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Evidence of CNIH3 involvement in opioid dependence
EC Nelson1, A Agrawal1, AC Heath1, R Bogdan1, R Sherva2, B Zhang1, R Al-Hasani1, MR Bruchas1, Y-L Chou1, CH Demers1,
CE Carey1, ED Conley3, AK Fakira4, LA Farrer2, A Goate5, S Gordon6, AK Henders6, V Hesselbrock7, M Kapoor5, MT Lynskey8,
PAF Madden1, JA Moron4, JP Rice1, NL Saccone1, SG Schwab9, FL Shand10, AA Todorov1, L Wallace6, T Wang1, NR Wray11,
X Zhou12, L Degenhardt13, NG Martin6, AR Hariri14, HR Kranzler15, J Gelernter16, LJ Bierut1, DJ Clark17 and GW Montgomery6

Opioid dependence, a severe addictive disorder and major societal problem, has been demonstrated to be moderately heritable.
We conducted a genome-wide association study in Comorbidity and Trauma Study data comparing opioid-dependent daily
injectors (N= 1167) with opioid misusers who never progressed to daily injection (N= 161). The strongest associations, observed for
CNIH3 single-nucleotide polymorphisms (SNPs), were confirmed in two independent samples, the Yale-Penn genetic studies of
opioid, cocaine and alcohol dependence and the Study of Addiction: Genetics and Environment, which both contain non-
dependent opioid misusers and opioid-dependent individuals. Meta-analyses found five genome-wide significant CNIH3 SNPs. The
A allele of rs10799590, the most highly associated SNP, was robustly protective (P= 4.30E-9; odds ratio 0.64 (95% confidence
interval 0.55–0.74)). Epigenetic annotation predicts that this SNP is functional in fetal brain. Neuroimaging data from the Duke
Neurogenetics Study (N= 312) provide evidence of this SNP’s in vivo functionality; rs10799590 A allele carriers displayed
significantly greater right amygdala habituation to threat-related facial expressions, a phenotype associated with resilience to
psychopathology. Computational genetic analyses of physical dependence on morphine across 23 mouse strains yielded significant
correlations for haplotypes in CNIH3 and functionally related genes. These convergent findings support CNIH3 involvement
in the pathophysiology of opioid dependence, complementing prior studies implicating the α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) glutamate system.
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INTRODUCTION
Twin and family studies provide evidence of a genetic contribu-
tion to liability for opioid dependence with heritability estimates
ranging from 40 to 60%.1–4 However, genetic association studies
have produced few consistently replicated findings.5 One
important factor contributing to this inconsistency is the lack of
a definitive control population6,7 for these investigations.
Studies, for example,8 have used unassessed controls based on

the premise that, for low prevalence disorders, this approach only
modestly reduces power.9 However, opioids are among the most
highly addictive drugs10,11 with high rates of progression from
misuse to dependence12 and thus the main constraint on the
prevalence of opioid dependence may be the prevalence of
opioid misuse. The extent to which genetic factors contribute to
liability at various stages of opioid addiction (for example,
initiation, regular use and dependence), and are shared between
stages, is not well characterized.5 Thus, the use of unassessed,
predominately unexposed controls might be problematic for
identifying genetic effects expressed after the initiation of opioid
misuse. Importantly, significant effects of common SNPs manifest-
ing at intermediate and later stages of addiction would be missed

in comparison with unexposed controls. Similarly, comparison
with assessed, unexposed controls is more useful to examine
shared liability for initiation and dependence.
Analyses of candidate gene data in the current report’s discovery

sample, the Comorbidity and Trauma Study (CATS), showed that
association findings vary substantially depending on the comparison
group’s substance exposure status.6,7 The current investigation builds
on this observation and draws from genetic studies of licit drugs13–19

