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ABSTRACT

Background and Aims Twin and family studies suggest that genetic influences are shared across substances of abuse.
However, despite evidence of heritability, genome-wide association and candidate gene studies have indicated numerous
markers of limited effects, suggesting that much of the heritability remains missing. We estimated (1) the aggregate effect
of common single nucleotide polymorphisms (SNPs) on multiple indicators of comorbid drug problems that are typically
employed across community and population-based samples, and (2) the genetic covariance across these measures.

Participants A total of 2596 unrelated subjects from the Study of Addiction: Genetics and Environment provided infor-
mation on alcohol, tobacco, cocaine, cannabis and other illicit substance dependence. Phenotypicmeasures included: (1) a
factor score based on DSM-IV drug dependence diagnoses (DD), (2) a factor score based on problem use (PU; i.e. 1+
DSM-IV symptoms) and (3) dependence vulnerability (DV; a ratio of DSM-IV symptoms to the number of substances used).

Findings Univariate and bivariate genome-wide complex trait analyses of this selected sample indicated that common
SNPs explained 25–36% of the variance across measures, with DD and DV having the largest effects [h2SNP (standard
error)=0.36 (0.13) and 0.33 (0.13), respectively; PU=0.25 (0.13)]. Genetic effects were shared across the three
phenotypic measures of comorbid drug problems [rDD-PU=0.92 (0.08), rDD-DV=0.97 (0.08) and rPU-DV=0.96
(0.07)]. Conclusion At least 20% of the variance in the generalized vulnerability to substance dependence is attributable
to common single nucleotide polymorphisms. The additive effect of common single nucleotide polymorphisms is shared
across important indicators of comorbid drug problems.
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INTRODUCTION

Substance dependence is a complex behavior influenced by
both genetic and environmental factors. The role of genet-
ics in substance dependence is well established in twin and
family studies. Unfortunately, molecular genetic studies
have had limited success identifying individual genetic var-
iants that are common across multiple substances of abuse
[1–10]. First, the primary conclusions from molecular
genetic studies are that common single nucleotide poly-
morphisms (SNPs) contribute modestly to substance

dependence phenotypes. For example, rs1614972 in the
alcohol dehydrogenase gene (ADH1C) was the only replica-
ble SNP in a recent alcoholism genome-wide association
study (GWAS) [11], and variants in the CHRNA5-A3-B4
gene cluster have been linked repeatedly to tobacco
addiction/dependence [12,13]. Secondly, multiple genetic
polymorphisms influence substance dependence. In part
to address the possibility thatmost variants truly associated
with complex traits have effect sizes too small to detect
individually using GWAS studies, Yang et al. [14] developed
a new method, Genome-wide Complex Trait Analysis
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(GCTA), that focuses on the estimation of the phenotypic
variance explained by genome-wide similarity at genotyped
SNPs. Rather than testing each SNP individually, GCTA
decomposes the phenotypic variance into two compo-
nents: (1) effects due to the additive influences of all mea-
sured SNPs (h2SNP) and (2) the effects due to unmeasured
environmental influences, random noise or the effects of
genetic variants that were not measured by the genotyping
array. This approach allows for an estimate of phenotypic
variability explained by genome-wide SNP data.

