzed the occurrences of functional RVs among all of the ancestry groups 

and used an equation to estimate ancestry differences in the occurrence of functional RVs. 

Using VARIANT annotation analysis, we distinguished functional variants from 

nonfunctional variants. Based on this information, for each gene we estimated the 

occurrence of functional RVs as the ratio of functional RVs to all observed variants. 

Specifically, for each gene i, we computed the average ratio rij within each ancestry group j, 

as well as the difference with the average ratio computed over all other populations as rΔF = 

|rij − r−ij|, where r−ij is the average ratio of gene i in all populations not belonging to the 

ancestry group j. A permutation test (n = 10,000) was performed to evaluate the significance 

of differences between the populations within an ancestry group compared with the rest of 

the populations.

Analysis in GWAS data of the effect of common variants with ΔF>0.10

To verify the effect of common variants with high ΔF on genome-wide significant 

associations, we analyzed two independent datasets used in a recent published AD GWAS 

[4]. Specifically, the datasets used in the present analysis comprise our Yale–Penn samples 

and SAGE samples, the latter obtained via dbGAP application. The Yale–Penn dataset 

includes 3318 AAs and 2379 EAs. The SAGE dataset includes 1195 AAs and 2528 EAs. 

Information about the genotyping, quality control and imputation analysis was published 

previously [4]. Considering the outcomes obtained by our previous AD GWAS, ten variants 

were found to be genome-wide significant (p < 5*10−8) for AD symptom count in an 

ancestry group with nonsignificant results for the other one (Supplementary Table 2). Due to 

the strong linkage disequilibrium (LD) among some significant associations in this AD 

GWAS, we selected three independent variants from the total of ten: PDLIM5 rs10031423, 

ADH1B rs1693457 and ADH1C rs6846835. Specifically, PDLIM5 rs10031423 showed R2 = 

0 with respect to ADH1B rs1693457 and ADH1C rs6846835 in AAs and EAs, whereas 

ADH1B rs1693457 and ADH1C rs6846835 showed R2 = 0 in EAs and R2 = 0.15 in AAs. 

Slight differences exist for these variants in the present association results compared with 

the published AD GWAS (Supplementary Table 3), because in the present study we used the 
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original SAGE-imputed data, and symptom counts instead of substance dependence 

diagnosis to adjust for multiple dependencies. To estimate the effect of common variants on 

the genome-wide significant associations with Diagnostic and Statistical Manual of Mental 

Disorders, 4th Edition (DSM-IV) symptom counts for AD, among the common variants 

investigated in the first part of the study, we selected those with ΔF>0.10 in African or 

European ancestries that are present in Yale–Penn and SAGE datasets (12,969 variants for 

African ancestry, and 8721 variants for European ancestry). We chose this threshold in order 

to exclude those variants with minimal allele ΔF among human populations. Then, 

performing separate analyses for AAs and EAs and for the Yale–Penn and SAGE datasets, 

we estimated the association of rs10031423, rs1693457 and rs6846835 with AD symptom 

counts in accordance with two different models using the R package genome-wide 

association/interaction analysis and rare variant analysis with family data (GWAF) to fit a 

generalized estimating equations model to correct for correlations among related individuals 

[33]. The first model (‘A’) tested the association of the imputed minor allele dosage with the 

DSM-IV symptom counts for AD considered as phenotype and using DSM-IV cocaine 

dependence symptom counts, DSM-IV OD symptom counts, DSM-IV ND symptom counts, 

sex, age and the first three ancestry principal components, as covariates. The second model 

(‘B’) performed the same analysis with the addition of a further covariate, a variant with 

ΔF>0.10. Then, we meta-analyzed the results obtained in the Yale–Penn and SAGE datasets 

for each ancestry group, applying the following equations:

where βMETA, βYale–Penn and βSAGE are the β values in the meta-analysis, Yale–Penn and 

SAGE datasets, respectively. The meta-analyzed p-values were calculated using METAL 

software [34]. To estimate the effect of each tested variant with ΔF >0.10, we calculated the 

z-score according to the following equation:

where META1 defined the meta-analyzed β values obtained from model B and META0 for 

the meta-analyzed parameter of model A. In accordance with Bonferroni correction for 

multiple testing, Z scores >|4.388| and |4.473| were considered significant in EAs and AAs, 

respectively.

