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ABSTRACT: X-chromosome inactivation (XCI) is the process in which one of the two copies of the X-chromosome in females is
randomly inactivated to achieve the dosage compensation of X-linked genes between males and females. That is, 50% of the
cells have one allele inactive and the other 50% of the cells have the other allele inactive. However, studies have shown that
skewed or nonrandom XCI is a biological plausibility wherein more than 75% of cells have the same allele inactive. Also, some
of the X-chromosome genes escape XCI, i.e., both alleles are active in all cells. Current statistical tests for X-chromosome
association studies can either account for random XCI (e.g., Clayton’s approach) or escape from XCI (e.g., PLINK software).
Because the true XCI process is unknown and differs across different regions on the X-chromosome, we proposed a unified
approach of maximizing likelihood ratio over all biological possibilities: random XCI, skewed XCI, and escape from XCI. A
permutation-based procedure was developed to assess the significance of the approach. We conducted simulation studies to
compare the performance of the proposed approach with Clayton’s approach and PLINK regression. The results showed that
the proposed approach has higher powers in the scenarios where XCI is skewed while losing some power in scenarios where
XCI is random or XCI is escaped, with well-controlled type I errors. We also applied the approach to the X-chromosomal
genetic association study of head and neck cancer.
Genet Epidemiol 38:483–493, 2014. © 2014 Wiley Periodicals, Inc.
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Introduction

X-chromosome inactivation (XCI) on female X-
chromosome loci, which was originally hypothesized
by Lyon in 1961 [Lyon, 1961], states that in females during
early embryonic development one of the two copies of the
X-chromosome present in each cell is randomly inactivated
to achieve the dosage compensation of X-linked genes in
males and females [Chow et al., 2005; Gendrel and Heard,
2011; Hickey and Bahlo, 2011; Loley et al., 2011; Minks
et al., 2008; Starmer and Magnuson, 2009; Willard, 2000;
Wong et al., 2011]. Because of this random XCI, two copies
of the X-chromosome in females do not have twice the effect
of a single copy of the X-chromosome in males. Clayton’s
approach [Clayton, 2008] was the first statistical method
taking the random XCI into account when analyzing the
X-chromosome genetic data. He proposed two chi-squared
tests, including the 1-degree-of-freedom and 2-degrees-of-
freedom chi-squared tests, where the males were treated as
homozygous females in the models. Specifically, three geno-
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types of females are coded as 0, 1, or 2, while two genotypes
of males are coded as 0 or 2. With this coding strategy, the
heterozygous genotype in females falls midway between two
homozygous genotypes on the linear predictor scale [Clay-
ton, 2008], which is appropriate because in heterozygous
females about 50% of cells have the deleterious allele active
while the other 50% of cells have the normal allele active due
to random XCI. The 1-degree-of-freedom chi-squared test
proposed by Clayton has been shown to be more powerful in
previous studies [Hickey and Bahlo, 2011; Loley et al., 2011].
Clayton’s approach is also implemented in other software
programs for genetic analysis, such as IMPUTE [Howie et al.,
2009; Marchini et al., 2007] and MaCH [Li et al., 2010].

The XCI process is in general random; however, studies
have suggested that skewed or nonrandom XCI is a biologi-
cal plausibility [Amos-Landgraf et al., 2006; Belmont, 1996;
Busque et al., 2009; Chagnon et al., 2005; Minks et al., 2008;
Plenge et al., 2002; Struewing et al., 2006; Willard, 2000;
Wong et al., 2011]. In this study, we denote this phenomenon
of skewed XCI as XCI-S. The skewness of XCI has been de-
fined using an arbitrary threshold as inactivation of one of the
alleles in more than 75% of cells [Abkowitz et al., 1998; Chab-
choub et al., 2009; Minks et al., 2008; Naumova et al., 1998;
Renault et al., 2013; Sharp et al., 2000; Wong et al., 2011].
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Extreme or severe skewness, which is defined as inactivation
of one of the alleles in more than 90% of cells, has also been
observed [Amos-Landgraf et al., 2006; Busque et al., 1996;
Champion et al., 1997; Gale et al., 1997; Hatakeyama et al.,
2004; Minks et al., 2008; Sharp et al., 2000; Tonon et al., 1998;
Willard, 2000; Wong et al., 2011]. In a population of phe-
notypically unaffected females, the percentage of cells with
one X-chromosome active can range from 50% (i.e., random
XCI) to 100% (i.e., same X-chromosome is active in all cells)
[Amos-Landgraf et al., 2006; Belmont, 1996]. Skewed XCI
has been observed in young children, but the skewness in-
creases with age [Amos-Landgraf et al., 2006; Busque et al.,
2009; Chagnon et al., 2005; Minks et al., 2008; Sharp et al.,
2000; Wong et al., 2011].

