
This article was downloaded by: [Washington University in St Louis]
On: 06 November 2014, At: 06:45
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Journal of the American Statistical Association
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/uasa20

Identifying Genetic Variants for Addiction via
Propensity Score Adjusted Generalized Kendall’s Tau
Yuan Jiang, Ni Li & Heping Zhang
Accepted author version posted online: 18 Mar 2014.Published online: 02 Oct 2014.

To cite this article: Yuan Jiang, Ni Li & Heping Zhang (2014) Identifying Genetic Variants for Addiction via Propensity
Score Adjusted Generalized Kendall’s Tau, Journal of the American Statistical Association, 109:507, 905-930, DOI:
10.1080/01621459.2014.901223

To link to this article:  http://dx.doi.org/10.1080/01621459.2014.901223

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/uasa20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2014.901223
http://dx.doi.org/10.1080/01621459.2014.901223
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Identifying Genetic Variants for Addiction via
Propensity Score Adjusted Generalized Kendall’s Tau

Yuan JIANG, Ni LI, and Heping ZHANG

Identifying replicable genetic variants for addiction has been extremely challenging. Besides the common difficulties with genome-wide
association studies (GWAS), environmental factors are known to be critical to addiction, and comorbidity is widely observed. Despite
the importance of environmental factors and comorbidity for addiction study, few GWAS analyses adequately considered them due to the
limitations of the existing statistical methods. Although parametric methods have been developed to adjust for covariates in association
analysis, difficulties arise when the traits are multivariate because there is no ready-to-use model for them. Recent nonparametric development
includes U-statistics to measure the phenotype-genotype association weighted by a similarity score of covariates. However, it is not clear
how to optimize the similarity score. Therefore, we propose a semiparametric method to measure the association adjusted by covariates. In
our approach, the nonparametric U-statistic is adjusted by parametric estimates of propensity scores using the idea of inverse probability
weighting. The new measurement is shown to be asymptotically unbiased under our null hypothesis while the previous nonweighted and
weighted ones are not. Simulation results show that our test improves power as opposed to the nonweighted and two other weighted
U-statistic methods, and it is particularly powerful for detecting gene-environment interactions. Finally, we apply our proposed test to the
Study of Addiction: Genetics and Environment (SAGE) to identify genetic variants for addiction. Novel genetic variants are found from our
analysis, which warrant further investigation in the future.

KEY WORDS: Comorbidity; Genome-wide association study; Inverse probability weighting; Substance dependence.

1. INTRODUCTION

Identifying genetic risk variants for addiction (substance de-
pendence) has drawn much attention due to the popularity
of genome-wide association studies (GWAS) based on high
throughput data. Many genetic signals for addiction have been
discovered using GWAS in recent years. Studies focusing on
nicotine dependence include Bierut et al. (2007), Uhl et al.
(2007), Luo et al. (2008), Drgon et al. (2009), Rice et al. (2012),
and Wang et al. (2012), among others. Similarly, there are many
important discoveries for alcohol dependence, including but not
limited to, Reich et al. (1998), Treutlein et al. (2009), Eden-
berg et al. (2010), Bierut et al. (2010), Johnson et al. (2006),
Kendler et al. (2011), Heath et al. (2011), Wang et al. (2011), and
Frank et al. (2012).

Despite these important findings, it still remains to be a very
challenging problem to identify genetic variants for addiction,
especially taking into account the following two issues. First,
comorbidity of addiction is widely observed in the existing lit-

Yuan Jiang is an Assistant Professor at Department of Statis-
tics, Oregon State University, Corvallis, Oregon 97331-4606 (E-mail:
yuan.jiang@stat.oregonstate.edu). Ni Li is an Assistant Professor at School of
Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
(E-mail: ni.li.yale.edu@gmail.com). Heping Zhang is a Susan Dwight Bliss
Professor at Department of Biostatistics, Yale University School of Public
Health, and a Professor at the Child Study Center, Yale University School of
Medicine, New Haven, Connecticut 06520-8034. He is also a Chang-Jiang
and 1000-plan scholar at Sun Yat-Sen University, Guangzhou, China (E-mail:
heping.zhang@yale.edu). The authors thank Zhifa Liu for his assistance in
biologically interpreting the findings from the data analysis. The authors
also thank the editor, the associate editor, and two anonymous referees for
their comments and suggestions that led to considerable improvements of the
article. This research was supported in part by grants R01 DA016750 and R01
DA029081 from the National Institutes of Health (NIH). The dataset used for the
analyses described in this manuscript was obtained from dbGaP at http://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1
through dbGaP accession number phs000092.v1.p. The data collection was
funded by NIH grants U01 HG004422, U01 HG004446, U10 AA008401, P01
CA089392, R01 DA013423, U01 HG004438, and HHSN268200782096C.