that have yielded well-replicated findings by comparing non-
dependent, drug exposed to substance-dependent individuals.
Unfortunately, no large samples of non-dependent opioid misusers
have been collected. Our discovery6,7,20 and confirmation
samples19,21–24 contain only modest numbers of non-dependent
opioid misusers, but are currently the largest such samples with
genome-wide association study (GWAS) data. We hypothesize that
genetic polymorphisms in opioid misusers influence progression to
the population’s opioid dependence end point (ODE). Our analyses of
GWAS data observed the strongest association for cornichon family
AMPA receptor auxiliary protein 3 (CNIH3) polymorphisms, findings
which map nicely onto literature,25–29 supporting α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate sys-
tem involvement in the pathophysiology of opioid dependence.
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MATERIALS AND METHODS
GWAS sample subjects and assessment
Detailed descriptions of CATS data collection have been reported.6,7,20

Opioid-dependent individuals, aged 18 or older, were recruited from
opioid substitution therapy clinics in the greater Sydney region.
Neighborhood controls, individuals with little or no lifetime opioid misuse,
were recruited from socially disadvantaged neighborhoods in geographic
proximity to opioid substitution therapy clinics. Written informed consent
was obtained from all participants as approved by the institutional review
boards of all participating institutions and clinics. Semi-structured
psychiatric diagnostic interviews, a modified Semi-Structured Assessment
for the Genetics of Alcoholism—Australia (SSAGA-OZ),30 were completed
in-person.
As 94.1% of the CATS6,7,20 opioid-dependent participants reported a

period of daily injection, we operationalized having had such a period as
the population’s normative ODE. Comparisons of opioid-dependent
individuals who differed on daily injection status found substantial
phenotypic differences (Supplementary Table 1 and Supplementary
Methods). Comparisons of dependent individuals who never injected daily
to non-dependent opioid misusers revealed fewer significant differences.
Our GWAS analyses compared the ODE group (N=1167 opioid-dependent
daily injectors) with a group characterized as having opioid use with
impeded progression (OUIP) that combined non-dependent opioid
misusers (N= 88; 69.3% reporting heroin use) and opioid-dependent
individuals without a history of daily injection (N= 73).
The Yale-Penn genetic studies of opioid, cocaine and alcohol

dependence19,23,24 were recruited at five US sites. All participants gave
written informed consent as approved by each site’s institutional review
board. We addressed design and assessment differences (Supplementary
Tables 2 and 3, and Supplementary Methods) that prevented defining
phenotypes identical to those in CATS by using an extreme discordant
approach. We operationalized the ODE group as opioid-dependent
individuals whose opioid use had been daily or near daily, included heroin
and injection at least 100 times lifetime and the OUIP group as individuals
reporting heroin use who met no lifetime DSM-IV opioid dependence
criteria. We limited inclusion to European ancestry participants to examine
confirmation in a sample of comparable ethnicity, retaining 643 ODE and
157 OUIP individuals for analysis.
The Study of Addiction: Genetics and Environment (SAGE)21,22 is an

alcohol dependence GWAS that selected cases and controls from large
investigations targeting non-opioid substance dependence. Each con-
tributing institution’s institutional review board approved the recruitment
protocols. All participants provided written informed consent. As SAGE did
not ascertain participants on the basis of opioid dependence, it included
fewer severely dependent individuals and more participants of unclear
affection status. We operationalized the ODE group as DSM-IV opioid
dependence and the OUIP group as opioid misusers who met at most one
dependence and no abuse criterion. Limiting inclusion to European
ancestry participants, we retained 190 ODE and 319 OUIP individuals.