Multiple studies of complex disorders have shown that the
skewed XCI pattern could be more common in affected fe-
males than in unaffected females. For example, Plenge et al.
[2002] reported that XCI-S pattern is a relatively common
feature in women with X-linked mental retardation disor-
ders. They found that approximately 50% of affected women
demonstrated a markedly XCI-S pattern, compared with only
10% of female control subjects. Talebizadeh et al. [2005]
showed that the XCI-S pattern was observed in a larger
proportion of females in the autism group (33%) than in
the control group (11%). Chabchoub et al. [2009] found
that the XCI-S pattern was observed in 34% of rheumatoid
arthritis patients and 26% of autoimmune thyroid disease pa-
tients, compared to 11% of controls. Two other studies have
suggested that the XCI-S pattern is more common in pa-
tients with invasive ovarian cancer and young patients with
breast cancer than in controls [Buller et al., 1999; Kristiansen
et al., 2002]. Therefore, it is important to account for XCI-
S when testing the association between X-chromosome ge-
netic markers and diseases. In such association studies, special
consideration is needed because one cannot assume that the
genotypic effects for heterozygous females will be midway
between two homozygous genotypes. To our knowledge, no
statistical test has been developed to account for the skewed
XCI.

Another complexity in analyzing X-chromosome data is
the escape from XCI (denoted as XCI-E) outside the pseudo-
autosomal regions on the X-chromosome. It is estimated that
about 75% of X-linked genes undergo silencing of one copy
of the female X-chromosomes as the result of XCI; however,
the remaining genes may escape inactivation, and in those
genes both alleles will be active (i.e., no dosage compensation)
[Brown et al., 1997; Carrel and Willard, 2005; Carrel et al.,
2006; Miller and Willard, 1998; Willard, 2000]. The XCI-
E regions can be analyzed using the standard association
tests for autosomal loci, such as allele-counting approaches
[Zheng et al., 2007] and the regression approach used by
PLINK [Purcell et al., 2007]. Zheng et al. [2007] proposed six
association tests for X-chromosome genetic markers, using
different combinations of tests for male and female samples
based on the genotypic counts and allelic counts in cases and
controls. PLINK is the most popular software for genome-
wide association (GWA) studies and has been widely used
in association studies of the X-chromosome [Carrasquillo

et al., 2009; Chung et al., 2011; Wise et al., 2013]. PLINK
performs the association tests for X-chromosome loci in two
ways: using only females or using all samples in regression
models (linear or logistic) that include sex as a covariate. The
first approach might lead to a loss of power for the analysis
because of the smaller sample size due to the exclusion of
males from the analyses. For the regression models, PLINK
codes the genotypes assuming the effect of the deleterious
allele in males is the same as the effect of the heterozygote
genotype in females, that is, three genotypes of females are
coded as 0, 1, or 2, while two genotypes of males are coded as
0 or 1. Both the PLINK and Zheng et al. approaches account
for escape from XCI but ignore biologically plausible random
and skewed XCI mechanisms. On the other hand, Clayton’s
approach accounts for random XCI but ignores escape from
XCI and skewed XCI.

Because the true underlying XCI process is unknown
and differs across different regions on the X-chromosome,
we proposed a unified approach that maximizes the likeli-
hood ratio over all such biological possibilities: random XCI,
XCI-S, and XCI-E. A permutation-based procedure was de-
veloped to assess the significance of the proposed association
test. We conducted simulation studies to investigate the per-
formance of the proposed approach and compared it to the
1-degree-of-freedom chi-squared test proposed by Clayton
and the PLINK regression approach. The results showed that
the proposed association test had higher power than the other
two approaches in the scenarios where XCI was skewed while
losing some power in scenarios where XCI was random or
XCI escape occurred. The type I errors of all three methods
were well controlled. We also applied all three approaches to
investigate X-chromosome genetic association in head and
neck cancer.

Methods

We considered a single-nucleotide polymorphism (SNP)
on the X-chromosome with two alleles: deleterious allele A
and normal allele a. We assumed a binary random variable
for the disease of interest and denoted it as Y = {0, 1}, with 0
representing individuals without the disease and 1 represent-
ing individuals with the disease. As discussed above, the true
underlying XCI process is unknown and differs from region
to region on the X-chromosome; therefore, at any given locus
on the X-chromosome it is possible to observe one of four
biological models: XCI, XCI-S in the direction of the delete-
rious allele, XCI-S in the direction of the normal allele, and
XCI-E. We aimed to account for all of these biological models
in our statistical approach for the X-chromosome association
test. Particularly, for random and nonrandom XCI, i.e., XCI
and XCI-S, we used a random variable X = {0, 2} to denote
alleles a and A, respectively, for males and a random variable
X = {0, γ, 2} to denote genotypes (a, a), (A, a), and (A, A),
respectively, for females, where γ� [0, 2]. Because we con-
sidered both random and nonrandom XCI in the model, we
would not know the true underlying percentage of skewness
with certainty. Therefore, instead of using a fixed number
for γ (i.e., 1 as denoted in Clayton’s approach), we used a
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number for γ that varied between 0 and 2 to denote the level
of skewness in the heterozygous females. Note that when
γ = 1, this coding is the same as in Clayton’s additive ge-
netic model, which assumes a random XCI. When γ takes
a value between 1 and 2, this coding assumes a nonrandom
XCI-S skewed toward the deleterious allele. For example,
γ = 1.5 represents a scenario where 75% of the cells have the
deleterious allele active and the other 25% of the cells have
the normal allele active. When γ takes a value between 0 and
1, this coding assumes a nonrandom XCI-S skewed toward
the normal allele. For example, γ = 0.5 represents a sce-
nario where 25% of the cells have the deleterious allele active
and the other 75% of the cells have the normal allele active.
To account for XCI-E, we used the same coding as the one
used by PLINK: for males, we used a binary random variable
X = {0, 1} to denote alleles a and A, respectively; for females,
we used a categorical random variable X = {0, 1, 2} to de-
note genotypes (a, a), (A, a), and (A, A), respectively. In this
scenario, both copies of the X-chromosome in females are ac-
tive, so the males carrying the deleterious allele were treated
as heterozygous females.