Results

Considering the results of our gene–gene/protein–protein interaction’s investigation, we 

constructed three interaction networks, one each for AD, ND and OD. Supplementary Figure 

1 shows the AD interaction network. We observed only ADH1B and ADH1C interacting 

between themselves and with other common interacting partners. The other AD GWAS-

relevant genes were related only to specific interacting partners (i.e., CTBP2, HTR1A, GSS, 

KCNB2) or were not related to any interacting partners (i.e., THSD7B, SERINC2, NALCN, 

PKNOX2, DSCAML1, METAP1, KIAA0040, C15orf53, PDLIM5). In the ND interaction 

network, we observed that CHRNA3 and CHRNA5 have common interacting proteins. 
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Conversely, CHRNB3 and ARHGAP10 did not interact (Supplementary Figure 2). In the OD 

interaction network, NCK2 and KCNG2 showed many interacting partners, having common 

interactions with PARVA and KCNC1, respectively (Supplementary Figure 3). In the OD 

interaction analysis, we saw no interactions for the APBB2 gene.

The ΔF analysis of common variants (n = 51,079) indicated that allelic differences are 

greater in subjects of African ancestry (99.9th percentile of African ΔF = 0.690) than in 

those of Asian (99.9th percentile of Asian ΔF = 0.627), European (99.9th percentile of 

European ΔF = 0.422) or admixed-American ancestries (99.9th percentile of admixed-

American ΔF = 0.281) (Figure 1). Considering each SD diagnosis separately, we observed 

high ΔF values in variants potentially associated with a large functional effect in GWAS-

relevant genes and their interacting partners in AD, ND and OD (Supplementary Tables 4, 5 

& 6, respectively). Table 1 reports the common variants with top ΔF that are also potentially 

associated with regulatory functions observed in each GWAS-relevant gene.

In the analysis of RVs, we observed that the distribution of r values differed significantly 

between those of African ancestry and those of Asian (pBonferroni <0.05), European 

(pBonferroni <0.001) and admixed-American ancestries (pBonferroni <0.001) (Figure 2).

Considering the rΔF values for each analyzed gene, we observed only two significant 

outcomes for African ancestry: ZEB1 (Africa rΔF = 0.186; p = 0.005), and HDAC1 (Africa 

rΔF = 0.316; p = 0.004). These are interactive partners; we did not observe any significant 

difference for genome-wide significant genes. Supplementary Table 6 shows the top 1% of 

rΔF values for each ancestry group. Although no ancestry-related differences were observed 

for the occurrence of RVs in GWAS-relevant genes, high r values in GWAS-relevant genes 

can be seen in the overall 1KG population (roverall = 0.529 ± 0.215; Table 2).

As mentioned above, we hypothesized that allele ΔFs in variants with functional impact may 

explain the ancestry-related differences observed in drug dependence GWAS. To verify this 

hypothesis, we analyzed two different datasets with AA and EA samples used in our 

recently published AD GWAS, as described above. In this study, ten GWAS-significant 

variants were observed associated with AD symptom counts in one ancestry group but not in 

the other (Supplementary Table 2 & 3) – i.e., in either AAs or EAs but not both. These 

genetic variants are located in ADH1B, ADH1C and PDLIM5. In PDLIM5, we observed 

large ΔF values for African ancestry, but the PDLIM5 significant variant (i.e., rs10031423) 

showed low ΔF values in all ancestry groups (Supplementary Figure 4). In ADH1B, we 

observed large ΔF values for Asian ancestry (i.e., ΔF>0.6), but low ΔF values of ADH1B 

variants for European and African ancestries (Supplementary Figure 5). In ADH1C, extreme 

ΔF values were observed for Asian ancestry (i.e., ΔF>0.6), and most of the Asian ΔF peaks 

are genome-wide significant variants for AD symptom counts (Supplementary Figure 6). 

Both ADH1B and ADH1C ΔF top values are included in the top 0.1% of the distribution of 

Asian ΔFs. To check whether the high ΔF values of ADH1B and ADH1C in Asians and 

PDLIM5 in Africans are due to human demographic history or to natural selection 

processes, we verified the integrated Haplotype Score of these loci using the Haplotter 

application [35]. Significant signatures of natural selection are confirmed in Asians for 
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ADH1B (p = 0.011) and ADH1C (p = 0.009) (Supplementary Figure 7), while a 

nonsignificant outcome was observed for PDLIM5.