In part, some of the variability in findings across studies
can also be attributed to differences in how drug depen-
dence phenotypes are scored for analysis. Prior studies
have primarily utilized clinically defined phenotypes [based
on the Diagnostic and Statistical Manual of Mental Disor-
ders dependence symptoms (version four; DSM-IV
[15,16]), such as dependence diagnosis (i.e. 3+DSM-IV de-
pendence symptoms all occurring in a 12-month period).
However, alternative and dimensional summary scores,
such as problem usage (i.e. 1+ DSM-IV dependence symp-
toms) and symptom counts have also been utilized to help
overcome low-level levels of diagnosis often observed in
community and population-based samples. Epidemiologi-
cal studies [17,18] show that individuals who meet the
clinical criteria for dependence diagnosis for one substance
are at greatly increased risk of using or becoming
dependent/addicted to other substances, suggesting a gen-
eralized pattern of problematic drug usage. Furthermore,
studies suggest that the ‘common liability’ (i.e. each sub-
stance has its own set of genetic and environmental liabil-
ities that are shared with other substances) and
‘alternative forms’ (i.e. comorbidity across substances
arises because each substance is an alternatemanifestation
of a common underlying liability for deviant behaviors)
models best explain the observed comorbidity for depen-
dence across different substances [19–22]. Like Fig. 1, these
models assume that dependence upon multiple substances
is attributable to correlated latent liabilities or a single latent
continuous liability, respectively. Recently, a comparison of
three multivariate genetic models indicated that a model
which attributes the covariance among different substances
to a single latent trait parsimoniously describes alcohol,
tobacco and cannabis dependence in a community-based
sample [21]. The identified factor, which was referred to as
‘substance dependence vulnerability’, was highly heritable
(64%) across genders and has been demonstrated to be sta-
ble over time [23]. Similarly, evidence for a general tendency
tomisuse substances has also given rise to dimensionalmea-
sures of comorbid drug problems; in particular, dependence
vulnerability (DV), which is a heritable (h2=0.40) sum-
mary measure that reflects the average number of DSM-IV
dependence symptoms across substances used [24].

The current study aimed to identify genetic effects on
the vulnerability to substance dependence. We hypothe

sized that common genetic variants account for at least
half of the genetic variance observed in twin/adoption
studies. Furthermore, to demonstrate the validity of these
findings, we utilized three DSM-IV based definitions of co-
morbid drug dependence and hypothesized that a common
set of genetic factors would account for any and all genetic
variances identified across the definitions. To test these
hypotheses, we first used factor analysis to replicate prior
work [21] and determine the existence of a common
factor indicated by either drug dependence diagnosis
(DD; i.e. 3+DSM-IV criteria in a 12-month period) or prob-
lem use [PU; i.e. 1+ DSM-IV criteria (life-time)]. Secondly,
we examined genome-wide additive genetic influences on
the observed factors, as well as the summary measure,
DV. Clinical definitions (DD), subclinical thresholds (PU),
and the DV summary score were analyzed separately to
explore how the measurement approach used to reflect
substance-related problems affects themagnitude of identi-
fied additive genetic effects. Finally, we used a bivariate
GCTA model to test whether DD, PU and DV index the
same genetic liability.

METHODS

Sample

Data were from the Study of Addiction: Genetics and Envi-
ronment (SAGE), which is part of the National Human Ge-
nome Research Institute’s Gene Environment Association
Study Initiative [Database for Genotypes and Phenotypes
(dbGaP) study accession phs000092.v1.p1]. SAGE is a
multi-ethnic sample of 4121 unrelated individuals from
three large, complementary data sets designed to study
drug addiction: the Collaborative Study on the Genetics of
Alcoholism (COGA), the Family Study of Cocaine

Figure 1 The Common Pathway Model. The observed phenotypic
variance/covariance of the measured dependence phenotypes (rectan-
gles) represent alternate manifestations of a generalized vulnerability to
dependence (indicated by the latent trait (solid circle), substance depen-
dence vulnerability). Variation in the latent trait and the variance in the
observed phenotypes are decomposable into genetic (G) and environ-
mental/residual (E) influences (dashed circles)
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Dependence (FSCD) and the Collaborative Genetic Study of
Nicotine Dependence (COGEND). Subjects in COGA were
recruited from several sites throughout the United States
by identifying alcoholic probands from treatment facilities
and recruiting other family members, as well as compari-
son families from the same communities. COGA subjects
utilized in the current study are a case–control subset of in-
dependent individuals. The FSCD is a case–control family
study that ascertained cocaine-dependent individuals from
chemical dependency treatment units in the greater St
Louis metropolitan area, along with community-based
control subjects matched on several criteria such as age
and race. The COGEND is a community-based case–control
family study that recruited nicotine-dependent cases and
non-dependent smoking controls from the cities of Detroit
and St Louis. The current analyses focused on a subset of
2596 (COGA n=957, FSCD n=541, COGEND n=1098)
unrelated participants (44% male, mean age=38.58
years, standard deviation=9.80) of European descent
[confirmed via principal component analysis PCA), includ-
ing HAPMAP CEPH, Yoruban, Han Chinese and Japanese
samples as ancestral reference groups] drawn from all
three studies that comprise SAGE. SAGE was selected for
this study because it is the largest cohort of complementary
data sets that is publicly available (additional description of
SAGE is available at http://www.ncbi.nlm.nih.gov/pro-
jects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1).
While the ascertainment strategy of each study focuses on
a particular substance, the fact that substance users have a
tendency to become involved with multiple substances al-
lows for sampling of both single and multiple drug users,
thereby increasing our power to examine the latent trait
that is vulnerability to substance addiction (Supporting in-
formation, Table S1 provides a description of rates of drug
dependence across studies in SAGE).

