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ABSTRACT: Since the development of next generation sequencing (NGS) technology, researchers have been extending their
efforts on genome-wide association studies (GWAS) from common variants to rare variants to find the missing inheritance.
Although various statistical methods have been proposed to analyze rare variants data, they generally face difficulties for
complex disease models involving multiple genes. In this paper, we propose a tree-based analysis of rare variants (TARV) that
adopts a nonparametric disease model and is capable of exploring gene–gene interactions. We found that TARV outperforms
the sequence kernel association test (SKAT) in most of our simulation scenarios, and by notable margins in some cases. By
applying TARV to the study of addiction: genetics and environment (SAGE) data, we successfully detected gene CTNNA2
and its 43 specific variants that increase the risk of alcoholism in women, with an odds ratio (OR) of 1.94. This gene has not
been detected in the SAGE data. Post hoc literature search also supports the role of CTNNA2 as a likely risk gene for alcohol
addiction. In addition, we also detected a plausible protective gene CNTNAP2, whose 97 rare variants can reduce the risk of
alcoholism in women, with an OR of 0.55. These findings suggest that TARV can be effective in dissecting genetic variants
for complex diseases using rare variants data.
Genet Epidemiol 38:552–559, 2014. © 2014 Wiley Periodicals, Inc.
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Introduction

Over the past decade, genome-wide association studies
(GWAS) have been widely applied in biomedical researches
and successfully identified many common variants associ-
ated with complex human diseases [Hindorff et al., 2009].
However, for most diseases, the reported common variants
explain only a small proportion of the risk. This phenomenon
is sometimes referred to as missing inheritance, and some be-
lieve that it may be explained, at least in part, by variants with
low minor allele frequencies (MAFs) or rare variants (MAF
lower than 1% or 5%) [Manolio et al., 2009].

In the recent years, the next generation sequencing (NGS)
technology has been developed and introduced to the genetic
analysis. The NGS technology is a low-cost, high-throughput,
and parallelized sequencing technology, which can produce
thousands or millions of sequences concurrently [Metzker,
2009]. With this technology, it becomes affordable for re-
searchers to sequence the whole human genome or exons.

Supporting Information is available in the online issue at wileyonlinelibrary.com.
†Contract grant sponsor: National Institute on Drug Abuse; Contract grant number:

R01 DA016750; Contract grant sponsor: NIH; Contract grant numbers: U01 HG004422,

U01 HG004446, U10 AA008401, P01 CA089392, R01 DA013423, U01 HG004438, and

HHSN268200782096C.
∗Correspondence to: Heping Zhang, Department of Biostatistics, Yale University

School of Public Health, 300 George Street, Suite 523, New Haven, CT 06511, USA.

E-mail: heping.zhang@yale.edu

A major advantage of the NGS technology is the de novo
sequencing which is not based on any known variants, al-
lowing novel and rare variants to be identified alongside the
common ones.

Analysis of rare variants gives rise to two obvious chal-
lenges. First, the variants are so rare that even a large scale
GWAS does not have enough statistical power to detect the
association between a single rare variant and a trait beyond a
reasonable chance. Furthermore, rare variants are much more
abundant than common variants in the human genome, and
controlling for type I errors becomes an even severe prob-
lem for any single-variant-based analysis. Therefore, multi-
ple variants are usually grouped and tested together to avoid
this problem. The grouping is generally based on the chro-
mosomal positions of the variants; for example, variants on
the same gene can be tested together as a group.