As noted above, due to the high LD present among the ten genome-wide significant variants 

considered here, we chose three independent variants (i.e., PDLIM5 rs10031423, ADH1B 

rs1693457 and ADH1C rs6846835).

In EAs PDLIM5 rs10031423 showed a significant association with AD symptom counts. In 

EAs, we identified 59 variants with significant effect on this association. Except for ADH1B 

rs1229984 (i.e., a genome-wide significant variant for AD symptom counts in EAs), they are 

all located in the PDLIM5 gene region, and 36 of them have an r2<0.2 with rs10031423 both 

in the Yale–Penn and SAGE datasets (Supplementary Table 7). Among these non LD 

variants, there are ADH1B rs1229984 and PDLIM5 rs2452594. This latter may have 

functional impact on the PDLIM5 function (RegulomeDB score = 2b, i.e., TF binding + any 

motif + DNase Footprint + DNase peak) and this variant reduces the association of 

rs10031423 with AD symptom count (meta-analyzed p-value from 7.3510−6 to 5.75*10−4). 

In AAs, we identified 88 variants with significant z-scores (Supplementary Table 8). Except 

for KCND2 rs12333476, they are all located on chromosome 4, as rs10031423. Among 

these variants, rs6853490 (z = −20.085) showed that a high African ΔF, may play a role in 

PDLIM5 regulation (RegulomeDB score = 2b, i.e., TF binding + any motif + DNase 

Footprint + DNase peak), and increase the association of rs10031423 with AD symptom 

count in AAs (meta-analyzed p-value from 0.276 to 0.097). Regarding ADH1B rs1693457 

(significant in AAs), through our analysis of AAs, we identified 27 variants with significant 

z-scores. They are all located in the surrounding regions of rs1693457 (Supplementary Table 

9). Among these, 18 variants showed r2 <0.2 with rs10031423 both in the Yale–Penn and 

SAGE datasets. In accordance with RegulomeDB, none of these seem to have functional 

impact on PDLIM5 gene function. However, rs12639887 (z = 16.997) showed the highest 

African ΔF among these (Africa ΔF = 0.39). Both the VARIANT tool and rSNPbase 

identified it as regulatory SNP, and rs12639887 reduces the association significance of 

rs1693457 with AD symptom counts (meta-analyzed p-value from 3.40*10−9 to 1.10*10−5). 

In EAs, we identified 106 variants with significant z-scores. All of these are located in the 

regions surrounding rs10031423 (Supplementary Table 10). According to RegulomeDB, 

none of them showed notable evidence of functional regulatory effects, and the strongest 

increase of significance was observed for rs1229984 (z = 13.369; meta-analyzed p-value 

from 0.726 to 0.189). In AAs, the analysis of ADH1C rs6846835 (significant in AAs) 

revealed 15 variants with significant z-scores. All of these are located on chromosome 4, as 

rs6846835 (Supplementary Table 11). Among them, only ten variants present an r2 with 

rs6846835<0.2. Considering the non LD variants, rs12639887 showed significant effects on 

both ADH1B rs1693457 and ADH1C rs6846835. In the analysis of ADH1C rs6846835, 

rs12639887 showed a strong effect on the association with AD symptom count (z = −6.015; 

meta-analyzed p-value from 5.65*10−9 to 0.237). Stratifying the AA and EA samples for 

rs12639887 genotype, we observed the same trend in both ancestry groups for the 

association between ADH1C rs6846835 and AD symptom count (Supplementary Table 12). 

Regarding the analysis of ADH1C rs6846835 in EAs, we observed 72 variants with 

significant z-scores. They are all located on chromosome 4 (Supplementary Table 13). 
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Among these variants, only rs4147541 showed evidence of regulatory function 

(RegulomeDB score = 3a, i.e., TF binding + any motif + DNase peak) and an effect that 

increased the association significance of ADH1C rs6846835 with AD symptom counts in 

EAs (z = 39.468; meta-analyzed p-value from 0.950 to 0.041).