Measures

Self-report data on the endorsement of DSM-IV symptoms
for dependence on alcohol, nicotine, cocaine, cannabis and
other illicit drugs [i.e. dependence on drugs other than can-
nabis or cocaine (e.g. opiates, phencyclidine, hallucinogens,
sedatives)] were gathered using the Semi-Structured Assess-
ment for the Genetics of Alcoholism (SSAGA) [25] and its
modified versions ( the Semi-Structured Assessment of Nico-
tine Dependence used in COGEND and the Semi-Structured
Assessment for Cocaine Dependence used in FSCD).

Derivation of phenotypes

Several studies strongly support a general tendency to
use and become dependent on multiple substances

[18,26–28]. As such, we defined substance addiction
phenotypically by combining dependence data across
various classes of drugs. Further, because phenotypic
definitions affect heritability estimates, we created three
DSM-IV-based phenotypes intended to approximate those
that have been used commonly in the literature. Consis-
tent with the extant literature, we defined dependence
vulnerability (DV) as a summary score based on the ra-
tio of the total dependence symptoms endorsed over the
total number of substances used [mean=2.13, standard
deviation (SD)=1.72] [24,29]. Exploratory and confir-
matory analysis was used to for the remaining
measures.

To understand the factor structure of DD and PU
items, we first used exploratory factor analysis (EFA) on
a random half of the subjects and then conducted confir-
matory factor analysis (CFA) on the remaining half of the
sample. For all factor analyses, we used MPlus version 7
[30] using weighted least-squares mean variance estima-
tion. Parallel analysis [31] and scree plots were used to
determine the number of factors, and standard EFA/CFA
fit indices [e.g. root mean square error of approximation
(RMSEA), comparable fit index (CFI) and Tucker–Lewis
index (TLI)] to compare nested models [32,33]. EFA
and CFA models indicated a single factor when using ei-
ther the substance dependence diagnosis items or prob-
lem use items (see Supporting information, Table S2
and Fig. S1 for detailed results). Based on the consensus
between the EFA and CFA models, genetic analyses uti-
lized factor scores (mean=0, SD=1) extracted from
CFA models using all individuals of European descent.
Genetic analyses of DV utilized rank normalized scores
(using the BLOM approximation method1; mean=0,
SD=1). These analyses yielded a factor score based on
the dichotomous DSM-IV diagnoses of DD and a factor
score of PU that was based on items measuring the pres-
ence or absence of at least one of the seven total sub-
stance dependence symptoms for each of the five
diagnostic categories. Unlike recent GWAS studies using
factor scores based on dependence diagnoses, DV has
been shown previously to localize regions of interest
using linkage analysis [29].

Genetic analyses

Genotyping

Genotyping of SAGE was performed using the Illumina 1M
platform using blood samples deposited at the Rutgers
University Cell and DNA Repository (http://www.rucdr.
org), and was carried out at the Johns Hopkins Center for
Inherited Disease Research (CIDR) using Illumina

1SAS Institute, Inc. The analyses for this paper were generated using SAS software version 9.3 of the SAS System for Windows, copyright
©
2000–2002 SAS

Institute, Inc. SAS and all other SAS Institute Inc. products or service names are registered trademarks or trademarks of SAS Institute, Inc., Cary, NC, USA; 2000.
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Human1Mv1_C BeadChips and the Illumina Infinium II
assay protocol. SNP calls were made using Illumina
BeadStudio GenotypingModule version 3.1.14. Strict qual-
ity control (QC) standards were implemented, and geno-
types were released by CIDR for 1040106 SNPs
(99.15% of attempted). Further details are provided in
the comprehensive data cleaning report posted at dbGaP
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/doc-
ument.cgi?study_id=phs000092.v1.p1&phv=22928&
phd=2274&pha=&pht=116&phvf=&phdf=20&phaf=
&phtf=&dssp=1&consent=&temp=1.