Various methods have been proposed to simultaneously
test multiple variants. Current methods can be roughly cate-
gorized into three major strategies. The first strategy is repre-
sented by the burden test that directly or indirectly collapses
specific rare variants and then focuses on the created vari-
ant. For example, cohort allelic sums test (CAST) collapses
multiple rare variants into one “supervariant” and tests this
supervariant instead of the individual ones [Morgenthaler
and Thilly, 2007]. The supervariant is a dummy variable
(1 or 0) indicating whether any minor allele in a group of rare
variants is present or not. The combined multivariate and
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collapsing (CMC) method also uses this supervariant, al-
though it is in a multiple regression setting in which the su-
pervariant is considered as a predictor along with common
variants [Li and Leal, 2008]. There are also more sophisti-
cated methods to collapse rare variants. Specifically, dummy
variables can be defined for each rare variant in a group
and then a new variable can be created from a linear com-
bination of the dummy variables. For example, we can use
wi = 1/

√
qi(1 – qi) as the linear coefficient for the ith variant,

where qi is the MAF of the ith variant [Madsen and Brown-
ing, 2009]. Because the effects of various variants may have
different directions, methods have been proposed to use both
positive and negative coefficients [Hoffmann et al., 2010].

The second strategy is the quadratic test, which combines
the test statistic of each variant in a quadratic form and
usually uses a chi-squared statistic for the test, such that the
effects of different variants do not cancel out even if they have
different directions. The C-alpha test, which takes the sum of
a quadratic statistic of each variant, belongs to this category
[Neale et al., 2011]. As an extension of the C-alpha test, the
sequence kernel association test (SKAT) is also a quadratic
test [Wu et al., 2011]. Specifically, SKAT assumes that the
disease risk follows the linear model

log
P (Yi = 1)

P (Yi = 0)
= α0 + z′

iα + v′
iβ, (1)

where Yi is the disease status for sample i (Yi = 0 for controls
and Yi = 1 for cases), vi = (vi1, vi2, . . . , viJ )′ are the geno-
types for the J variants to be tested together (generally codes
as {0, 1, 2}), zi = (zi1, zi2, . . . , ziS )′ are the confounding co-
variates to adjust, α0 and α are the intercept and coefficients
for the confounders, and β = (β1, β2, . . . , βJ )′ are the coeffi-
cients for the variants of interest. Then the goal is to test the
null hypothesis β1 = β2 = · · · = βJ = 0.

Because the number of variants, J , tested simultaneously
may be large, which may decrease the statistical power,
SKAT also considers random effects by assuming that βj ∼
F (0, τ2), where 1 ≤ j ≤ J and F is a distribution function
with mean 0 and variance τ2. Then the null hypothesis be-
comes τ2 = 0.

The third strategy is based on functional analysis. Let vi(t)
be the genotype of the rare variant of sample i at chromosome
position t. Despite that vi(t) can only take discrete values at
discrete position t, vi(t) is treated as a continuous function
defined on continuous t. Then vi(t) can be decomposed as
vi(t) =

∑K
k=1 θikβk(t), where βk(t) with 1 ≤ k ≤ K is a func-

tional basis. In general when K << J , the problem reduces to
testing the distribution of θik between cases and controls [Luo
et al., 2011]. In this method, various types of functional basis
can be adopted, such as the functional principal component
basis [Luo et al., 2011], the B-spline basis [Luo et al., 2012;
Fan et al., 2013], and the Fourier basis [Fan et al., 2013]. Al-
though the interpretation of the result may be complicated,
this method enjoys good statistical power and deals with the
dependence structures among the variants.

The burden test and the quadratic test have their pros and
cons under different disease models: the burden test is more
powerful when most of the variants are causal and have the

same direction of effect, whereas the quadratic test is more
powerful if just a few of the variants are causal or the vari-
ants have both positive and negative effects. Unfortunately,
in practice, we do not know the true effects in real data anal-
ysis. As a result, the more neutral variants are included in
the analysis, the lower the statistical power will be. There-
fore the functional analysis based method serves as a useful
dimensional reduction method when many rare variants are
included. In addition, variable selection has been proposed
to remove the neutral variants based on the linkage disequi-
librium structure [Talluri and Shete, 2013].