Given a case-control sample with N subjects, the associ-
ation between an SNP on X-chromosome X and disease of
interest Y can be expressed using a logistic model:

Logit(P(Y = 1|X )) = β0 + β1X ,

where β0 and β1 are regression coefficients, and X � M, where
M is a set of different coding values for X based on sex of the
individual and different XCI processes and is defined as

M =
{

X f = {0, γ, 2}, γ ∈ [0, 2]; X m
{XCI,XCI–S}

= {0, 2}; X m
{XCI–E} = {0, 1}},

where Xf denotes coding for three genotypes (a, a), (A, a),
and (A, A) for females, and Xm denotes coding for two allele
types a and A for males and the subscript denotes the XCI
process.

For each individual, the conditional probability can be
written as

πi = P (yi = 1|xi) =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
, i = 1, . . . , N,

where xi is the observed value of SNP as denoted in M based
on the sex of the individual and the underlying XCI process.
Given the sample data, the likelihood is written as

L (Y|X ; β0, β1) =

N∏
i=1

(
exp(β0 + β1xi)

1 + exp(β0 + β1xi)

)yi

×
(

1

1 + exp(β0 + β1xi)

)1–yi

under the alternative hypothesis and

L (Y|β0) =

N∏
i=1

(
exp(β0)

1 + exp(β0)

)yi
(

1

1 + exp(β0)

)1–yi

under the null hypothesis. The likelihood ratio, therefore, can
be expressed as a function of the coding strategy X:

LR(X ) =
L (Y|X ; β0, β1)

L (Y|β0)
, X ∈ M. (1)

As discussed above, the underlying biological process for
XCI is unknown; therefore, we infer the optimal coding strat-
egy of X that maximizes the likelihood ratio in equation (1)
given the sample data:

arg max
X∈M

LR(X ) =
L (Y|X ; β0, β1)

L (Y|β0)
. (2)

In the above maximization scheme, we performed a grid
search in which the γ value ranged from 0 to 2. Given the
fixed coding of X, we can estimate the regression coefficients
β0 and β1 by maximizing the likelihood ratio LR as in equa-
tion (1), and the corresponding LR can be calculated. Thus,
the maximum LR, or LR∗, corresponding to the optimal cod-
ing strategy X∗ given the sample data, can be obtained by
enumerating all the coding strategies X � M. Moreover, the
effect size (or odds ratio [OR] for the logistic model) of the
association between the disease and the SNP can be obtained
using the β∗

1 (OR∗ = exp(β∗
1)) corresponding to LR∗.

Based on the simulation studies, we found that we do not
need to perform a grid search using a small step function as it
has very little impact on the LR values and grid search strat-
egy typically leads to loss of statistical power because of the
multiple testing corrections. Therefore, we considered only
four coding strategies: one coding for XCI-E and three coding
for XCI and XCI-S. Particularly, the value for γ was set as 0,
1, or 2 to represent XCI-S toward the normal allele, random
XCI, or XCI-S toward the deleterious allele, respectively.

Permutation-based Calculation of Empirical P Value

To assess the significance of the statistical test, we proposed
a permutation-based procedure to compute the empirical P
values. With N subjects, the empirical P value corresponding
to the maximum LR∗ with respect to the optimal coding
strategy X∗ was obtained as follows:

1. We randomly permuted the values of disease status for
B times and kept all the other variables unchanged (i.e.,
SNP). By permuting the disease status values, we ensured
that there would be no association between the disease
and the SNP.

2. For each permuted disease status, we evaluated the as-
sociation between the disease and SNP and obtained
permuted LR∗

u, u = 1, 2, . . . , B, corresponding to the
optimal strategy X ∗

u.
3. The empirical P value of LR∗ was estimated from the

proportion of LR∗
u, u = 1, 2, . . . , B, resulting from per-

mutations greater than the observed LR∗: (number of
LR∗

u > L R∗)/B.
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Simulation Approach

We performed simulation studies to investigate the per-
formance of the proposed statistical test for X-chromosome
genetic association studies and compared the approach to
Clayton’s 1-degree-of-freedom test and the PLINK regres-
sion approach. We considered an associated di-allele SNP to
assess the power and another unassociated SNP to assess the
type I error rate. In addition to the genetic risk factors, we
also included sex in the simulation model as follows:

Logit(P (Y = 1|X 1, X 2, X sex)) = β0 + β1X 1 + β2X 2 + βs X sex.

In the logistic model, X1 and X2 represent associated SNP1
and unassociated SNP2, and Xsex represents the sex covari-
ate. The minor allele frequency (MAF) for both SNPs was
assumed to be 40%. We fixed the regression coefficients at
β1 = 0.2624 and β2 = 0, which correspond to ORs of 1.3 and
1, respectively. We assumed that sex was associated with the
disease of interest (βs = 0.4055). We used a binary random
variable for sex, Xsex = {0, 1}, with either female or male being
at increased risk for disease (i.e., coded as 1). The intercept
coefficient β0 was set as –2.55. Note that allowing sex to be
an independent risk factor, we are considering scenarios with
different male and female proportions in cases and controls.
Across different scenarios listed in Table 1, the proportions of
females in cases varied from 40% to 60%. We also investigated
different MAFs in males and females, which has been shown
to have an impact on different statistical approaches for X-
chromosome genetic association in previous studies [Hickey
and Bahlo, 2011; Loley et al., 2011]. We observed that the
largest estimated difference in MAFs of males and females
was �13% based on the head and neck X-chromosomal ge-
netic data. Thus, in some simulation scenarios, we set the
MAF as 30% (or 40%) for males and 40% (or 30%) for fe-
males, respectively.