Population stratification

We performed PCA using a random sample of 30000
independent SNPs to control for any residual population
stratification effects among the individuals of European
descent. Principal components have been demonstrated
to capture subtle ancestral differences even within
ethnicity, as well certain technical artifacts (e.g. batch
effects) [34]. Accordingly, all mixed effects analyses
included the first five ancestral principal components as
covariates.

QC

For all genetic analyses, we retained 796125 autosomal
markers with an allele frequency >1%, a call rate ≥99%
and a Hardy–Weinberg equilibrium (HWE) P-value
greater than 0.0001 among subjects of European descent.

Estimation of variance/covariance explained by the SNPs

We used GCTA to decompose the phenotypic variance in
each measure into variance components due to the addi-
tive effects of all genotyped SNPs and residual effects.

GCTA consists of two steps in which the genetic similar-
ity between all pairs of individuals is obtained via a
pairwise genetic relationship matrix (GRM), followed by
construction of a mixed-effects model using genetic simi-
larity as a random effect to predict each phenotype. In
our identification of subjects of European descent from
SAGE, we used GCTA to systematically remove one of
any pair of individuals who were more related than sec-
ond cousins in order to control for cryptic relatedness,
which could artificially inflate SNP heritability estimates.
The GRM used in all analyses comprised the 2596 unre-
lated individuals. Univariate and bivariate models were
fitted to the phenotypic data while controlling for age,
gender, study origin (to account for mean differences/
batch effects between the different samples within SAGE)
and the first five ancestral principal components to
account for stratification effects within individuals of
European descent [11].

RESULTS

Prevalence and comorbidity of drug dependence and
problem use

Table 1 shows the prevalence rates and correlations be-
tween the variables used to construct the DD and PU factor
scores. Alcohol and nicotine dependence represented the
most common substance dependence diagnoses (~45%
prevalence). Rates for the problem use items were higher,
and followed the same pattern. Phenotypic tetrachoric cor-
relations among all items were generally high, and are
shown in Table 1. For example, correlations among the
problem use items ranged from 0.47 (between other drug
and nicotine problem use) to ~0.84 (between other drug
and cocaine problem use).

Table 1 Prevalence, sample size, and correlations among drug dependence (DD)/problem use (PU) variables.

Phenotype % (n) Tetrachoric correlations (ASE)

Drug dependence diagnosis (3+ symptoms) Alcohol Cocaine Cannabis Nicotine Other drugs
Alcohol 45.65 (1185) 1.00
Cocaine 19.29 (500) 0.78 (0.02) 1.00
Cannabis 16.76 (434) 0.79 (0.02) 0.82 (0.02) 1.00
Nicotine 45.53 (1146) 0.66 (0.02) 0.55 (0.03) 0.60 (0.03) 1.00
Other drugs 15.63 (405) 0.80 (0.02) 0.83 (0.02) 0.77 (0.02) 0.54 (0.03) 1.00

Problem use (1+ symptoms) Alcohol Cocaine Cannabis Nicotine Other drugs
Alcohol 70.80 (1838) 1.00
Cocaine 22.71 (589) 0.73 (0.03) 1.00
Cannabis 30.35 (788) 0.67 (0.02) 0.80 (0.02) 1.00
Nicotine 70.69 (1835) 0.59 (0.02) 0.47 (0.03) 0.50 (0.03) 1.00
Other drug 22.13 (574) 0.74 (0.03) 0.84 (0.01) 0.78 (0.02) 0.47 (0.03) 1.00

Table showing the level of dependence diagnoses (3+ symptoms in a year) and problem use (1+ symptoms) for each substance in the sample, as well as the
tetrachoric correlation between substances. ASE = asymptotic standard error.
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Phenotypic variance/covariance attributable to common
SNPs