Color versions of one or more of the figures in the article can be found online
at www.tandfonline.com/r/jasa.

erature (National Institute on Drug Abuse 2010). For example,
Zuo et al. (2012a) and Zuo et al. (2012b) studied the risk gene
regions in alcohol and nicotine co-dependence. Substance de-
pendence can also be comorbid with other diseases such as
depression (Edwards et al. 2012). Second, environmental fac-
tors (covariates) are known to play an important role in the
association analysis between genetic risk factors and addiction.
Examples include stress and history of violence. These factors
can potentially produce confounding effects, or they can interact
with genotypes known as the gene-environment interactions.

In this work, we aim to analyze the data from the Study of Ad-
diction: Genetics and Environment (SAGE), which is part of the
Gene Environment Association Studies initiative (GENEVA)
funded by the National Human Genome Research Institute.
In the SAGE data, addiction to six different substances were
measured simultaneously for the subjects, including alcohol,
nicotine, marijuana, cocaine, opiates, and other drugs. A pre-
liminary analysis shows that different addictions are dependent.
In the data, there are about 45% subjects who are addicted to
nicotine and 47% subjects addicted to alcohol. The nicotine and
alcohol codependence rate is 32%, much higher than the rate
if assuming these two traits are statistically independent. More-
over, information about important environmental factors was
also collected. Environmental factors such as history of sexual
abuse or violence and socioeconomic status have a nonnegli-
gible effect on substance dependence. To analyze the SAGE
data, it remains an open question on how to properly adjust for
these important covariates with such a complicated constitution
of phenotypes. This motivates us to develop a new statistical
method to fill this gap.

Traditionally, covariates were usually adjusted in GWAS by
being added into a parametric association model such as a bi-
nary or an ordinal logistic regression model (Wang, Ye, and
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Zhang 2006). However, there are two major drawbacks when
using a parametric model-based approach for analysis of co-
morbidity of multiple traits. First, it is challenging to build a
parametric model for multiple traits especially with different
scales. Second, it is not clear how to remove the confound-
ing effects through the model. Therefore, nonparametric tools
were recently proposed. To handle comorbidity, Zhang et al.
(2010) proposed a nonparametric U-statistic to measure asso-
ciation, called the “generalized Kendall’s tau,” which can take
any hybrid of dichotomous, ordinal, and quantitative traits. The
generalized Kendall’s tau is applicable to both population-based
and family-based designs. It is also noteworthy that the family-
based association tests (FBAT) (Laird, Horvath, and Xu 2000;
Rabinowitz and Laird 2000) are a special case of the general-
ized Kendall’s tau. To further adjust for environmental factors
in a nonparametric setting, Zhu, Jiang, and Zhang (2012) and
Jiang and Zhang (2011) proposed weighted versions of gener-
alized Kendall’s tau. For the weight function, Zhu, Jiang, and
Zhang (2012) used covariates themselves while Jiang and Zhang
(2011) used propensity scores (Rosenbaum and Rubin 1983).
The weighted nonparametric tests have shown their power
for detecting genetic effects after considering environmental
effects.

The weighted tests are proven useful but still face difficulties.
For instance, researchers are often required to select the tuning
parameters in the weight function (Jiang and Zhang 2011; Zhu,
Jiang, and Zhang 2012). Although suggestions were made, this
extra step makes the tests less accessible. In this work, we pro-
pose an alternative that is more natural and convenient. Instead
of directly weighting the generalized Kendall’s tau, we employ
the idea of “inverse probability weighting” from the applications
of propensity scores (Rosenbaum 1987; Robins, Hernán, and
Brumback 2000; Lunceford and Davidian 2004). First, we use
a parametric model to estimate the genomic propensity scores
(Zhao, Rebbeck, and Mitra 2009) which summarize all covari-
ates. Then, we apply the inverse probability weighting using the
parametric propensity score estimates to the genotype kernel of
the nonparametric U-statistic. These procedures result in our
proposed semiparametric measurement of association adjusted
by covariates.