In this paper, we propose tree-based analysis of rare
variants (TARV) and evaluate its use to select rare vari-
ants for subsequent analysis. The software is available at
http://c2s2.yale.edu/software. This method has unique fea-
tures as opposed to many existing ones. Not only can it
consider multiple variants, but also incorporate potential
interactions among them. We should note that tree-based
methods have been successfully applied in GWAS to identify
gene–gene and gene–environmental interactions [Chen et al.,
2011; Zhang et al., 2000, 2001]. This work is to extend the
application of the tree based methods into the analysis of rare
variants.

Methods

Let us start with a generalization of the logistic model (1),

log
P (Yi = 1)

P (Yi = 0)
= g(vi, zi), (2)

where g(·) is not limited to a linear function, and vi includes
all the genotyped variants (not limited to the variants in a cer-
tain gene). The tree-based method provides a nonparametric
fit to the unknown g(·) which allows potential nonlinear re-
lations and high-order interactions. We refer to Zhang and
Singer [Zhang and Singer, 2010] for a detailed presentation
of the method.

Despite these appealing features, directly applying trees
onto the rare variants does not produce useful information
because a tree structure is determined by its node splits which
in turn depends on selected predictors. In our setting, the
predictors include rare variants with very low MAFs. Such low
frequencies yield very unbalanced, unstable, and unreliable
tree structures. We overcome this problem by transforming
the original variants and create predictors before applying
the tree methods. Our idea is different from the collapsing of
rare variants as introduced above, but is also related in light
of the creation of new variables.

Transformation

As discussed above, it is important to consider variants
with or without effects and whether those effects are positive
or negative while we create new variables. We propose an
adaptive transformation as follows.
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First, we order the variants according to their effect sizes.
Because the true effect sizes are unknown, we estimate the
marginal effect of each variant using a logistic model

log
P (Yi = 1)

P (Yi = 0)
= α0 + z′

iα + βgj vigj , (3)

where βgj is the marginal effect size for the j th variant in gene
g with J g variants, and 1 ≤ j ≤ J g . Then we use the t-test
statistic for βgj = 0, denoted by Tgj , to order the variants both
descendingly and ascendingly so that variants with positive
or negative effects are accounted for. Let dgj and agj be the
indices of the variants with the j th largest and smallest t-
statistic, respectively. Define

x+
ig =

{
min{j : vigdgj

> 0}, if ∃vigdgj
> 0,

J g + 1, otherwise,
(4)

where 1 ≤ j ≤ J g . Similarly, define

x–
ig =

{
min{j : vigagj

> 0}, if ∃vigagj
> 0,

J g + 1, otherwise.
(5)

Recall that vigj is the dummy variable indicating whether
the minor allele of variant j in gene g is present in subject
i. Our adaptive transformation is related to some existing
collapsing methods. For example, if we use the indicator
variable I (xig <= k) as the created variable, it is the same as
collapsing the top k variants with positive effects. Figure 1
displays the transformation process for a hypothetical gene.

When there exist missing data in some of the variants, we
can still calculate the marginal effects and order the variants

Figure 1. The transformation of k rare variants in gene 1 into two new
variables X +

1 and X −
1 .

accordingly. Then x+
ig and x–

ig can be calculated in the same
way by treating the missing genotype as 0.

Tree Model

After defining x+
ig and x–

ig , we include them as predictors to-
gether with the environment variables and common variants
in tree-based analysis.

We use the RTREE [Zhang and Singer, 2010] program to
grow trees. Like other tree-growing programs, RTREE begins
with the root node containing all learning samples. Then
those samples are recursively split into daughter nodes based
on queries about the predictors. The queries are selected
such that for each split, the derived daughter nodes have
the lowest impurity. A common measure of impurity is the
entropy function. For a node with n samples, without loss of
generality, assume the disease status of these n samples are
Y1, Y2, . . . , Yn. Denote p =

∑n
i=1 Yi/n. The entropy is defined

as φ(p ) = –p log p – (1 – p ) log(1 – p ).
After a tree is grown, nodes are pruned to prevent over-

fitting. In our method, the pruning is carried out based on
the Chi-squared test. During the pruning procedure, Chi-
squared tests are performed on the end splits. If the P-value
is larger than the given cutoff (e.g., 10–6), the split is pruned.
The pruning is repeatedly carried out until all the splits yield
P-values smaller than the cutoff. In the RTREE program, the
users can also choose to intervene the splitting and pruning
procedure manually. Also, considering the reality that most
studies do not have enough power to identify many causal
genes, we pay our attention to top few splits, which also
greatly simplifies our computation by avoiding a full-blown
pruning, which may not be necessary for our purpose.