Considering the PDLIM5, ADH1B and ADH1C analyses, we observed that the most 

significant findings are related to common functional alleles with high African or European 

ΔFs located in the regions surrounding genome-wide significant variants. To analyze the 

local haplotype structure of the PDLIM5-ADH1B-ADH1C region (chr4:95,379,741- 

100,274,157), we used 1KG Phase 1 data from the ASW populations to investigate AAs and 

from the CEU to investigate EAs, considering those ancestry variants with relevant effects 

on PDLIM5 rs10031423, ADH1B rs1693457 and ADH1C rs6846835 associations with AD 

outcomes. In accordance with the method of Gabriel and colleagues [36], we observed 14 

and 11 haplotype blocks in ASW and CEU, respectively (Supplementary Figures 8 & 9). In 

ASW, PDLIM5 included ten haplotype blocks. The ancestry variants with effects on 

PDLIM5 genome-wide significant association are located in the haplotype blocks closer to 

rs10031423. Regarding the ADH1B rs1693457 genome-wide significant association, the 

variants with relevant effects are mainly located within METAP1 and ADH1B haplotypes. 

For the ADH1C rs6846835 genome-wide significant association, most variants with relevant 

effects are located in METAP1 and ADH1C haplotypes, and they showed relevant effects 

also on ADH1B association. In CEU, the PDLIM5 gene region includes eight haplotype 

blocks, and the genome-wide significant variant is located in last (i.e., 3′-most) haplotype 

block (i.e., Block 8). Most variants with significant effects on the genome-wide association 

are located in Block 1 and Block 2; single haplotypes are present for each of the remaining 

genes (i.e., METAP1, ADH1B and ADH1C). The variants with relevant effects on the 

ADH1B rs1693457 genome-wide significant association are mainly located in METAP1 and 

ADH1B haplotypes, while the relevant findings related to ADH1C rs6846835 genome-wide 

association are located in an ADH1C haplotype and most of them showed significant effects 

also on the ADH1B rs1693457 genome-wide association.

Discussion

GWAS for drug dependence traits have identified several significant risk alleles, but 

replication studies in different ancestry groups often fail to reproduce these outcomes 

[12,13]. In the present study, we tested the effect of genetic background (variants located in 

the surrounding regions or in functional partners) on the significantly-associated variants. 

Our results provided significant evidence that local ancestry differences can partially explain 

the ancestry difference observed in GWAS. Specifically, we observed that when adjusting 

for these local ancestry-related variants, the differences between African–Americans and 

European–Americans tend to diminish.

Our investigation of gene–gene/protein–protein interactions highlighted multiple 

interactions of GWAS-relevant genes with other genome-wide relevant loci or other genes 

involved in the same molecular pathways. Genetic variations among these interacting 

partners may have an effect on the predisposition to drug dependence. However, we also 

found that certain genome-wide relevant genes were not integrated into the network. This 
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suggests that there is missing information in the experimental evidence pertaining to gene–

gene/protein–protein interaction in the predisposition to drug dependence – a result that is 

hardly surprising. Other approaches have been used to integrate drug dependence GWAS 

data with the human protein interactome [37]. Comparing these approaches, we observed 

some common features and some differences, which are likely attributable to the fact that 

the present network analysis is based only on experimental evidence independent from 

genetic data. Therefore, by analyzing our interaction networks, we have confidently 

investigated human variation in genes that directly interact with the identified GWAS-

relevant genes.

Our analysis of the ancestry-related allele ΔF of common variants indicated that African 

ancestry is the most divergent group, in agreement with the current knowledge about 

genetics of human demographic history [38,39]. Conversely, the admixed-American group 

showed lower allele ΔFs than the other ancestry groups. It is highly likely that this is due to 

the complex admixture of African, Amerindian and European ancestries present in these 

populations [29]. When considering the observed ancestry-related differences in common 

variants in both GWAS-relevant genes and their interactive partners, we detected a number 

of variants with noteworthy allele ΔFs which are also potentially involved in regulatory 

mechanisms, suggesting their role in the diverse outcomes observed in drug dependence 

GWAS-among human populations. Regarding the rare variants analysis, we observed that 

there are differences among ancestry groups for the occurrence of regulatory rare variants. 

These differences are significant when we considered the entire genome, but, when we 

focused on specific gene regions, they are not statistically significant. The result observed, 

considering genomic differences, is in accordance with recent evidence that has indicated 

differences in the stratification of functional RVs among human populations [40,41]. As is 

the case for common variants, the differences in RVs between African and non-African 

populations may be attributed to human demographic history. However, the specific-gene 

analysis suggests that, in drug dependence GWAS, confounding effect due to rare variation 

is not linked to the ancestry of the investigated populations. Nevertheless, we cannot exclude 

that RVs could have a population-specific effect on an SD-phenotype, since their effect 

could depend on a permissive epistatic genetic background present in one population group 

but not another. Moreover, the high rates of functional RVs in both GWAS-relevant genes 

and their interactive partners also indicate that rare variation may strongly confound 

outcomes of drug dependence GWAS, as postulated for other complex phenotypes related to 

drug response [42,43].