In an observational study, the inverse probability weighting
method aims to construct an unbiased estimator of treatment ef-
fect. Similarly, we show that our U-statistic is an asymptotically
unbiased estimator of the phenotype-genotype association under
the null hypothesis, while the nonweighted and other weighted
U-statistics are not necessarily asymptotically unbiased. More-
over, the inverse probability weighted U-statistic is free of tuning
parameters. Another contribution of this work is to provide the
null distribution of our test statistic incorporating the estima-
tion step of propensity scores. Interestingly, we find that if the
propensity scores are estimated consistently (

√
n-consistency

indeed), the U-statistic has even a smaller variance than the
one with true propensity scores. This confirms a surprising but
known fact that “it is better to use the ‘estimated propensity
score’ than the true propensity score even when the true score is
known” (Robins, Mark, and Newey 1992). Nonetheless, it is the
first time (to the best of our knowledge) to rigorously formalize
this idea either from a U-statistic viewpoint or in the framework
of genome-wide association tests.

To evaluate the performance of our proposed test, we perform
simulation studies to compare with the generalized Kendall’s tau
and its weighted versions in terms of Type I error and power. The
simulation results show that our test possesses a higher power
in most situations we examined and is particularly powerful for
detecting gene-environment interactions.

Finally, we apply our proposed test to the SAGE data, together
with nonweighted and other weighted tests, for comorbidity of
multiple addictions. We also compare the comorbidity-based
analyses with the analysis from a single addiction at a time.
Interestingly, besides a few overlapped markers, novel regions
have been detected using multiple phenotypes, and different ap-
proaches may be more powerful under different settings; for
example, a comorbidity genetic analysis is more powerful only
for shared genes. Among the tests for multiple addictions, we
clearly see the advantage of adjusting for important covariates
in our analysis. Without any adjustment, no SNP was identified
to be genome-wide significant. With adjustment, different ad-
justed tests work complementarily to each other. Our proposed
test, in particular, reveals SNPs/genes that are not discovered
by other tests. For example, the SNP rs251133 (on chromo-
some 5) achieves the genome-wide significance only using our
proposed test. The new findings from our analyses warrant fur-
ther investigation with either a replication study or a biological
verification.

2. SEMIPARAMETRIC ASSOCIATION TEST

2.1 Nonweighted and Weighted Association
Measurements

Suppose we observe a vector of traits Yi = {Y (1)
i , . . . , Y

(p)
i }′,

a test-locus genotype Gi , and a vector of covariates Zi =
{Z(1)

i , . . . , Z
(q)
i }′ for the ith subject in the n study subjects from

a population association study. Our data are independent sam-
ples {(Y′

i , Gi, Z′
i)

′ : i = 1, . . . , n}. In the following, we denote
Y = {Y1, . . . , Yn} and Z = {Z1, . . . , Zn} for all the traits and
covariates, respectively. We present here a few nonparametric
association statistics to measure the association between the
multiple traits and the genetic marker.

The first statistic was proposed by Zhang et al. (2010). For
individuals i and j, let Yi and Yj be their vectors of traits,
respectively. Then, a trait kernel is defined as

φt (Yi , Yj ) = [
f1

{
Y

(1)
i − Y

(1)
j

}
, . . . , fp

{
Y

(p)
i − Y

(p)
j

}]′
,

where function fk(·) (k = 1, . . . , p) can be chosen as the iden-
tity function for a quantitative or binary trait (Rabinowitz 1997),
or the sign function for an ordinal trait (Zhang, Wang, and Ye
2006). Traditionally, a genotype kernel is chosen as

φg(Gi,Gj ) = Gi − Gj .

Based on these two kernels, Zhang et al. (2010) proposed a
nonparametric U-statistic to measure the association between
the phenotype and genotype as

U =
(

n

2

)−1 ∑
i<j

φt (Yi , Yj )φg(Gi,Gj ), (1)
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which is a generalization of Kendall’s tau (Kendall 1938). This
U-statistic was used there to test the null hypothesis that there
is no phenotype-genotype association.