Simulation

We performed our simulation studies by using simuRare
[Xu et al., 2013] to generate both common and rare vari-
ants on chromosome 22. We focused on one chromosome
to reduce computational time. A key feature of simuRare is
to mimic the real GWAS data of a given population (e.g.,
the CEU population in our simulation). Because the primary
topic of this paper is on the analysis of rare variants, we re-
strict our attention to variants with MAF < 5%. To take into
account diverse situations that may be common in real stud-
ies, we simulated 500 cases and 500 controls in six disease
models. The simulation was repeated for 100 times for each
model. The specifications of the seven disease models are
listed below.

� Disease model 1: In this disease model, we first randomly
sampled 2 genes (A and B) as being causal. Then within
either gene, each variant was randomly selected as a causal
variant with a probability depending on the region of the
variant. Specifically, this probability was 0.9 for coding re-
gions, 0.8 for other exon regions, 0.4 for intron regions,
0.5 for 5′-untranslated regions (UTRs), 0.3 for 3′-UTRs,
0.2 for other transcribed regions, and 0.1 for the upstream
and downstream flanking regions. A gene is regarded as

554 Genetic Epidemiology, Vol. 38, No. 6, 552–559, 2014



being mutated in sample i if any of its causal variants was
mutated in this sample. We introduce Z iA = 1 if gene A is
mutated in sample i, and Z iA = 0 otherwise. Z iB is simi-
larly defined for gene B. The penetrance probabilities were
designed such that having only one gene (either gene A or
gene B) mutated elevated the probability of having disease
only slightly (from 0.7% to 1.8%), but having both genes
mutated increased the probability dramatically (to 99.9%).

� Disease model 2: The second disease model is the same as
model 1 except the penetrance. The penetrance probabil-
ities in this model were designed such that mutated gene
A increased the disease risk, whereas the effect of gene B
depended on whether gene A was mutated. Specifically,
when gene A was not mutated, the penetrance was 0.7%,
no matter if gene B was mutated; when gene A was mutated,
the penetrance increased to 26.9% or 73.1% depending on
whether gene B was normal or also mutated, respectively.

� Disease model 3: The setting of this model follows the
previous two. The penetrance probabilities were designed
such that mutating gene A increased the risk, whereas mu-
tating gene B decreased the risk. Specifically, mutated gene
B would decrease the penetrance probability from 10% to
0.2% if gene A was normal, or from 80% to 30% if gene A
was mutated.

� Disease model 4: In this model, we allowed variants in
the same gene to have opposite effects. First, we randomly
selected one gene. A variant within this gene has a 40%
of chance to have a positive effect, 40% to have a nega-
tive effect, and 20% neutral. Define Z +

iA = 1 if any of the
risk variants is mutated, and Z +

iA = 0 otherwise; and simi-
larly define Z –

iA on the basis of the protective variants. The
penetrance probability was 10% if Z +

iA = Z –
iA = 0, 0.2% if

Z +
iA = 0 and Z –

iA = 1, 80% if Z +
iA = 1 and Z –

iA = 0, or 30% if
Z +

iA = Z –
iA = 0.