Genotyping and data cleaning
CATS samples were genotyped using the Illumina Human660W-Quad
BeadChip at the Johns Hopkins Center for Inherited Disease Research (CIDR).
For data cleaning details, see Supplementary Methods. The genotyping rate
for the 470 296 SNPs that remained after data cleaning was 99.93%.
The Yale-Penn samples were genotyped on the Illumina HumanOmni1-

Quad v1.0 microarray at CIDR and the Yale Center for Genome Analysis.
SAGE samples were genotyped at CIDR using Illumina Human 1Mv1_C
BeadChips. Genotypic data cleaning and quality control details have been
reported for the Yale-Penn studies19,23,24 and SAGE.21,22

Data analyses
Admixture. Principal component (PC) analysis was conducted using the
SmartPCA program31 to provide additional admixture correction. Three PCs
were generated via principal component (PC) analysis and included as
covariates in the regression models. Similar methods were used in the
Yale-Penn and SAGE data sets to generate PCs for inclusion in analyses
(consistent with their prior publications).19,21,23,24

SNP-based association. The genomic inflation factor for CATS data was
calculated in PLINK32 based on the median χ2-value. Logistic regression
analyses were performed in PLINK32 to examine the association between
the log-additive effects of risk allele dosage and group status (ODE versus

OUIP) controlling for sex, age category and three PCs. Manhattan and
quantile–quantile plots were constructed for results.
Association analyses of confirmation sample data were conducted

consistent with prior reports. The Yale-Penn data were analyzed using
logistic regression models embedded in generalized estimating equations
to correct for correlations of data from related individuals with age, sex and
three PCs included as covariates. Analyses of SAGE data were conducted in
PLINK32 with contributing component study, age, sex and two PCs
included as covariates.
Meta-analyses were performed using the inverse variance weighting

approach of the METAL program.33 The phenotypic variance in ODE

status explained by rs10799590 was calculated34 for the meta-analytic
results using odds ratios, risk allele frequencies, and prevalence estimates
ranging from 0.005 (population prevalence of heroin dependence)12,35,36

to 0.25 (approximate prevalence reported for heroin dependence
among users).12

Epigenetic annotation
See Supplementary Methods.

Duke Neurogenetics Study (DNS)
See Supplementary Methods.

Participants
DNS participants were in good general health and provided informed
written consent approved by the Duke University Medical Center
institutional review board. The European ancestry subsample reported
here consisted of 312 participants (age= 19.71 ± 1.23 years; 151 males; 65
with DSM-IV diagnoses).

Genotyping
DNS participants’ DNA was isolated from saliva and genotyped
with Illumina HumanOmniExpress BeadChips. The genotyping rate
of rs10799590 was 1.0 and was within Hardy–Weinberg equilibrium
χ2 = 0.39, P= 0.53.

DNS neuroimaging protocol blood oxygenation level-dependent
functional magnetic resonance imaging (BOLD fMRI) paradigm
A widely used and reliable challenge paradigm was used to elicit amygdala
reactivity. The paradigm consists of four task blocks requiring face-
matching interleaved with five control blocks requiring shape-matching
(see Supplementary Figure S1). All four facial expressions convey threat,
ambiguity and/or novelty that robustly recruit corticolimbic circuitry that
includes the amygdala.37