The ΔF analysis of genes with AD GWAS ancestry-specific significant alleles showed the 

strong diversity of ADH1B and ADH1C variation between Asian and non-Asian populations. 

Previous studies indicated that ADH1B-ADH1C genetic diversity between Asians and non-

Asians is due in part to a selective pressure [44–46], suggesting a potential effect on ADH-

associated traits, such as AD. A recent GWAS on AD traits in a Chinese study population 

indicated that ADH1B and ADH1C did not contain alleles significantly associated with AD 

traits, but ALDH2, another alcohol metabolism-related gene and an interactive partner of 

both ADH1B and ADH1C, showed AD risk alleles consistent with many prior observations 

[47]. This difference between non-Asian ancestries (i.e., AAs and EAs: genome-wide 
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significance of ADH genes for AD traits) and Asian one (non-genome-wide significance of 

ADH genes for AD traits) may ultimately be attributable to the effect of natural selection on 

genetic variation of ADH-gene cluster.

Our analysis on AD GWAS datasets indicated that multiple variants, located in the 

surrounding regions of genome-wide significant alleles, have effects modifying the 

associations between significant alleles and AD symptom counts. Most of them showed high 

allele ΔFs in African or European ancestries and are potentially involved in regulatory 

mechanisms. Among them, in AAs, rs12639887 showed significant effects both on ADH1B 

rs1693457 and ADH1C rs6846835 association with AD symptom counts. This variant is 

located in a PDLIM5 intronic region, approximately 5 Mb downstream with respect to 

ADH1B and ADH1C. Both VARIANT and rSNPbase defined it as a regulatory SNP. In 

particular, VARIANT describes it as being located in an H3K36me3 region, whereas 

rSNPbase designates it as being involved in proximal, distal and RNA binding protein-

mediated regulations. Unfortunately, to best of our knowledge, no information is currently 

available regarding the role of rs12639887 in ADH1B and ADH1C expression or 

methylation status in brain tissues. However, according to annotation analysis, we can 

hypothesize that rs12639887 plays a role in determining the differences observed between 

AAs and EAs in AD GWAS outcomes of ADH1B and ADH1C. In addition to this single 

case, our data generally revealed that ancestry-related variability in AD GWAS-relevant 

genes and their surrounding regions can explain some differences in the outcomes of drug 

dependence GWAS among human populations. Consequently, the differences among 

ancestry groups in terms of AD genetic predisposition seem not to be influenced by general 

variation across the genome – that is, these differences may reside in a collection of 

identifiable ancestry-specific risk alleles. Accordingly, the analysis of local haplotype 

structure of the PDLIM5-ADH1B-ADH1C region confirmed how population differences in 

haplotype structure can affect GWAS findings.

Conclusion

Our data furnish novel information not only about the relationship between AD and 

ancestry, but also about the interactions between GWAS-relevant alleles and cis-regulatory 

variants. Further analyses based on an evolutionary approach may provide other relevant 

knowledge about the predisposition of AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors would like to thank Henry R Kranzler for assisting with data collection and manuscript review. The 
authors are also grateful to the research groups of the 1000 Genomes Project and the SAGE project for their 
publicly available data.

References

Papers of special note have been highlighted as:

Polimanti et al. Page 11

Pharmacogenomics. Author manuscript; available in PMC 2016 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• of interest;

•• of considerable interest

1. Office of National Drug Control Policy. The Economic Costs of Drug Abuse in the United States, 
1992–2002. Executive Office of the President; Washington, DC, USA: 2004. www.ncjrs.gov/
ondcppubs/publications/pdf/economic_costs

2. Gelernter J, Kranzler HR. Genetics of alcohol dependence. Hum Genet. 2009; 126(1):91–99. 
[PubMed: 19533172] 

3. Goldman D, Oroszi G, Ducci F. The genetics of addictions: uncovering the genes. Nat Rev Genet. 
2005; 6(7):521–532. [PubMed: 15995696] 

4••. Gelernter J, Kranzler HR, Sherva R, et al. Genome-wide association study of alcohol dependence: 
significant findings in African– and European–Americans including novel risk loci. Mol 
Psychiatry. 2014; 19(1):41–49. GWAS of alcohol dependence used to test the effect of ancestry 
genomic background in the present study. [PubMed: 24166409] 