� Disease model 5: In this model, we selected gene A and
derived Z iA as above. In addition, we simulated another
gene in LD with gene A. Specifically, we introduced Z iX

such that P (Z iX = 1|Z iA = 0) = 1/3 and P (Z iX = 1|Z iA =

1) = 0.036. As a matter of fact, Z iX can be viewed as any
covariate whose distribution depends on gene A. The pen-
etrance probabilities are designed such that the marginal
effect of Z iX is diminished by its negative correlation with
gene A. This phenomenon is known as the Simpson’s para-
dox [Wagner, 1982]. In this model, the penetrance proba-
bility was 1% if Z iA = Z iX = 0, 75% if Z iA = 0, and Z iX = 1,
25% if Z iA = 1 and Z iX = 0, or 80% if Z iA = Z iX = 0.

� Disease model 6: In this model, we simulated the dis-
ease status based on five genes randomly selected on
chromosome 22. Similarly to model 1, within each gene,
variants were sampled as causal in probability of 30%.
Z i1, Z i1, . . . , Z i5 are dummy variables indicating whether
the minor allele is present in any causal variants for sample
i. The disease status for each sample i was simulated using
the logistic model

log
P (Yi = 1)

P (Yi = 0)
= –3 + 4Z i1 + 3Z i2 + 2Z i3 – 3Z i4 – 2Z i5.

(6)

We see that genes 1, 2, and 3 have positive coefficients
and are risk genes, whereas genes 4 and 5 have negative
coefficients and have protective effects.

� Disease model 7: In this model, to demonstrate the effects
of missing values, we adopted exactly the same model as in
model 1, but with a 10% no-call rate for the genotype of
each variant in each sample.

Real Data Application

In order to demonstrate the potential of the tree method
in real data, we applied TARV into the study of addiction:
genetics and environment (SAGE) [Bierut et al., 2010] data.
The rare variant in this dataset was imputed by GENEVA on
the 1000 Genome reference panels using software BEAGLE.
The data were made available by dbGaP. Our trait is alcohol-
addiction. We used European samples only (1,151 cases and
1,336 controls) and restricted our attention to variants with
MAF ≤ 5%.

Results

Simulation Results

In the simulation analysis, we compare the performance of
TARV with SKAT. Because these methods are designed differ-
ently and have different emphases, to make the comparison
fair, we focus on the top genes identified by each method.
Although gene discoveries have been primarily based on sig-
nificance level and/or false discovery control, it is a common
practice for investigators to select a number of top candidates.
In this regard, we believe our strategy is not only appropriate
but also practical.

For disease models 1–5, we examined the tree structure up
to the third layer involving three splitting variables, and up
to three genes may be used in the three splits. Accordingly,
the three genes with the smallest P-values from SKAT were
chosen for the comparison. For disease model 6, because there
were five causal genes in the underlying model, we examined
the tree structure to the fourth layer, requiring seven splitting
variables, and up to seven genes. In parallel, we selected the
top seven genes detected by SKAT. We should note that in
practice, we do not know how many genes are causal, and it
may be a good idea to consider four layers in general. Here, we
made some use of the underlying disease models to simplify
the comparison and this information is utilized equally for
the two methods.

For disease model 1, TARV detected both genes A and B in
99 out of 100 runs and detected at least one gene in all 100
runs. In contrast, SKAT detected both genes in 80 out of 100
runs and detected at least one gene in 98 runs. Thus, TARV
clearly outperformed SKAT in identifying the two genes.

For disease model 2, TARV detected both genes in 29 runs,
and detected at least one gene in 97 runs. SKAT detected both
genes in 35 runs, and detected at least one gene in 97 runs.
Here, SKAT was slightly better than TARV in detecting the
presence of both genes.
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For model 3, TARV detected the risk gene in all of the
100 runs and the protective gene in 72 out of 100 runs.
SKAT detected the risk gene in 99 runs, and detected the
protective gene in 53 runs. TARV clearly outperformed SKAT
in detecting the protective gene.

In disease model 4, we had one causal gene with both
risky and protective variants. SKAT detected this gene in 86
runs. To the contrary, TARV detected a risk variant in every
run, and a protective variant in 96 runs. TARV had a clear
advantage for this model, not only identifying the gene more
often but also the directions of the effects.