Blood oxygenation level-dependent functional magnetic
resonance imaging data analysis
Following the preprocessing steps, linear contrasts using canonical
hemodynamic response functions were used to estimate amygdala
habituation as the linear decrease over successive face-matching blocks
(that is, block 14block 24block 34block 4). Follow-up analyses evaluated
amygdala response differences in block 1 across genotype groups.
Individual contrast images (that is, weighted sum of beta images) were
used in second-level random effects models accounting for scan-to-scan
and participant-to-participant variability to determine mean contrast-
specific responses using one-sample t-tests. A voxel-level statistical
threshold of Po0.05, family-wise error corrected for multiple comparisons
across the bilateral amygdala regions of interest, and a cluster-level extent
threshold of 10 contiguous voxels was applied to these analyses. The
bilateral amygdala regions of interest were defined using the automated
anatomical labeling template. BOLD parameter estimates from maximal
voxels in the right and left amygdala regions of interest exhibiting a main
effect for the amygdala habituation contrast were extracted using the VOI
tool in SPM8 and exported for regression analyses in SPSS (v.22). Extracting
parameter estimates from clusters activated by our functional magnetic
resonance imaging paradigm, rather than those specifically correlated with
our independent variables of interest, precludes the possibility of any
correlation coefficient inflation that may result when an explanatory
covariate is used to select a region of interest.
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Statistical analyses
Statistical analyses of the imaging data were conducted using linear
regression in SPSS to test the association between rs10799590 A allele
carrier status and amygdala habituation (that is, declining amygdala
response to repeated stimuli). To maintain variability but constrain the
influence of extreme outliers, all imaging variables were winsorized before
analyses. Gender and psychiatric diagnosis (0,1) were entered as covariates
for analyses. To determine whether rs1079950 was most strongly
associated with amygdala habituation within this genomic region,
SNPs ± 100 kbp that had an linkage disequilibrium (LD) r2⩾ 0.50 with
rs10799590 within the data set were identified and binned according to LD
(r2⩾ 0.80). Similar analyses were then conducted to examine the
association between carrier status of each SNP and amygdala habituation.

Genetic analysis of murine interstrain differences
Male mice, aged 7–8 weeks, from 23 inbred strains (Supplementary Table 5)
were housed in Stanford University’s animal care facilities. Experimental
protocols were approved by the Institutional Animal Care and Use
Committee and complied with the Guide for the Care and Use of Laboratory
Animals. Details are provided in Supplementary Methods. analysis of variance
was used to calculate a P-value to assess the likelihood that the within-block
genetic variation underlies the phenotypic distribution (that is, the mean
number of jumps) observed for the inbred strains examined. Haplotype data
were examined for seven genes: CNIH3, CNIH2, GRIA1, GRIA2, CACNG8, GRIP1
and DLG4. P-values were adjusted to control the false-discovery rate.38

RESULTS
CATS GWAS
The quantile–quantile plot of association results (Supplementary
Figure S2, Panel A) and the genomic inflation factor value (λ= 1.01)
indicate an absence of test statistic inflation. The strongest
association involves a cluster of chromosome 1 SNPs (Manhattan
plot, Supplementary Figure S2, Panel B). The six most highly
associated, all located in CNIH3 (Table 1), are in moderate to high
LD (r2 = 0.35–0.97); conditional analyses suggest they represent a
single association signal (Supplementary Figure S2, Panel C). The
association reached genome-wide significance (GWS) for
rs1436175 (P= 2.72E-8; OR 0.50 (0.39–0.64)) with the risk allele
halving the likelihood of progression to ODE.

Confirmation of association findings
These analyses focused on the CNIH3 SNPs because of the
substantially stronger association observed for these polymorph-
isms and the gene’s obvious biological relevance. In the Yale-Penn
data (Table 2), trend-level association was observed for three of
the six SNPs examined. In the SAGE data, a stronger association
was found for five of the six SNPs. In both data sets, all association
signals were in the same direction as in the CATS.

Meta-analyses performed on these SNPs using data from the
three samples found GWS association for five of the six CNIH3
SNPs (Table 2). The strongest meta-analytic association signal
(P= 4.30E-9) was observed for rs10799590; the odds ratio (0.64
(95% confidence interval 0.55–0.74)) is indicative of the risk allele’s
robust protective effects. Rs1436175, which had the lowest P-value
in the CATS, failed to reach meta-analytic GWS. This SNP has the
lowest LD with the other CNIH3 SNPs (r2 = 0.35–0.54) and the
largest heterogeneity χ2 (P= 0.002). The meta-analytic GWS SNPs
are in high LD (Supplementary Figure S2, Panels C and D).