Given these parameters, we first randomly generated the
sex for each subject on the basis of the prevalence of males in
the general population (i.e., 50%). Because males are hem-
izygous, the genotypes were simulated conditional on sex
according to the different biological models discussed in the

Methods section. The disease statuses were then generated
based on SNP genotypes and sex. Using this approach, we
simulated a large amount of data on the population of inter-
est and then randomly selected 1,000 cases (subjects with the
disease) and 1,000 controls (subjects without the disease).
We employed the permutation procedure described above to
evaluate the empirical P values for our approach based on B =

100,000 permutations. The results for the PLINK regression
approach were obtained using PLINK software, version 1.07
[Purcell et al., 2007]. Clayton’s 1-degree-of-freedom test was
performed with the use of R package “snpStats” software de-
veloped by Clayton [2011]. The powers and type I error rates
reported for the simulation studies were based on 100,000
replicate datasets.

Furthermore, to investigate the potential bias in OR es-
timates obtained using different approaches, we performed
additional simulations. Particularly, we simulated a range of
ORs from 1.0 to 3.0 at 0.1 grid values resulting in a total
of 21 ORs for each of the four biological models: random
XCI, XCI-S toward either the deleterious or normal allele,
and XCI-E. As in the previous simulations, we used an SNP
MAF of 40%, with males coded as 1 and females coded as
zero and a corresponding beta coefficient (βs = 0.4055). We
reported median estimated ORs based on 500 replicates, each
with 1,000 cases and 1,000 controls.

Results

In Table 1, we report the median estimated ORs and their
95% confidence intervals (CIs) for testing the association
between X-chromosome SNPs and the disease of interest
using PLINK regression, Clayton’s 1-degree-of-freedom test,
and the proposed approach. For all four biological models,
all three approaches provided accurate OR estimates with
comparable 95% CIs when the SNP was not associated
with the disease (i.e., SNP2). When the SNP was associ-
ated with the disease (i.e., SNP1), the PLINK regression
highly overestimated ORs for most of the scenarios. For
example, the estimated median ORs for the XCI-S to the
deleterious allele model in males and females at increased

Table 1. Median odds ratios (ORs) and 95% confidence intervals (CIs) for PLINK regression, Clayton’s 1-degree-of-freedom test, and
our approach, based on 100,000 replicates each with 1,000 cases and 1,000 controls. The true ORs for simulation were 1.3 for SNP1 and
1.0 for SNP2

Median OR (95% CI)

PLINK Clayton Our Approach
Biological Increased
Models riska SNP1 SNP2 SNP1 SNP2 SNP1 SNP2

XCI-S to deleterious allele Male 1.47 (1.27–1.71) 1.00 (0.86–1.16) 1.32 (1.19–1.46) 1.00 (0.90–1.11) 1.32 (1.20–1.44) 1.00 (0.89–1.12)
Female 1.46 (1.26–1.69) 1.00 (0.86–1.16) 1.32 (1.19–1.47) 1.00 (0.90–1.11) 1.32 (1.20–1.45) 0.99 (0.89–1.12)

XCI-S to normal allele Male 1.40 (1.21–1.63) 1.00 (0.86–1.16) 1.29 (1.16–1.42) 1.00 (0.90–1.11) 1.31 (1.19–1.45) 0.99 (0.89–1.12)
Female 1.37 (1.19–1.58) 1.00 (0.86–1.16) 1.28 (1.16–1.42) 1.00 (0.90–1.11) 1.31 (1.18–1.45) 0.99 (0.89–1.12)

Random XCI Male 1.44 (1.24–1.67) 1.00 (0.86–1.16) 1.30 (1.17–1.44) 1.00 (0.90–1.11) 1.31 (1.18–1.45) 0.99 (0.89–1.12)
Female 1.41 (1.22–1.63) 1.00 (0.87–1.16) 1.30 (1.17–1.44) 1.00 (0.90–1.11) 1.31 (1.18–1.46) 1.01 (0.90–1.12)

XCI-E Male 1.30 (1.12–1.51) 1.00 (0.86–1.16) 1.19 (1.07–1.32) 1.00 (0.90–1.11) 1.25 (1.11–1.43) 1.01 (0.89–1.12)
Female 1.30 (1.13–1.50) 1.00 (0.86–1.16) 1.20 (1.08–1.33) 1.00 (0.90–1.11) 1.26 (1.11–1.44) 1.00 (0.89–1.12)

XCI, X-chromosome inactivation; XCI-S, skewed X-chromosome inactivation; XCI-E, escape from X-chromosome inactivation.
amale or female implies the gender for which the disease risk was higher.
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Figure 1. Estimated median odds ratios (ORs) vs. true ORs assuming different underlying biological models, using PLINK regression, Clayton’s
1-degree-of-freedom test and our approach, based on 500 replicates each with 1,000 cases and 1,000 controls.