Because of the Simpson’s paradox in disease model 5, it
is not surprising that SKAT failed to detect Z iX completely.
To the contrary, TARV detected both the gene and Z iX in all
runs.

In the more complex disease model 6, TARV detected all
five genes in 28 runs, four genes in 54 runs, and three genes
in 18 runs. In comparison, SKAT detectedfive5 genes in 35
runs, four genes in 40 runs, three genes in 21 runs, and two
genes in four runs. These results are comparable.

In model 7 with missing data, TARV detected both genes in
95 out of 100 runs and detected at least one gene in 96 runs.
SKAT, which automatically imputed missing data, detected
both genes in 78 out of 100 runs and detected at lease one
gene in 99 runs. We see that both methods are robust against
excessive (10%) missing data, and TARV still outperforms
SKAT in this scenario with missing data.

To examine and compare the sensitivity and specificity
of the two methods, we summarized the average number
of detected genes, the true discoveries, as well as the false
discovery rate (FDR) of TARV and SKAT while controlling
the detection criteria for each method. In TARV, we adjusted
the tree layer, whereas in SKAT, we varied the P-value cutoff.
The results of these two methods for disease models 1-4, 6,
and 7 are presented side-by-side in Tables 1–6. We can see

Table 1. Average number of genes, true positives detected, and
FDR for model 1

TARV SKAT

Depth #Detected #True FDR P-value #Detected #True FDR

1 1.00 1.00 0 1e-8 12.02 1.87 0.84
2 2.53 1.99 0.21 1e-6 23.29 1.94 0.92
3 5.99 1.99 0.67 1e-4 51.93 1.96 0.96
4 13.10 1.99 0.85 1e-2 120.07 2.00 0.98

Table 2. Average number of genes, true positives detected, and
FDR for model 2

TARV SKAT

Depth #Detected #True FDR P-value #Detected #True FDR

1 1.00 0.97 0.03 1e-8 5.43 1.31 0.76
2 2.74 1.26 0.54 1e-6 10.51 1.49 0.86
3 6.36 1.34 0.79 1e-4 24.26 1.67 0.93
4 13.30 1.39 0.90 1e-2 73.97 1.92 0.97

Table 3. Average number of genes, true positives detected, and
FDR for model 3

TARV SKAT

Depth #Detected #True FDR P-value #Detected #True FDR

1 1.00 1.00 0 1e-5 2.65 1.39 0.48
2 2.69 1.72 0.36 1e-4 4.49 1.56 0.65
3 6.14 1.79 0.71 1e-3 8.88 1.70 0.81
4 13.10 1.83 0.86 1e-2 23.88 1.89 0.92

Table 4. Average number of genes, true positives detected, and
FDR for model 4. For TARV, each gene is treated as two variables—
for both the positive and negative effects

TARV SKAT

Depth #Detected #True FDR P-value #Detected #True FDR

1 1.00 1.00 0 1e-5 1.00 0.75 0.25
2 2.77 1.96 0.29 1e-4 1.39 0.79 0.43
3 6.52 1.98 0.70 1e-3 3.17 0.84 0.74
4 13.84 1.98 0.86 1e-2 10.90 0.88 0.92

Table 5. Average number of genes, true positives detected, and
FDR for model 6

TARV SKAT

Depth #Detected #True FDR P-value #Detected #True FDR

1 1.00 1.00 0 1e-8 5.92 3.31 0.44
2 2.77 2.76 0.004 1e-6 10.36 3.98 0.62
3 4.69 4.10 0.13 1e-4 24.39 4.54 0.81
4 10.23 4.75 0.54 1e-2 77.42 4.88 0.94
5 22.50 4.88 0.78

Table 6. Average number of genes, true positives detected, and
FDR for model 7

TARV SKAT

Depth #Detected #True FDR P-value #Detected #True FDR

1 1.00 0.96 0.04 1e-10 6.34 1.86 0.71
2 2.31 1.91 0.17 1e-8 11.16 1.90 0.83
3 5.92 1.92 0.68 1e-6 22.01 1.94 0.91
4 12.85 1.93 0.85 1e-4 48.91 1.96 0.96

that TARV was always more sensitive and specific than SKAT.
When a similar number of genes were detected, TARV always
detects more true discoveries.