Epigenetic annotation
The GWS CNIH3 SNPs are intronic and not highly conserved.
Although the observed associations may be due to high LD with a
non-genotyped variant, no exonic SNPs in high LD were identified.
Epigenetically mediated changes in gene expression, which have
been reported to occur with opioid use,39 are plausible mechanisms
for functional associations involving intronic SNPs. Rs10799590 is
located within an enhancer that is specific to fetal brain (Figure 1). It
is within an H3K4me1 peak in fetal brain that DNaseI hypersensitivity
data indicate is in an open chromatin state.40–42 It is predicted that
rs10799590 is within the binding site of transcription factor TAL1
(which has important roles in middle brain GABAergic neuron
differentiation); the G allele has significantly higher binding potential
than the A allele (Supplementary Table 6).

Protective allele carrier status predicts greater amygdala
habituation
The observation25 that similar changes in α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor (AMPAR) GluA1 subunits
occur in the amygdala with opioid addiction26 and fear
conditioning,43–45 coupled with evidence of epigenetically mediated
alterations in gene expression that ensue in both processes after
environmental exposures,43,46 provided the rationale for examining
amygdala habituation to threat-related facial expressions (a reliable
intermediate phenotype linked to psychopathology).46,47 After
accounting for sex and the presence of a DSM-IV disorder,
rs10799590 A allele carrier status predicted right (stand Beta=0.147;
ΔF1,308 =6.93, P o0.009, ΔR2 =0.022; Figure 2), but not left (stand
Beta=0.031; ΔF1,308= 0.302, P40.582, ΔR2o0.001), amygdala habit-
uation. G allele homozygotes (n=102) had blunted right amygdala
habituation (0.045±0.374) relative to A allele carriers (n=210;
0.164±0.371). We identified three genotyped SNPs (rs1369848,
rs12730234, rs1965776) in moderate LD with rs10799590 that tagged
SNP blocks; however, none was more strongly associated with
amygdala habituation than rs10799590 (Supplementary Table 7).
Follow-up analyses revealed that genotype groups did not differ in

Table 1. SNPs associated with ODE in CATS participants (P-valueso1E-5)

Risk allele frequency

Gene SNP Chr
Genomic

coordinates RA
ODE

N= 1167
OUIP

N= 161 P-value
Odds ratio (95%

confidence interval)

CNIH3 rs10799590 1 224822482 A 0.42 0.56 1.51E-6 0.55 (0.43–0.70)
CNIH3 rs12130499 1 224836514 T 0.42 0.56 1.15E-6 0.54 (0.43–0.70)
CNIH3 rs298733 1 224842251 A 0.42 0.57 1.53E-6 0.55 (0.43–0.70)
CNIH3 rs1436171 1 224881828 A 0.44 0.59 6.26E-7 0.54 (0.42–0.68)
CNIH3 rs1369846 1 224894095 C 0.38 0.54 9.42E-8 0.52 (0.41–0.66)
CNIH3 rs1436175 1 224908366 T 0.37 0.53 2.72E-8 0.50 (0.39–0.64)
STAB2 rs10861067 12 104038974 G 0.25 0.38 2.00E-6 0.55 (0.43–0.71)
STAB2 rs10778270 12 104045678 A 0.20 0.31 5.16E-6 0.55 (0.42–0.71)
Intergenic rs9521590 13 110709426 A 0.05 0.11 4.31E-6 0.36 (0.23–0.55)
FUT8 rs6573615 14 66046534 G 0.36 0.49 9.68E-6 0.58 (0.46–0.74)

Abbreviations: CATS, Comorbidity and Trauma Study; ODE, opioid dependence end point, OUIP, opioid use with impeded progression.
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Table 2. Association of CNIH3 SNPs with ODE in CATS, Yale-Penn and SAGE data, and in meta-analysis

CATS (1167 ODEvs 161
OUIP)

Yale-Penn (643 ODE vs 157
OUIP)

SAGE (190 ODE vs 319
OUIP)