For the purpose of adjusting for the covariates, Zhu, Jiang, and
Zhang (2012) introduced another statistic, which is a weighted
version of U in (1). Let w(Zi , Zj ) be a weight function mea-
suring the similarity between Zi and Zj . For instance, the most
intuitive weight function w(Zi , Zj ) can be defined as a function
of the distance or similarity of the two covariate vectors Zi and
Zj . Afterward, they defined the weighted U-statistic as

UW,1 =
(

n

2

)−1 ∑
i<j

φt (Yi , Yj )φg(Gi,Gj )w(Zi , Zj ). (2)

This weighted U-statistic is used to measure the covariate-
adjusted association between the multiple traits and the genetic
marker.

Considering the fact that there exist potentially continuous
(such as age) and categorical (such as gender) covariates, their
distance or similarity can become arbitrary and complicated es-
pecially when we have many covariates. Therefore, Jiang and
Zhang (2011) proposed to summarize all the covariates, con-
tinuous or categorical, into the propensity score (Rosenbaum
and Rubin 1983; Zhao, Rebbeck, and Mitra 2009). Its definition
is the likelihood of an individual having a particular test-locus
genotype based on that individual’s covariate makeup, which
can be explicitly stated as

p(zi) = {P (Gi = g | Zi = zi) : g ∈ G}′,
with G being the set of possible values for the genotype G;
while in our context, G = {0, 1, 2} representing {aa,Aa,AA}
for a SNP marker with two alleles A and a. Then the weighted
U-statistic in (2) becomes

UW,2 =
(

n

2

)−1 ∑
i<j

φt (Yi , Yj )φg(Gi,Gj )w(p(Zi), p(Zj )).

(3)

These weighted U-statistics (2) and (3) were proposed to
adjust the association taking into account the covariate effects.
They have been proven useful in both theory and application
especially when the covariates have direct or indirect effects on
the traits (Jiang and Zhang 2011; Zhu, Jiang, and Zhang 2012).

2.2 Inverse Probability Weighting

In the case without covariates, a natural choice of measure-
ment of genotype-phenotype association is given by U in (1).
One property of U is its unbiasedness under the null hypothe-
sis. That is, E(U | Y) = 0 when there is no association between
the genotype and phenotype (Zhang et al. 2010). It is notewor-
thy that conditioning on the traits is necessary to eliminate the
need for assumptions about the phenotypic distribution (Laird,
Horvath, and Xu 2000).

When the covariate information is available, however, to re-
move the confounding effects of the covariates, one needs to test
the conditional independence between the genotype and pheno-
type conditional on the covariates (Zhu, Jiang, and Zhang 2012).
That is H0 : Yi ⊥ Gi | Zi , i = 1, . . . , n. Under the new null hy-
pothesis H0, however, the U-statistic U in (1) is not necessarily

an unbiased measure. The reason is that, under H0,

E(U | Y) =
(

n

2

)−1 ∑
i<j

φt (Yi , Yj ){E(Gi | Yi) − E(Gj | Yj )},

which is a similar association measurement to U in (1) with the
genotype Gi replaced by its conditional mean E(Gi | Yi). This
implies that E(U | Y) would have a nondegenerate distribution
(when Yi’s are regarded as random) unless all E(Gi | Yi)’s are
equal. Therefore, E(U | Y) cannot always be zero. The same
conclusion holds for the weighted U-statistics UW,1 and UW,2

in (2) and (3). They are also not necessarily unbiased under the
null hypothesis H0.

Therefore, we need to revise the above-mentioned U-statistics
to ensure the theoretical unbiasedness. Borrowing the idea
of the inverse probability weighting method for propensity
scores (Rosenbaum 1987; Robins, Hernán, and Brumback 2000;
Lunceford and Davidian 2004), we revise the genotype kernel
from φg(Gi,Gj ) = Gi − Gj to

φg(Gi,Gj ; Zi , Zj ) = Gi

e(Zi)
− Gj

e(Zj )
,

where e(zi) = E(Gi | Zi = zi) is the conditional expectation of
Gi given Zi = zi . In general, e(zi) can be directly obtained from
the propensity score as

e(zi) =
∑
g∈G

gP (Gi = g | Zi = zi).