5. Gelernter J, Kranzler HR, Sherva R, et al. Genome-wide association study of opioid dependence: 
multiple associations mapped to calcium and potassium pathways. Biol Psychiatry. 2014; 76(1):66–
74. [PubMed: 24143882] 

6. Gelernter J, Sherva R, Koesterer R, et al. Genome-wide association study of cocaine dependence 
and related traits: FAM53B identified as a risk gene. Mol Psychiatry. 2014; 19(6):717–723. 
[PubMed: 23958962] 

7. Gelernter JKH, Kranzler HR, Sherva R, et al. Genome wide association study of nicotine 
dependence in American populations: identification of novel risk loci in both African– and 
European–Americans. Biol Psychiatry. 2014; 77(5):493–503. [PubMed: 25555482] 

8. Johnson C, Drgon T, Walther D, Uhl GR. Genomic regions identified by overlapping clusters of 
nominally-positive SNPs from genome-wide studies of alcohol and illegal substance dependence. 
PLoS ONE. 2011; 6(7):e19210. [PubMed: 21818250] 

9. Derringer J, Krueger RF, Dick DM, et al. The aggregate effect of dopamine genes on dependence 
symptoms among cocaine users: cross-validation of a candidate system scoring approach. Behav 
Genet. 2012; 42(4):626–635. [PubMed: 22358648] 

10. Park BL, Kim JW, Cheong HS, et al. Extended genetic effects of ADH cluster genes on the risk of 
alcohol dependence: from GWAS to replication. Hum Genet. 2013; 132(6):657–668. [PubMed: 
23456092] 

11. Biernacka JM, Geske JR, Schneekloth TD, et al. Replication of genome wide association studies of 
alcohol dependence: support for association with variation in ADH1C. PLoS ONE. 2013; 
8(3):e58798. [PubMed: 23516558] 

12. Verweij KJ, Zietsch BP, Liu JZ, et al. No association of candidate genes with cannabis use in a 
large sample of Australian twin families. Addict Biol. 2012; 17(3):687–690. [PubMed: 21507154] 

13. Enoch MA. Genetic influences on the development of alcoholism. Curr Psychiatry Rep. 2013; 
15(11):412. [PubMed: 24091936] 

14•. Hofer T, Ray N, Wegmann D, Excoffier L. Large allele frequency differences between human 
continental groups are more likely to have occurred by drift during range expansions than by 
selection. Ann Hum Genet. 2009; 73(1):95–108. Method used in the present study to identify the 
most differentiated loci among ancestry groups. [PubMed: 19040659] 

15. Elhaik E, Tatarinova T, Chebotarev D, et al. Geographic population structure analysis of 
worldwide human populations infers their biogeographical origins. Nat Commun. 2014; 5:3513. 
[PubMed: 24781250] 

16. Karlsson EK, Kwiatkowski DP, Sabeti PC. Natural selection and infectious disease in human 
populations. Nat Rev Genet. 2014; 15(6):379–393. [PubMed: 24776769] 

17. Polimanti R, Piacentini S, Manfellotto D, Fuciarelli M. Human genetic variation of CYP450 
superfamily: analysis of functional diversity in worldwide populations. Pharmacogenomics. 2012; 
13(16):1951–1960. [PubMed: 23215887] 

18. Chanock SJ. A twist on admixture mapping. Nat Genet. 2011; 43(3):178–179. [PubMed: 
21350496] 

Polimanti et al. Page 12

Pharmacogenomics. Author manuscript; available in PMC 2016 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. Gelernter J. SLC6A4 polymorphism, population genetics, and psychiatric traits. Hum Genet. 2014; 
133(4):459–461. [PubMed: 24385047] 

20. Bentley AR, Chen G, Shriner D, et al. Gene-based sequencing identifies lipid-influencing variants 
with ethnicity-specific effects in African Americans. PLoS Genet. 2014; 10(3):e1004190. 
[PubMed: 24603370] 

21. Chartier KG, Scott DM, Wall TL, et al. Framing ethnic variations in alcohol outcomes from 
biological pathways to neighborhood context. Alcohol Clin Exp Res. 2014; 38(3):611–618. 
[PubMed: 24483624] 

22. Mack KA. Centers for Disease C and Prevention. Drug-induced deaths – United States, 1999–
2010. MMWR Surveill Summ. 2013; 62(Suppl 3):161–163. [PubMed: 24264508] 