Meta-analysis

SNP OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value Het X2 (2df)
P-value

rs10799590 0.55 (0.43–0.70) 1.51E-6 0.78 (0.60–1.01) 5.76E-2 0.62 (0.47– 0.82) 6.73E-4 0.64 (0.55–0.74) 4.30E-9 0.15
rs12130499 0.54 (0.43–0.70) 1.15E-6 0.78 (0.60– 1.01) 6.14E-2 0.62 (0.47–0.82) 7.49E-4 0.64 (0.55–0.74) 4.31E-9 0.13
rs298733 0.55 (0.43–0.70) 1.53E-6 0.79 (0.62–1.03) 7.61E-2 0.64 (0.49–0.84) 1.25E-3 0.65 (0.56–0.75) 1.25E-8 0.12
rs1436171 0.54 (0.42–0.68) 6.26E-7 0.82 (0.64–1.04) 1.07E-1 0.65 (0.49–0.85) 2.04E-3 0.66 (0.57–0.76) 2.17E-8 0.06
rs1369846 0.52 (0.41–0.66) 9.42E-8 0.85 (0.67–1.09) 1.94E-1 0.66 (0.50–0.87) 2.96E-3 0.66 (0.57–0.77) 2.60E-8 0.02
rs1436175 0.50 (0.39–0.64) 2.72E-8 0.93 (0.73–1.18) 5.50E-1 0.77 (0.59–1.01) 6.14E-2 0.71 (0.61–0.82) 3.09E-6 0.002

Abbreviations: CI, confidence interval; CATS, Comorbidity and Trauma Study; ODE, opioid dependence end point; OR, odds ratio; OUIP, opioid use with
impeded progression; SAGE, Study of Addiction: Genetics and Environment; SNP, single-nucleotide polymorphism.

Figure 1. Epigenetic landscape of the six intronic CNIH3 SNPs. Rs1369846 and rs298733 are located within retrotransposons.40,41 Evidence of
epigenetic functionality for rs10799590 includes the location of this SNP within a fetal brain-specific enhancer.46,47 Fetal brain H3K4me1 data
indicate that it is within a H3K4me1 peak; DNaseI hypersensitivity data suggest that it is in an open chromatin state in fetal brain. This
enhancer mark on rs10799590 was specific to fetal brain, but was not in CD4+ T cells, breast luminal epithelial cells, adult liver, fetal heart, fetal
lung, melanocyte, or keratinocytes. The results of motif analyses (Supplementary Table 6) predict that rs10799590 is within the binding site of
transcription factor Tal1 with the G allele having significantly higher binding affinity than the A allele.

Figure 2. Amygdala habituation. (a) Statistical parametric map illustrating mean bilateral amygdala habituation across all DNS participants
(left MNI coordinates: x= –20 y= –8 z= –16, kE= 144, t= 9.03, Po0.001; right MNI coordinates x= 22 y=− 6 z=− 14, kE= 83, t= 8.97, Po0.001).
(b) A allele carriers had greater right amygdala habituation (that is, less persistent activation) relative to G allele homozygotes. The y axis
indicates habituation with greater values indicating a larger decrease in activation over time. See Supplementary Figure S3 for a depiction of
activation across blocks.
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initial right amygdala responses to stimuli (stand Beta=0.067;
ΔF1,308 =1.42, P 40.234, ΔR2 =0.004).

Genetic analysis of interstrain differences in physical dependence
on morphine
To link our findings further to existing animal literature, we
performed computational haplotype-based genetic mapping
analyses48–50 of data from 23 inbred mouse strains for a robust
measure of opioid physical dependence,48 counts of jumps made by
morphine-dependent mice after naloxone administration. Correla-
tions were calculated for the distribution of the mean number of
jumps per strain with known haplotype blocks across strains for
CNIH3 and genes encoding AMPAR subunits and proteins involved in
alterations of AMPAR subunit composition in response to opioids.
Significant correlation was observed for CNIH3 haplotype, but not for
the more widely expressed cornichon family AMPA receptor auxiliary
protein 2 (CNIH2) (Table 3). Significant correlations were also noted
for haplotypes in GRIA1 (glutamate receptor, ionotropic, AMPA 1)
GRIA2, (glutamate receptor, ionotropic, AMPA 2), calcium channel,
CACNG8 (voltage-dependent, gamma subunit 8) and glutamate
receptor-interacting protein 1, but not DLG4 (discs, large homolog 4).