Then we propose the propensity score-inverse probability
weighted U-statistic as

UIPW =
(

n

2

)−1 ∑
i<j

φt (Yi , Yj )φg(Gi,Gj ; Zi , Zj ). (4)

From (4), we see that

E(UIPW | Y) =
(

n

2

)−1 ∑
i<j

φt (Yi , Yj )

× E[E{φg(Gi,Gj ; Zi , Zj ) | Zi , Zj } | Y] = 0,

as E{φg(Gi,Gj ; Zi , Zj ) | Zi , Zj } = 0 under H0. This shows
that UIPW is an unbiased estimator of the conditional association
between the genotype and phenotype under H0, provided that
the true values of propensity scores are known.

2.3 Asymptotic Distribution With True Propensity Scores

As illustrated by Zhu, Jiang, and Zhang (2012), the
asymptotic distribution of UIPW may be derived condition-
ing on both traits Y = y and covariates Z = z. Write ūi =
1
n

∑n
j=1 φt (Yi , Yj ), then

UIPW = 2

n − 1

n∑
i=1

ūiGi/e(Zi).

Conditioning on both traits and covariates, the mean of UIPW

is still zero under H0. The asymptotic distribution of UIPW can
be derived by applying the central limit theorem. Theorem 1
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reveals that UIPW has an asymptotic normal distribution after
normalization by its variance.

Theorem 1. Let v(zi) = var(Gi | Zi = zi). Assume infn,i

|e(zi)| > 0 and infn,i |v(zi)| > 0. Suppose max1≤i≤n ‖ūi‖2 =
o{λmin(

∑n
i=1 ūi ū′

i)}, where λmin represents the minimum eigen-
value. Then, under the null hypothesis H0,

√
n�−1/2UIPW → N (0, Ip)

in distribution, conditioning on all the traits and covariates,
where

� = 4

n

n∑
i=1

ūi ū′
iv(zi)/e

2(zi).

UIPW is a linear combination of the independent genotypes
G1, . . . ,Gn. This observation inspires the application of Corol-
lary 1.3 in Shao (2003) to prove Theorem 1. The conditions
infn,i |e(zi)| > 0 and infn,i |v(zi)| > 0 are assumed to ensure
the positive definiteness of the covariance matrix �. Moreover,
the condition max1≤i≤n ‖ūi‖2 = o{λmin(

∑n
i=1 ūi ū′

i)} is used to
control the contribution of each term in the linear combination
so that no term is dominant of all the others (see the regularity
condition in Corollary 1.3 in Shao (2003)).

2.4 Test Statistic With Estimated Propensity Scores

In Section 2.3, UIPW involves the true values of the propensity
score p(zi) and the mean e(zi). However, in the real situation, the
propensity scores are always estimated from the samples, that
is, by p̂(zi). So is the mean e(zi) in the statistic UIPW, estimated
by ê(zi). In this case, the test statistic becomes

ÛIPW = 2

n − 1

n∑
i=1

ūiGi/ê(Zi).

Therefore, we aim to find the asymptotic distribution of the test
statistic ÛIPW in this subsection. This distribution will serve as
the reference distribution for our association test.

We assume a parametric model indexed by parameters θ ∈
Rd to estimate the propensity scores. Therefore, we call ÛIPW

a semiparametric measurement given both its parametric and
nonparametric components. To estimate p(zi) and further e(zi),
we make use of the maximum likelihood estimator or the root of
the likelihood equations θ̂ from this model. It is noteworthy that
we do not limit ourselves to any specific form of models. Instead,
we build the theory upon the following general parametric form,

P (Gi = g | Zi = zi) = pg(zi ; θ ), g = 0, 1, 2; i = 1, . . . , n,

(5)

with
∑2

g=0 pg(zi ; θ ) = 1. For clarity, θ0 is used for the true
values of θ . Thus, eθ0 (zi) and vθ0 (zi) denote the true values of
e(zi) and v(zi), respectively.

With model (5), we observe that ÛIPW = UIPW(θ̂) is a statistic
with estimated parameters θ̂ . To derive the asymptotic distribu-
tion of ÛIPW, we follow the approach suggested by Pierce (1982)
and Randles (1982). The idea is to derive the asymptotic joint
distribution of {U′

IPW(θ0), θ̂
′}′ and then to approximate the dis-

tribution of ÛIPW using the mean value theorem.

Before presenting the main theoretical result, we need to
introduce some necessary notation. With i = 1, . . . , n, the log-
likelihood function log �i(θ) of model (5) is

log �i(θ ) =
2∑

g=0

I (Gi = g) log pg(zi ; θ ).