Real Data Application Results

We applied TARV on the SAGE data to find genes that
may be associated with alcohol addiction in white popula-
tion. We first generated a tree using the variant-derived vari-
ables with positive coefficients only. The tree was pruned at
P-value of 10–6 as displayed in Figure 2. For practical
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Figure 2. The result tree for the SAGE data using variant-derived variables of positive coefficients, with gene CTNNA2 is highlighted.

purpose, we recommend to pay closer attention to the top
three splits, because it is much less likely to replicate the splits
that appears further in the downstream.

We should note that the first splitting variable is gender,
which is a well-documented factor for alcoholism. Of great
importance is the third split using the CTNNA2 gene. The
cutoff value of 43 implies that having minor allele in any of
the top 43 rare variants with positive coefficients in this gene
may increase the risk of alcohol addiction in women. The
details of the 43 variants are given in Table 7. Using a post
hoc logistic regression analysis, we found that the odds ratio
(OR) for having any of the 43 variants is 1.94, with a 95%
confidence interval (CI) of (1.64, 2.30).

We also generated a tree using variant-derived variables for
both positive and negative coefficients. The resulting tree is
presented in Supplementary Figure S1. This tree indicates that
97 rare variants in the gene CNTNAP2 is protective against
alcohol-addiction in female. The details of the 97 variants are
given in Supplementary Table S1. Using a post hoc logistic
regression analysis, we found that the OR for having any of
the 97 variants is 0.55, with a 95% CI of (0.46, 0.66).

Discussion

We proposed TARV to detect rare variants associated with
certain diseases. Our method is novel in several ways and
possesses unique strengths. Because the tree-based method is
nonparametric and flexible, it can be used to explore complex
gene–gene interactions. By simulation, we demonstrated that
TARV outperforms SKAT when multiple genes are included
in the disease model. This is an important strength of our
method because complex diseases do involve multiple genes.

Furthermore, we applied TARV for SAGE data to demon-
strate its usage and successfully detected gene CTNNA2 that
increases the risk of alcohol addiction in White women. Ac-
cording to the UniProt database, CTNNA2 may regulate the
cell–cell adhesion and differentiation in the nervous system,
and also regulate morphological plasticity of synapses and
cerebellar and hippocampal lamination during development,
which is very likely to be related to the addiction behavior.
This hypothesis is supported by a number of existing studies.
For example, CTNNA2 is reported to be related to excitement-
seeking [Terracciano et al., 2011], ability to quit [Uhl et al.,
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Table 7. Details of the 43 variants identified in CTNNA2

Chromosome Position Alteration Frequency rsSNP ID

2 79414140 G→C 0.0325282431
2 79440921 C→T 0.0323334632
2 79583819 C→T 0.0313595637
2 79618395 G→A 0.0268796260
2 79678697 A→G 0.0054538372
2 79702781 T→C 0.0019477990
2 79703081 A→T 0.0019477990
2 79704003 A→G 0.0019477990
2 79711967 T→G 0.0019477990
2 79720449 A→G 0.0377873004
2 79813928 G→A 0.0089598753 rs11899508
2 79814436 G→A 0.0015582392
2 79828985 A→C 0.0009738995
2 79854979 G→A 0.0072068563 rs11900109
2 79928873 A→G 0.0031164784
2 79956168 G→A 0.0247370471
2 79968624 C→T 0.0319439034 rs7564458
2 80116325 C→T 0.0407089988 rs12986588
2 80119494 T→G 0.0407089988 rs13034462
2 80129506 G→A 0.0163615115
2 80130025 A→T 0.0410985586 rs12992230
2 80130310 T→A 0.0410985586 rs13024343
2 80132996 T→G 0.0407089988
2 80135517 G→A 0.0405142189 rs34044554
2 80137537 T→C 0.0414881184 rs12987105
2 80146869 G→A 0.0414881184
2 80164612 T→C 0.0430463576 rs35502473
2 80175881 C→T 0.0333073627 rs7568815
2 80207455 C→T 0.0093494351
2 80237164 A→C 0.0225944683
2 80278302 T→G 0.0239579275
2 80427250 C→T 0.0241527074
2 80443327 G→T 0.0410985586
2 80513810 A→G 0.0037008181
2 80558293 C→T 0.0231788079 rs310784
2 80694931 T→C 0.0044799377 rs59527500
2 80695839 C→T 0.0044799377
2 80695894 A→G 0.0044799377
2 80696657 A→G 0.0040903779
2 80697114 G→A 0.0040903779
2 80697779 G→A 0.0040903779
2 80697892 A→G 0.0040903779 rs11899864
2 80709515 G→A 0.0023373588