DISCUSSION
The current report provides evidence for CNIH3 involvement in the
pathophysiology of opioid dependence. CNIH3 encodes a small,
highly conserved protein. The AMPA receptor core is formed by
tetramers of the GluA1-4 subunits and up to four members of
three protein groups: transmembrane AMPAR regulatory proteins,
cornichon homologs (CNIH3 and CNIH2) and the GSG1l protein.51

The receptor’s periphery contains transmembrane and other
proteins (for example, post-synaptic density protein 95 (PSD-95))
that bind with core proteins and each other in the postsynaptic
density.51–54 CNIH2 and CNIH3 markedly slow AMPAR deactivation
and desensitization in heterologous systems.54–56 One study54

suggested that the actions of CNIH2 and CNIH3 are selective for
AMPARs containing GluA1 subunits; however, more recent
reports51,57 do not support this specificity of binding. An
investigation that focused on two hippocampal cell types with
markedly different excitatory postsynaptic currents implicated
CNIH2 as largely responsible for the distinction between fast and
slow excitatory postsynaptic currents. Although this report did not
examine whether CNIH3 has a similar role, prior studies, for
example,55 have found that the two proteins have comparable
effects on slowing AMPAR deactivation and desensitization.
Rodent studies26–29 have implicated alterations in the subunit

composition of brain AMPARs in diverse aspects of opioid
addiction. Increased expression of GluA1-containing/GluA2-lack-
ing AMPARs has been observed in the central nucleus of the
amygdala26 and the hippocampal postsynaptic density28 in
studies of morphine-related context-reward conditioning26 and
context-dependent behavioral sensitization.28 The latter28 found

that these changes were mediated via interactions with TARP
gamma-8 and GRIP1 proteins. GluA1 knockout mice displayed
impaired drug-induced state dependency after operant condition-
ing with morphine.29 Another study27 implicated downregulation
of GluA2 expression in the prefrontal cortex in reinstatement of
heroin self-administration after prolonged abstinence. Interest-
ingly, CNIH3 expression is greatest in the frontal cortex, amygdala
and hippocampus in the adult human brain.58

Our GWAS analyses found that CNIH3 SNPs are associated with
protection against progression to ODE in OUIP individuals. As this
effect was observed in analyses limited to opioid misusers, it likely
represents liability unrelated to that for initiation of opioid misuse.
The discovery and confirmation sample OUIP groups have
substantially higher risk allele frequencies than an Australian
(European Ancestry) general population sample59 (Supplementary
Table 8) to which the ODE groups’ risk allele frequencies are more
similar. Post hoc SNP-based association analyses comparing the
CATS OUIP group and this general population sample found
substantial differences (P-values⩽ 6.4E-5); similar comparisons
with the CATS ODE group found more modest differences
(P⩾ 2.3E-2) in the opposite direction. The phenotypic variance in
ODE explained by rs10799590 in our meta-analysis is estimated at
1.17 to 5.85% (Supplementary Table 9), indicative of a strong
effect. Overall, our findings suggest that these CNIH3 SNPs enable
greater, but not complete control in the use of these otherwise
highly addictive drugs.
An examination of human post-mortem amygdalae reported a