The additive genetic variance due to all SNPs (h2SNP) was
similar across DD, PU and DV. The univariate h2SNP estimate
of DD was 0.36 [standard error (SE)=0.13, P-value (P)
=2.30E-3]. The observed univariate h2SNP estimates for
PU (h2SNP=0.25, SE=0.13, P=0.03) and DV
(h2SNP=0.32, SE=0.13, P=8.91E-3) were slightly smaller.
Consistent with the hypothesis that a large number of al-
leles throughout the genome contribute to substance de-
pendence, longer chromosomes accounted for more
phenotypic variation than smaller ones (Fig. 2), but not
for all phenotypes. For PU, h2SNP increased with chromo-
some length (Fig. 2; R2=0.27, β=1.87×10–4, t(20)
=2.75, P=0.01). This was not the case with DD
(R2=0.12, β=1.47×10–4, t(20) = 1.64, P=0.12) and DV
(R2=0.00, β=1.60×10–5, t(20) =0.20, P=0.84) pheno-
types. Post-hoc analyses of the h2SNP estimates within each
cohort of SAGE (see Supporting information, Table S3)
showed internal consistency in the GCTA estimates for
each of the phenotypes, although the small sample sizes
and differences in ascertainment strategies across studies
complicate direct comparison of these estimates.

Table 2 presents SNP heritability and correlation esti-
mates from the bivariate analyses. As expected, the
three phenotypes had high phenotypic correlations,
ranging from 0.84 to 0.86. A strong significant SNP
correlation was observed from bivariate analyses be-
tween DD and DV (rSNP=0.97, SE=0.08) and strong
SNP correlations were found between DD and PU
(rSNP=0.92, SE=0.08) and between PU and DV
(rG=0.96, SE=0.07). This suggested that the different

ways of scoring substance dependence or vulnerability
to substance dependence are associated with largely
overlapping SNPs.

DISCUSSION

This is the first study of its kind to estimate the SNP herita-
bility of generalized vulnerability to substance dependence
and compare the genetic liability across multiple pheno-
typic definitions. The results provide an indication of the
additive effect of common SNPs on nicotine, cannabis, co-
caine and alcohol, in particular. Given the high loadings
of these substances on the DD and PU factors, the additive
effect of the common SNPs on individual substance
dependence/problems ranges from ~25 to 36%. Although
DD evidenced the highest heritability, the effects attributed
to common SNPs are correlated highly across the three
phenotypes. Overall, the evidence supports the utility of
common SNPs to index the genetic liability to substance
addiction.

Despite the paucity of findings from GWAS on sub-
stance addiction, the present analyses indicate that com-
mon SNPs on existing GWA platforms capture substantial
genetic information regarding the vulnerability to sub-
stance dependence in subjects of European ancestry. The
bivariate findings also confirm the expectation that differ-
ent phenotypic representations of generalized substance
dependence are influenced by the same SNPs. Our ability
to find largely overlapping SNP effects across substances
of abuse may be attributable to our analytic approach. As
described and demonstrated elsewhere [35–38], relative
to GWAS or candidate studies that look for the independent
effects of individual SNPs, GCTA aggregates variance

Figure 2 Proportion of variance explained (VG/VP) of individual chromosomes on each phenotype while imposing strict quality control (QC) and
adjusting for cryptic relatedness. Additive effects attributable to variants across chromosome were estimated at 1E-6 across all phenotypes. DD =
dependence diagnosis factor; PU = problem use factor; DV = dependence vulnerability score; SNP = single nucleotide polymorphisms
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across all SNPs and typically explains a greater proportion
of variance because the effects of individually non-
significant SNPs are included in the estimate. Our results
suggest that GWA studies on these phenotypes that have
larger samples will discover additional significant genetic
associations, as has occurred for other phenotypes
[39,40]. It should be noted that additional research is
needed to confirm these effects in African populations
and to determine whether the observed effects can be at-
tributed to shared genetic factors across different ethnic
backgrounds.

Our findings also suggest that the subtle differences in
substance vulnerability definitions may not be of major
concern in genetic analyses. All three alternative measures
of substance vulnerability showed broadly consistent esti-
mates, and the high SNP correlations among them suggest
that the same genetic influences affect the three pheno-
types. Thus, it is likely that results of genetic analyses
across these phenotypes can be compared meaningfully,
and meta- or mega-analyses of data sets using alternative
phenotypic definitions of substance vulnerability will be
informative.