risk, respectively, were 1.47 and 1.46, compared to the true
OR of 1.3. As expected, the only scenario in which PLINK
regression provided accurate ORs was when the simulated
biological model was XCI-E. In contrast, our approach and
Clayton’s 1-degree-of-freedom test provided accurate OR
estimates for most scenarios except for the XCI-E biological
model. However, our approach was less biased for the
XCI-E biological model compared to Clayton’s approach.
In this scenario, compared to the true OR of 1.3, Clayton’s
approach provided estimated median ORs of 1.19 and 1.20,
respectively, for males and females at increased risk, whereas
our approach provided estimated median ORs of 1.25 and
1.26, respectively. We also investigated the 95% coverage
probabilities for the CIs using the three approaches and
observed similar trends (supplementary Table S1).

To further investigate the bias in OR estimates, we per-
formed simulations for a range of ORs. Figure 1 shows the
estimated ORs obtained using the different approaches com-
pared to the true ORs used for the simulation of these datasets.
Panels (A) to (D) correspond to different biological models.

Each panel shows the median ORs based on 500 replicates.
For all four of the biological models, our approach provided
accurate OR estimates for the entire simulated range of ORs,
except when the true model was XCI-E and ORs were rela-
tively small (1.2–1.5) because in these scenarios the different
XCI models have very close likelihood ratio values limit-
ing ability of our approach to select the true XCI-E model,
which in turn leads to underestimation of the estimated ORs
(Fig. 1D). PLINK regression provided highly overestimated
ORs except for the XCI-E model, and the magnitude of bias
increased as the true ORs increased. For example, when the
true OR was 3, PLINK regression gave OR estimates close
to 5 for the random and skewed XCI models (Fig. 1, panels
(A–C)). Clayton’s approach provided highly under-estimated
ORs for the XCI-E model, and the magnitude of bias in-
creased as the true ORs increased. For example, when the
true OR was 3, Clayton’s approach gave an OR estimate close
to 2 (Fig. 1, panel (D)). Clayton’s approach also provided a
slightly overestimated OR for the scenario of XCI-S toward
the deleterious allele when the true ORs were higher than 2
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Table 2. Type I error rates for PLINK regression, Clayton’s 1-
degree-of-freedom test, and our approach at different significance
levels, based on 100,000 replicates each with 1,000 cases and 1,000
controls

Type I Errors
Increased

Biological models riska PLINK Clayton Our Approach

α = 0.001
XCI-S to deleterious allele Male 0.0010 0.0007 0.0008

Female 0.0008 0.0011 0.0012
XCI-S to normal allele Male 0.0008 0.0009 0.0014

Female 0.0011 0.0012 0.0011
Random XCI Male 0.0010 0.0012 0.0011

Female 0.0009 0.0009 0.0012
XCI-E Male 0.0011 0.0010 0.0013

Female 0.0010 0.0010 0.0010

α = 0.0005
XCI-S to deleterious allele Male 0.0004 0.0004 0.0003

Female 0.0004 0.0005 0.0006
XCI-S to normal allele Male 0.0003 0.0004 0.0008

Female 0.0006 0.0007 0.0007
Random XCI Male 0.0006 0.0005 0.0003

Female 0.0006 0.0004 0.0006
XCI-E Male 0.0005 0.0006 0.0008

Female 0.0005 0.0006 0.0005

XCI, X-chromosome inactivation; XCI-S, skewed X-chromosome inactivation; XCI-E,
escape from X-chromosome inactivation.
amale or female implies the gender for which the disease risk was higher.

(Fig. 1, panel (A)). The proposed approach was thus found
to be mostly robust for estimating ORs in different biological
models.

We conducted further simulations to investigate the ro-
bustness of our approach, which considered only four coding
strategies: one coding for XCI-E and three coding for XCI and
XCI-S (see Methods section). Specifically, when generating
the data for females, we used X = {0, 1.5, 2} to denote geno-
types (a, a), (A, a), and (A, A), respectively, a scenario where
75% of the cells have the deleterious allele active and the other
25% of the cells have the normal allele active. We also con-
sidered another scenario where female was coded as X = {0,
0.5, 2}, reflecting 25% of the cells having the deleterious allele
active and the other 75% of the cells having the normal allele
active. We used two SNPs as we defined previously: associ-
ated SNP1 and unassociated SNP2 with MAFs of 40%. The
true underlying ORs were set as 1.3 and 1, respectively. The
median of ORs and 95% CIs were reported in supplementary
Table S2 based on 100,000 replicates, each with 1,000 cases
and 1,000 controls. As can be seen from supplementary Ta-
ble S2, the four coding strategies that we had used for our
approach remained robust with either male or female as the
factor increasing the disease risk.