strong positive correlation between GluA1 and PSD-95 messenger
RNA expression in heroin-dependent cases, but not in controls
(CNIH3 expression was not reported).25 Another study55 observed
positive correlations for these proteins with CNIH3 (GluA1 0.43;
DLG4 0.28) in (unexposed) mammalian brains. Thus, human25 and
animal26 studies provide evidence of altered amygdala GluA1
expression in opioid dependence. The post-mortem report
noted25 that similar changes in AMPAR GluA1 subunits occur in
the amygdala with associative learning of opioid reward26 and
fear conditioning.43–45 Importantly, both processes involve epi-
genetically mediated changes in gene expression following an
environmental exposure.39,46 We thus examined the effects of our
most strongly associated SNP using imaging genetics46,60 and
observed significantly greater right amygdala habituation to
threat-related facial expression in rs10799590 A allele carriers.
Consistent with the reduced risk we observed in opioid exposed
individuals, the polymorphism’s protective neural effects were
apparent with subsequent, but not initial, exposures to environ-
mental stimuli. The association of this SNP with ODE likely
represents a similar protective process involving greater habitua-
tion to the neural effects of opioids that impact additional
opioid use.
Our focus on opioid misusers is a major strength; the modest

size of our OUIP groups is an unavoidable limitation. Our
assumption that SNPs can offer protection against transitions at
different points of the addictive process is supported by the
existing animal literature.26–29 We only examined confirmation of
the CNIH3 SNP associations; a broader examination might have
confirmed other CATS associations. As both the epigenetic
landscape and motif analysis support its potential functionality,
our neuroimaging genetics study focused on rs10799590 with
post hoc analyses confirming it as the CNIH3 SNP most strongly
associated with amygdala habituation. Future work should
incorporate examination of the other GWS SNPs (for example,
rs298733 also affects transcription factor binding—Supplementary
Table 6) and the possibility of more highly associated, non-
genotyped polymorphisms in high LD. Although similarly ascer-
tained samples, for example,61 have comparable rates of daily
opioid injection, reports in other populations have noted lower
prevalence. For example,62 a more detailed characterization of the
OUIP groups’ opioid use would have been useful, but was not

Table 3. Computational genetic analysis of interstrain differences in
physical dependence on morphine

Gene P-valuea

CNIH3 4.0E-4
CACNG8 8.3E-4
GRIA1 8.1E-6
GRIP1 1.7E-5
GRIA2 7.4E-3
CNIH2 0.35
DLG4 0.35

aCorrected for multiple testing.38
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obtained. We examined somewhat divergent ODE’s in our
confirmation samples because of ascertainment and assessment
differences (Supplementary Table 3). Although these methodolog-
ical differences are a limitation, the observed confirmation in two
multi-site US-based studies supports the generalizability of our
findings. The highly comorbid composition of the ODE and OUIP

groups may raise concerns that intergroup differences are better
attributable to another phenotype. Post hoc association analyses
conducted in CATS to address this possibility (Supplementary
Table 10) found few associations for comorbid disorders reaching
nominal significance. Comorbidity pattern differences across
samples (Supplementary Tables 1 and 2) further argue against
this possibility. Finally, our exclusion of participants with non-
European ancestry and the lack of genomic inflation (λ= 1.01)
suggest spurious association owing to uncorrected admixture is
unlikely.
Our meta-analyses found GWS association with CNIH3 SNPs

conferring robust protective effects against ODE, findings that map
onto reports of AMPA glutamatergic involvement in opioid
dependence.25–29 The finding of significantly greater habituation in
the right amygdala rs10799590 A allele carriers supports these SNP’s
in vivo functional effects in humans (complementing evidence of
epigenetic functionality). The genetic analyses of mouse strain data
support the involvement of CNIH3, but not the more highly
expressed CNIH2, in murine opioid physical dependence. The
significant correlations observed for genes encoding AMPAR
subunits and related proteins provide additional evidence for genetic
risk mediated via this pathway. These convergent findings implicate
CNIH3’s involvement in opioid dependence and could provide a
route to target glutamatergic processes for translational research,
focusing on improving opioid dependence treatments and devel-
oping opioid analgesics with lower dependence risk.
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