23. Rayens MK, Hahn EJ, Fernander A, Okoli CT. Racially classified social group differences in 
cigarette smoking, nicotine dependence, and readiness to quit. J Addict Nurs. 2013; 24(2):71–81. 
[PubMed: 24621484] 

24••. Bierut LJ, Agrawal A, Bucholz KK, et al. A genome-wide association study of alcohol 
dependence. Proc Natl Acad Sci USA. 2010; 107(11):5082–5087. GWAS of alcohol dependence 
used to test the effect of ancestry genomic background in the present study. [PubMed: 20202923] 

25. Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction 
networks, with increased coverage and integration. Nucleic Acids Res. 2013; 41:D808–D815. 
[PubMed: 23203871] 

26. Licata L, Briganti L, Peluso D, et al. MINT, the molecular interaction database: 2012 update. 
Nucleic Acids Res. 2012; 40:D857–D861. [PubMed: 22096227] 

27. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 
28(1):27–30. [PubMed: 10592173] 

28. Thorn CF, Klein TE, Altman RB. Pharmacogenomics and bioinformatics: PharmGKB. 
Pharmacogenomics. 2010; 11(4):501–505. [PubMed: 20350130] 

29. Gravel S, Zakharia F, Moreno-Estrada A, et al. Reconstructing Native American migrations from 
whole-genome and whole-exome data. PLoS Genet. 2013; 9(12):e1004023. [PubMed: 24385924] 

30. Medina I, De Maria A, Bleda M, et al. VARIANT: command line, web service and web interface 
for fast and accurate functional characterization of variants found by nextgeneration sequencing. 
Nucleic Acids Res. 2012; 40:W54–W58. [PubMed: 22693211] 

31. Guo L, Du Y, Chang S, Zhang K, Wang J. rSNPBase: a database for curated regulatory SNPs. 
Nucleic Acids Res. 2014; 42:D1033–D1039. [PubMed: 24285297] 

32. Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes 
using RegulomeDB. Genome Res. 2012; 22(9):1790–1797. [PubMed: 22955989] 

33. Chen MH, Yang Q. GWAF: an R package for genome-wide association analyses with family data. 
Bioinformatics. 2010; 26(4):580–581. [PubMed: 20040588] 

34. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide 
association scans. Bioinformatics. 2010; 26(17):2190–2191. [PubMed: 20616382] 

35. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human 
genome. PLoS Biol. 2006; 4(3):e72. [PubMed: 16494531] 

36. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human 
genome. Science. 2002; 296(5576):2225–2229. [PubMed: 12029063] 

37. Han S, Yang BZ, Kranzler HR, et al. Integrating GWASs and human protein interaction networks 
identifies a gene subnetwork underlying alcohol dependence. Am J Hum Genet. 2013; 93(6):
1027–1034. [PubMed: 24268660] 

38. Li JZ, Absher DM, Tang H, et al. Worldwide human relationships inferred from genome-wide 
patterns of variation. Science. 2008; 319(5866):1100–1104. [PubMed: 18292342] 

39. Campbell MC, Tishkoff SA. African genetic diversity: implications for human demographic 
history, modern human origins, and complex disease mapping. Annu Rev Genomics Hum Genet. 
2008; 9:403–433. [PubMed: 18593304] 

40. Moore CB, Wallace JR, Frase AT, Pendergrass SA, Ritchie MD. Using BioBin to explore rare 
variant population stratification. Pac Symp Biocomput. 2013:332–343. [PubMed: 23424138] 

Polimanti et al. Page 13

Pharmacogenomics. Author manuscript; available in PMC 2016 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



41. Moore CB, Wallace JR, Wolfe DJ, et al. Low frequency variants, collapsed based on biological 
knowledge, uncover complexity of population stratification in 1000 genomes project data. PLoS 
Genet. 2013; 9(12):e1003959. [PubMed: 24385916] 

42. Polimanti R, Iorio A, Piacentini S, Manfellotto D, Fuciarelli M. Human pharmacogenomic 
variation of antihypertensive drugs: from population genetics to personalized medicine. 
Pharmacogenomics. 2014; 15(2):157–167. [PubMed: 24444406] 

43. Drake KA, Torgerson DG, Gignoux CR, et al. A genome-wide association study of bronchodilator 
response in Latinos implicates rare variants. J Allergy Clin Immunol. 2014; 133(2):370–378. 
[PubMed: 23992748] 