We also investigated the type I error rates for the differ-
ent approaches using SNP2, which was not associated with
the disease. The type I error rates were estimated at nom-
inal significance levels of 0.001 and 0.0005 (Table 2). We
observed that, for all scenarios, all three approaches con-
trolled the type I error rates at both nominal significance
levels, and the type I error rates were similar for the three ap-
proaches. For example, when the underlying biological model

Table 3. Power comparisons for PLINK regression, Clayton’s 1-
degree-of-freedom test, and our approach at different significance
levels, based on 100,000 replicates each with 1,000 cases and 1,000
controls

Powers

Biological models Increased riska PLINK Clayton Our Approach

α = 0.001
XCI-S to deleterious allele Male 96.02% 97.52% 98.59%

Female 95.37% 96.63% 98.23%
XCI-S to normal allele Male 88.73% 94.42% 96.98%

Female 85.43% 92.79% 95.56%
Random XCI Male 92.92% 96.12% 94.95%

Female 91.32% 94.91% 94.08%
XCI-E Male 58.03% 50.21% 54.98%

Female 60.90% 53.23% 55.41%
α = 0.0005

XCI-S to deleterious allele Male 94.06% 95.99% 97.40%
Female 93.21% 94.99% 97.09%

XCI-S to normal allele Male 84.65% 91.90% 95.50%
Female 80.67% 89.73% 93.72%

Random XCI Male 89.87% 94.24% 91.36%
Female 87.94% 92.62% 92.15%

XCI-E Male 50.51% 42.43% 47.94%
Female 53.38% 45.76% 47.65%

XCI, X-chromosome inactivation; XCI-S, skewed X-chromosome inactivation; XCI-E,
escape from X-chromosome inactivation.
amale or female implies the gender for which the disease risk was higher.

was XCI-S toward the deleterious allele and females were at
increased risk for the disease, the type I error rates were
0.0008, 0.0011, and 0.0012 at the 0.001 significance level and
0.0004, 0.0005, and 0.0006 at the 0.0005 significance level for
PLINK regression, Clayton’s 1-degree-of-freedom test, and
our approach, respectively. When the MAFs were different
for males (30%) and females (40%), we considered two per-
mutation strategies: permute case-control status using com-
bined male and female data, and permute case-control status
within sex-specific strata. Both permutation approaches pro-
vided controlled type I error rates (supplementary Table S3).

Power Comparisons

We also investigated the statistical power of each approach
using SNP1, which was associated with the disease. The pow-
ers were assessed at nominal significance levels of 0.001 and
0.0005 (Table 3). When the true underlying biological model
for the simulation was assumed to be XCI-S to either the
deleterious or normal allele, our approach had the highest
power to identify the associated SNP. For example, when the
underlying model was XCI-S to the normal allele and fe-
males were at increased risk, the powers were 80.67, 89.73,
and 93.72% for PLINK regression, Clayton’s approach, and
our approach, respectively, at a significance level of 0.0005.
The power loss for PLINK regression was highest when the
true biological models were XCI-S.

As expected, when the underlying true biological model
for simulation was assumed to be random XCI, Clayton’s 1-
degree-of-freedom test always had the highest power, whereas
PLINK regression had the lowest power to identify the
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associated SNP. In this situation, our approach had higher
power than PLINK regression but lower power than Clay-
ton’s approach. For example, when females were at increased
risk, the powers were 87.94, 92.62, and 92.15% for PLINK re-
gression, Clayton’s approach, and our approach, respectively,
at a significance level of 0.0005.

As expected, when the underlying true biological model
was assumed to be XCI-E, the PLINK regression approach
always had the highest power to detect the associated SNP,
whereas Clayton’s 1-degree-of-freedom test always had the
lowest power. In this scenario, our approach had higher power
than Clayton’s approach but lower power than PLINK regres-
sion. For example, when females were at increased risk, the
powers were 53.38, 45.76, and 47.65% for PLINK regression,
Clayton’s approach, and our approach, respectively, at a sig-
nificance level of 0.0005.

We also investigated the statistical power of each approach
when the MAF for female was higher than MAF for male (40%
vs. 30%). Once again the powers were assessed at nominal
significance levels of 0.001 and 0.0005 (supplementary Table
S4). The results from this scenario showed similar patterns as
in Table 3. Furthermore, we once again considered two strate-
gies for permutation for our approach: permute case-control
status using combined male and female data, and permute
case-control status within sex-specific strata. Both permu-
tation approaches provided similar powers (supplementary
Table S4). The scenario where the MAF for female was lower
than MAF for male (30% vs. 40%) provided similar results
(data not shown).

Head and Neck Cancer X-Chromosome
Association Test

Next, we applied our approach to a case-control associ-
ation study of head and neck cancer and X-chromosome
genetic variants using data from a head and neck GWA study.
The phase 1 analysis included 2,718 individuals, with 1,161
head and neck cancer patients and 1,557 controls frequency-
matched to the cases by age (±5 years), sex, residency (by
county), and ethnicity. There were 902 males and 259 females
in the cases and 986 males and 571 females in the controls.
The phase 2 analysis included 3,996 individuals, with 1,031
patients and 2,965 controls. There were 786 males and 245
females in the cases and 1,507 males and 1,458 females in the
controls. The head and neck cancer cases were accrued at The
University of Texas MD Anderson Cancer Center (UT MD
Anderson) and were patients with newly diagnosed, histolog-
ically confirmed, previously untreated head and neck cancer,
including cancers of the oral cavity, pharynx, and larynx.
In both phases, genotyping of cases was conducted using
Illumina HumanOmniExpress-12v1 BeadChip. For phase
1 analysis, after removing the individuals with discordant
sex information, genotypes were available for 1,155 cases.
For controls, we used Illumina HumanOmniExpress-12v1
BeadChip genotypes on 531 individuals recruited by UT
MD Anderson for the study of head and neck cancers and
Illumina Omni1-Quad v1-0 B BeadChip genotypes on
1,026 individuals also recruited at UT MD Anderson for