An additional implication of these findings is that we
should expect to have a better chance of finding and repli-
cating genetic association analyses (using common SNPs)
across phenotypes indicative of a known underlying di-
mension of risk. The current findings suggest that the same
SNPs affect each of these three phenotypes, and therefore
genetic associations from studies across these three pheno-
types can be compared meaningfully. While the current
study is limited to DSM criteria, the evidence suggests the
possibility of replication success across studies using non-
DSM phenotypes, but that likelihood is dependent upon
the extent to which the selected phenotypes reflect com-
mon biological variation. Non-DSM phenotypes were be-
yond the scope of the current paper, and additional
research comparing additive genetic effects across DSM
and non-DSM-based phenotypes is necessary in order to
obtain a definitive conclusion on expectations of replication
using broad phenotypes and endophenotypes that may not
necessarily harmonize. Findings of common underlying ge-
netic contributions across different phenotypic representa-
tions of the vulnerability to substance dependence tested
here may also be extended to non-genetic studies to inform

models of substance etiology and treatment. This is possible
because the phenotypes used here summarize involvement
with disparate substances of abuse (such as alcohol versus
heroin).

Limitations

The current study utilized subjects ascertained for studying
alcohol (COGA), nicotine (COGEND) and cocaine (FSCD)
dependence, and none of the studies excluded individuals
because of their involvement with other substances. Our
analyses accounted for mean differences/batch effects be-
tween the different samples within SAGE by controlling
for study origin in all analyses. However, our estimates
are uncorrected for ascertainment, because there is cur-
rently no way in GCTA to correct for ascertainment on
continuous phenotypes, such as liability for substance de-
pendence, which we focused on here. Our estimates of
SNP heritability are therefore relevant to a population with
the same distribution of liability as that observed in our
sample; we expect that the SNP heritability is lower in
the general (non-ascertained) population [41]. Future re-
search, using larger epidemiologic samples recruited for
population representativeness rather than substance abuse
is needed to replicate the present findings. However, given
the low rates of comorbid drug involvement in
community- and general-population samples, samples in
the tens of thousands will be necessary to obtain sufficient
variability across alcohol, tobacco and cannabis, and in
particular illicit substances. It should also be noted that
the strength of the associations among substances and
the evidence for the common phenotypic factors defined
by drug dependence and problem use items, may depend
upon the prevalence of symptoms in our sample. Larger
samples of substance users might show different patterns
of comorbidity. However, large studies among drug users
in community- and general-population samples have pro-
vided substantial evidence in support of a general vulnera-
bility to drug dependence [18,42]. As such, one would
expect to identify at least a common factor [under similar
genetic influence (as evidenced in the current study)] that
accounts for themajority of the phenotypic covariance and
possibly one or more additional factors that reflect unique
variance shared by other substances [22].

Table 2 Single nucleotide polymorphism (SNP) heritability and SNP correlation estimates (standard error).

Trait 1 Trait 2 VSNP-trait 1 VSNP-trait 2 CSNP h2 SNP-trait 1 h2SNP-trait 2 rSNP P (rSNP = 0)

DD PU 0.16 (0.06) 0.13 (0.07) 0.13 (0.06) 0.36 (0.13) 0.24 (0.13) 0.92 (0.08) 0.0096
DD DV 0.16 (0.06) 0.30 (0.12) 0.21 (0.08) 0.36 (0.13) 0.33 (0.13) 0.97 (0.05) 0.0029
PU DV 0.13 (0.07) 0.31 (0.12) 0.20 (0.09) 0.25 (0.13) 0.35 (0.13) 0.96 (0.07) 0.0002

DD = dependence diagnosis factor; PU = problem use factor; DV = dependence vulnerability score; VSNP-Trait = genetic variance of each trait; CSNP = genetic
covariance between trait-1 and trait-2; h

2
SNP = SNP heritability; rSNP = genetic correlation.
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CONCLUSIONS

The present findings provide important support for a signifi-
cant contribution of common SNPs in the prediction of vul-
nerability to substance dependence. Although our findings
provided some support for highest heritability observed in
DD relative to other ways of defining vulnerability to sub-
stance dependence, the associations among the definitions
point to shared underlying genetic variation across all three
different ways of defining vulnerability to substance depen-
dence. Taken together, these important findings reinforce
the utility of examining common variation in SNPs as well
as some ability to generalize across studies using different
definitions of vulnerability to substance dependence.
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