2008], schizophrenia and nicotine addiction [Mexal et al.,
2008].

We also identified gene CNTNAP2 that decreases the risk
of alcohol addiction in female. This gene functions in the
nervous system as cell adhesion molecules and receptors and
is found to be associated with numerous psychiatric disorders
such as autism [Alarcón et al., 2008; Arking et al., 2008;
Bakkaloglu et al., 2008], language disorders [Vernes et al.,
2008], schizophrenia, and depression [Ji et al., 2013]. To our
knowledge, there is no study reporting a protective effect of
this gene for addiction behaviors.

Our findings for both CTNNA2 and CNTNAP2 underscore
the great potential of TARV in unraveling disease related
genes that are otherwise difficult to find by existing methods.
Neither gene could have been identified as a significant risk
factor in the SAGE data by the existing methods.

The findings from TARV can have intuitive interpreta-
tion. For example, the split based on “CTNNA2≤ 43(> 43)?”
corresponds to a biological query: “whether the sample has

at least one mutation in any of the top 43 variants with
positive effect in CTNNA2.” Not only can we identify im-
portant genes, but also a set of important variants for the
genes.

It is worth noting that the purpose of the tree model is
different from the hypothesis testing procedure which can
test the variables one by one. In the tree model, the predic-
tors are analyzed together to model the relationship between
the predictors and the outcome, which enables the user to
explore the interactions between the predictors nonparamet-
rically. The predictors selected by the tree in the top tend to
be important variables for the outcome. One caveat with our
method is that it is much more challenging to understand its
theoretical properties. It serves as a needed, powerful alter-
native to existing methods in gene hunting, but replication
of the findings is warranted.

To overcome the difficulties arising from the low MAFs of
the rare variants, we proposed an adaptive collapsing method
to combine the rare variants in a gene. During this process,
we rank the variants according to their marginal effects and
then perform the collapsing. Because the marginal effect sizes
are estimated from the data, the rankings are not indepen-
dent of the outcome. As a result, the genes with more rare
variants are more likely to be selected as a split than the genes
with fewer rare variants if both genes are noncasual. This
phenomenon is also observed in other tree-based method
such as classification and regression trees (CART) [Breiman
et al., 1984] when binary splits are made on nominal vari-
ables with multiple levels, in which case the variables with
more levels are more likely to be selected. One solution is
to use an unbiased test to select the splitting variables [Loh,
2009], which however will make the algorithm overcompli-
cated and reduce the overall statistical power. Because the
tree-based method is exploratory, we can afford the potential
variable selection bias, and call for the need to validate the
findings. Alternatively, if biological evidence or an indepen-
dent dataset presents, we can order the variants accordingly
instead of using the marginal effect estimated from the train-
ing data. When this is feasible, the splitting variable selection
will become unbiased.

In summary, TARV enjoys several critical and unique
strengths that are necessary in analyzing rare variants (as well
as common variants) for high throughput data. We have also
made some cautionary remarks for the use of our method.
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