the study of cutaneous melanoma previously [Amos et al.,
2011]. After removing the individuals with discordant sex
information, genotypes were available for 1,547 individuals.
The phase 2 analysis was based on genotyping 1,031 cases
ascertained by UT MD Anderson. For phase 2 controls,
we used Illumina HumanOmniExpress-12v1 BeadChip
genotypes on 643 individuals recruited by UT MD Anderson
and Illumina Human1Mv1 BeadChip genotypes on 2,322
European-descendent-only individuals from the Study
of Addiction: Genetic and Environment provided by the
National Center for Biotechnology Information and down-
loaded from dbGaP [Mailman et al., 2007]. From the second
phase data, no individual was removed due to discordant
sex information. This case-control study was approved by
the institutional review board at UT MD Anderson, and
all participants provided written informed consent. In the
phase 1 analysis, 14,169 tagging SNPs were genotyped on the
X-chromosome; in the phase 2 analysis, 14,371 tagging SNPs
were genotyped on the X-chromosome. We excluded SNPs
that were missing in more than 10% of the study population.
To assess the empirical P values for our approach, we used
1,000,000 permutations in both phases. The fixed and
random effect model analyses in the meta-analysis were
conducted using PLINK software, version 1.07 [Purcell et al.,
2007].

In the phase 1 study, we selected the top 50 SNPs based
on the most significant P values obtained using the PLINK
regression approach and another top 50 SNPs based on the
most significant P values obtained using Clayton’s 1-degree-
of-freedom test. In the phase 2 data, a total of 33 SNPs were
available from the list of SNPs that were significant using
PLINK regression and Clayton’s 1-degree-of-freedom test in
phase 1. We then performed meta-analysis of the 33 SNPs
based on the results from the phase 1 and phase 2 data using
Fisher’s method and the fixed and random effects models.
The resulting combined P values for the three approaches, as
well as the corresponding P values for Cochrane’s Q statistic
and heterogeneity indexes I, are reported in Table 4 (ranked
using Fisher’s method P values based on our approach). We
also showed the –log10(meta-analysis P values) for the 33
SNPs with respect to their base-pair positions on the X-
chromosome (Fig. 2). Given that there are 14,169 SNPs in
phase 1 and 14,371 SNPs in phase 2, the chromosome-wide
significance level should be approximately 3.5 × 10–6. Using
the proposed approach, SNP rs12388803 had meta-analysis-
based P values of 2.04 × 10–6, 2.83 × 10–6, and 2.83 × 10–6

using the Fisher’s, fixed effect, and random effect models,
respectively, which reached the chromosome-wide signifi-
cance threshold. Using Clayton’s approach, the correspond-
ing meta-analysis P values were 3.74 × 10–5, 8.58 × 10–6, and
8.58 × 10–6, and using PLINK regression, the correspond-
ing meta-analysis P values were 3.22 × 10–3, 9.16 × 10–4, and
9.16 × 10–4. The P values using Clayton’s method approached
chromosome-wide significance, whereas the PLINK regres-
sion method gave P values that were much less significant.

For this SNP rs12388803, we also investigated potential het-
erogeneity between phase 1 and phase 2 data using Cochrane’s
Q statistic and the heterogeneity index, I. The P values of
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Figure 2. Values of −log(meta-analysis P values) of 33 X-chromosome
SNPs for head and neck cancer genome-wide association data based
on PLINK regression, Clayton’s 1-degree-of-freedom test and our ap-
proach, with respect to their base-pair positions.

Cochrane’s Q statistic were 0.904, 0.889, and 0.624 for PLINK
regression, Clayton’s approach, and our approach, respec-
tively, and the heterogeneity index values were 0 for all three
approaches, implying that there is no heterogeneity for this
SNP between the phase 1 and phase 2 studies.

Discussion

The biological process for XCI is complex. In addition to
the random XCI process, nonrandom, or skewed, XCI has

been shown to be a biological plausibility associated with
complex disorders. Furthermore, some of the X-linked genes
altogether escape XCI. Currently, to our knowledge, there is
no method of association testing that accounts for all of the
different plausible biological models. To overcome this lim-
itation, we proposed a unified approach for maximizing the
likelihood ratio that accounts for the unknown underlying
XCI process, including random XCI, skewed XCI toward ei-
ther the deleterious or normal allele, and escape from XCI. We
also developed a permutation procedure to obtain P values
for the proposed approach. We conducted simulation studies
to investigate the performance of the proposed approach and
compared it to PLINK regression and Clayton’s 1-degree-of-
freedom test. We examined multiple scenarios with different
plausible biological models (random XCI, XCI-S toward ei-
ther allele, and XCI-E) and different sexes at increased risk
for the disease.

Power comparisons showed that Clayton’s 1-degree-of-
freedom test was the most powerful approach when the
true underlying biological model was random XCI, but it
lost some power when the true underlying biological mod-
els were escape from or skewed in XCI. On the other hand,
PLINK regression was the most powerful approach when the
true underlying biological model was XCI-E but would lose
power when the true underlying biological models were ran-
dom or skewed XCI. Finally, the proposed approach was the
most powerful when the true underlying biological model
was XCI-S (toward either the deleterious or normal allele),
and it lost a small amount of power when the true underlying
biological models were random or escape from XCI.