44. Suo C, Xu H, Khor CC, et al. Natural positive selection and north-south genetic diversity in East 
Asia. Eur J Hum Genet. 2012; 20(1):102–110. [PubMed: 21792231] 

45. Evsyukov A, Ivanov D. Selection variability for Arg48His in alcohol dehydrogenase ADH1B 
among Asian populations. Hum Biol. 2013; 85(4):569–577. [PubMed: 25019189] 

46. Li H, Gu S, Han Y, et al. Diversification of the ADH1B gene during expansion of modern humans. 
Ann Hum Genet. 2011; 75(4):497–507. [PubMed: 21592108] 

47. Quillen EE, Chen XD, Almasy L, et al. ALDH2 is associated to alcohol dependence and is the 
major genetic determinant of “daily maximum drinks” in a GWAS study of an isolated rural 
chinese sample. Am J Med Genet B Neuropsychiatr Genet. 2014; 165B(2):103–110. [PubMed: 
24277619] 

Polimanti et al. Page 14

Pharmacogenomics. Author manuscript; available in PMC 2016 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Executive summary

Background

• Genome-wide association studies (GWAS) of substance dependence traits have 

identified numerous significant risk alleles, but replication studies on different 

ancestry groups have often failed to reproduce these outcomes.

Aim

• To understand the role of ancestral genomic background in substance 

dependence (SD) GWAS, we analyzed population diversity at genetic loci 

associated with SD traits and evaluated its effect on the significant outcomes of 

GWAS in different ancestry groups.

Results

• We observed high ancestry-related frequency differences in common functional 

alleles in GWAS-relevant genes and their interactive partners.

• We also identified significant ancestry differences in the genome-wide 

occurrence of regulatory rare variants between African and non-African 

population, but gene-specific analysis confirmed few significant ancestry 

differences.

• The analysis of SD GWAS datasets indicated that common functional alleles 

with high African or European frequency differences have significant effects on 

the outcomes of genome-wide significant loci observed in African– and 

European–Americans.

Conclusion

• We observed that population differences in SD GWAS outcomes seem not to be 

influenced by general variation across the genome, but rather are due to 

ancestry-related local haplotype structures at SD-associated loci.
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Figure 1. Frequency differences values of common variants among ancestry groups
Each ancestry-specific line is made up by symbols that represent single variants. For color 

figures, see online at: http://www.futuremedicine.com/doi/full/10.2217/PGS.15.91
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Figure 2. Occurrence of functional rare variants in drug-dependence genes and their interactive 
partners among ancestry groups (Africa: triangles; admixed America: red circles; Asia: green 
square; Europe: blue diamonds)
Each symbol represents a gene. Trend lines for each ancestry groups are also reported 

(Africa: r2 = 0.92, p < 0.001; admixed America: r2 = 0.90; p < 0.001; Asia r2 = 0.90; p < 

0.001; and Europe: r2 = 0.90; p < 0.001).
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Table 2

Occurrence of functional rare variants in significant genes. roverall is the ratio between functional rare variants 

and all variants observed in a gene considering all ancestry groups together.

Gene Addiction All variant (n) Functional rare variant (n) roverall

ADH1B Alcohol 202 125 0.619

ADH1C Alcohol 228 22 0.096

C15orF53 Alcohol 84 60 0.714

CTBP2 Alcohol 2956 1998 0.676

DSCAML1 Alcohol 5910 3898 0.660

GSS Alcohol 275 203 0.738

HTR1A Alcohol 27 20 0.741

KCNB2 Alcohol 5628 743 0.132

KIAA0040 Alcohol 505 348 0.689

METAP1 Alcohol 865 577 0.667

NALCN Alcohol 5428 883 0.163

PDLIM5 Alcohol 2850 1990 0.698

SERINC2 Alcohol 359 215 0.599

THSD7B Alcohol 13590 868 0.064

ARHGAP10 Nicotine 4542 2696 0.594

CHRNA3 Nicotine 390 245 0.628

CHRNA5 Nicotine 392 142 0.362

CHRNB3 Nicotine 648 277 0.427

APBB2 Opioid 6085 2774 0.456

KCNC1 Opioid 583 412 0.707

KCNG2 Opioid 580 337 0.581

NCK2 Opioid 2133 1473 0.691

PARVA Opioid 2260 1464 0.648
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