We also investigated the potential bias in the OR estima-
tions for the three approaches. PLINK regression provided
upward biased ORs for random XCI and XCI-S models, and
the magnitude of overestimation increased when the true
ORs were higher; Clayton’s approach provided underesti-
mated ORs for the XCI-E model and slightly overestimated
ORs for XCI-S to the deleterious allele model, and the mag-
nitude of bias increased as the true OR values increased. Our
approach provided accurate estimations for ORs for all four
biological models, except when the true model was XCI-E and
ORs were relatively small (1.2–1.5). We also conducted sim-
ulation studies using other parameters, including different
ORs for the association between sex and disease of interest,
different ORs for the disease-associated SNP1, and different
MAFs such as 10%, and obtained similar results and conclu-
sions (data not shown).

In addition to reporting our new approach developed for
testing the association between X-chromosome SNPs and the
disease of interest, we also have compared, for the first time
to our knowledge, PLINK regression and Clayton’s approach
under scenarios of XCI-S toward either the deleterious or nor-
mal allele. We found that in our simulation studies, PLINK
regression had more loss of power than Clayton’s approach
in general.

We also applied our approach to the case-control asso-
ciation study of head and neck cancer and X-chromosome
genetic variants. Based on the meta-analysis outcomes com-
bining results from both phases, we found that, using our
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approach, SNP rs12388803 reached the chromosome-wide
significance threshold. Clayton’s test provided P values ap-
proaching chromosome-wide significance, and PLINK re-
gression gave P values that were much less significant. The
optimal biological model identified for this SNP is XCI-S
toward to deleterious allele. This SNP does not belong to
any gene region and is not functional. Additional studies are
needed to externally validate our findings.

We considered two permutation strategies: permute case-
control status using combined male and female data, and
permute case-control status within sex-specific strata. Both
permutations strategies provided similar results in the sim-
ulation studies and head and neck X-chromosomal ge-
netic data analysis. However, these findings could be due
to the fact that the differences in MAFs in males and
females were not very large (�10%). There could be
a scenario where this difference could be much higher.
Therefore, we recommend performing the permutations
within males and females separately. A computer pro-
gram that analyzes X-chromosomal SNP association with
the use of the proposed approach is available at website
https://sites.google.com/site/jianwangswebsite/xchrom. The
computation time of the program highly depends on the
number of permutations conducted and the number of clus-
ters used. For example, to obtain the results reported in Ta-
ble 4, the program took about 9 hr to conduct 1,000,000
permutations (at approximate X-chromosome-wide signifi-
cance level), using multiple high-performance clusters with
3.07 GHz CPU and 96 GB memory available in UT MD An-
derson, which showed that it is feasible to use our approach
for the X-chromosome-wide genetic association study.

There are several advantages to the approach proposed in
this article. First of all, the approach was developed based on
biologically plausible models. Not only does this approach ac-
count for random XCI and escape from XCI as do Clayton’s
approach and PLINK regression, respectively, it also accounts
for the skewed XCI pattern, which, to our knowledge, has not
been considered in previous X-chromosomal genetic variant
association tests. As we have discussed in the Introduction
section, the skewed XCI pattern is a special phenomenon that
is more common in affected females in certain complex dis-
eases, whereas random XCI is more common in unaffected fe-
males [Buller et al., 1999; Chabchoub et al., 2009; Kristiansen
et al., 2002; Plenge et al., 2002; Talebizadeh et al., 2005].
Therefore, accounting for this phenomenon of skewed XCI
will increase the power of detecting X-chromosome disease-
associated genetic variants. If the genetic association test is
conducted within the pseudo-autosomal regions or within
the genes that have been identified to escape XCI, one may
choose to employ PLINK regression for the study. However,
for most of the X-chromosomal regions, the true underlying
XCI process is not known with certainty and could differ
from region to region; our approach is therefore more robust
than Clayton’s approach or PLINK regression.

In genetic association studies, there might be differences
in the genetic architecture between females and males. For
example, there might be different MAFs, effect sizes, or preva-
lence values for males and females, different numbers of males

and females in the study sample, and different sex ratios in
cases and controls [Hickey and Bahlo, 2011; Loley et al.,
2011]. Therefore, we recommend always including sex as a
covariate when conducting X-chromosomal genetic associa-
tion study using our proposed approach. Also, studies have
shown that the prevalence of the skewed XCI pattern in-
creases in females with increasing age [Amos-Landgraf et al.,
2006; Busque et al., 2009; Chagnon et al., 2005; Minks et al.,
2008; Sharp et al., 2000; Wong et al., 2011], which might be
included in the analysis as an interaction between genetic
variant and age.

In conclusion, the new approach we propose in this study
was developed based on biological plausibility and accounts
for all possibilities of the XCI process. The proposed approach
controls the type I error rate and compared with current ap-
proaches has higher powers in the scenarios where XCI is
skewed with some loss of power in scenarios where XCI is
random or XCI is escaped. Finally, the approach is more ro-
bust to different XCI processes, including random XCI, XCI-
S toward the deleterious or normal allele, and XCI-E, than
the existing popular approaches of PLINK regression and
Clayton’s 1-degree-of-freedom test for testing the association
between X-chromosome SNPs and the disease of interest.
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