We assume the score functionψθ (Gi, zi) and information matrix
Iθ (zi) are well defined as

ψθ (Gi, zi) = ∂

∂θ
log �i(θ)

=
2∑

g=0

I (Gi = g)p−1
g (zi ; θ )

∂

∂θ
pg(zi ; θ ), (6)

Iθ (zi) = E{ψθ (Gi, zi)ψ
′
θ (Gi, zi)}

=
2∑

g=0

p−1
g (zi ; θ )

∂

∂θ
pg(zi ; θ )

∂

∂θ ′ pg(zi ; θ ). (7)

In addition, define the following matrices,

�θ0 = 4

n

n∑
i=1

ūi ū′
ivθ0 (zi)/e

2
θ0

(zi),

�θ0 = 2

n

n∑
i=1

ūi

2∑
g=0

{
g

∂

∂θ ′ pg(zi ; θ0)

}
/eθ0 (zi), (8)

and vectors (for i = 1, . . . , n),

γ i1 =
{

ū′
i/eθ0 (zi), p

−1
1 (zi ; θ0)

∂

∂θ ′ p1(zi ; θ0)

− p−1
0 (zi ; θ0)

∂

∂θ ′ p0(zi ; θ0)

}′
,

γ i2 =
{

2ū′
i/eθ0 (zi), p

−1
2 (zi ; θ0)

∂

∂θ ′ p2(zi ; θ0)

− p−1
0 (zi ; θ0)

∂

∂θ ′ p0(zi ; θ0)

}′
.

Theorem 2 presents the asymptotic distribution of the test
statistic ÛIPW, with the detailed derivation provided in the Ap-
pendix.

Theorem 2. Let the parameter space � be an open set.
Suppose that, there exist some δ > 0 and cθ0 > 0 such that
pg(zi ; θ ) ∈ [δ, 1 − δ] for all θ satisfying ‖θ − θ0‖ ≤ cθ0 with
g = 0, 1, 2 and i = 1, . . . , n; �i(θ) is twice continuously differ-
entiable; for each g = 0, 1, 2,

max
1≤i≤n

sup
‖θ−θ0‖≤cθ0

∥∥∥∥ ∂

∂θ
pg(zi ; θ )

∥∥∥∥ = O(1),

max
1≤i≤n

sup
‖θ−θ0‖≤cθ0

∥∥∥∥ ∂2

∂θ∂θ ′ pg(zi ; θ )

∥∥∥∥ = O(1), (9)

and there exists constants Cθ0 > 0 and α > 0 such that for all θ
satisfying ‖θ − θ0‖ ≤ cθ0 ,

1

n

n∑
i=1

∥∥∥∥ ∂2

∂θ∂θ ′ pg(zi ; θ )− ∂2

∂θ∂θ ′ pg(zi ; θ0)

∥∥∥∥ ≤ Cθ0‖θ−θ0‖α,

(10)

where ‖A‖ = {tr(A′A)}1/2 is the Frobenius norm for any
matrix A; there exists a positive definite matrix Iθ0
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such that 1
n

∑n
i=1 Iθ0 (zi) → Iθ0 ; λmax(

∑n
i=1 ūi ū′

i) = O(n) and
max1≤i≤n ‖ūi‖2 = o(n); furthermore, max1≤i≤n λmax(γ i1γ

′
i1 +

γ i2γ
′
i2) = o[λmin{

∑n
i=1(γ i1γ

′
i1 + γ i2γ

′
i2)}] and λmin{

∑n
i=1

(γ i1γ
′
i1 + γ i2γ

′
i2)} ≥ nε for some ε > 0, where λmax represents

the maximum eigenvalue. Let �θ0 = �θ0 − �θ0 I−1
θ0
�′
θ0

. Then,
under the null hypothesis H0,

√
n�

−1/2
θ0

ÛIPW → N (0, Ip),

in distribution, conditioning on all the traits and covariates.

The condition max1≤i≤n λmax(γ i1γ
′
i1 + γ i2γ

′
i2) = o[λmin

{∑n
i=1(γ i1γ

′
i1 + γ i2γ

′
i2)}] in Theorem 2 has the same role as

the condition max1≤i≤n ‖ūi‖2 = o{λmin(
∑n

i=1 ūi ū′
i)} in Theo-

rem 1. It is a typical requirement of the central limit theorem for
a weighted sum of independent random variables. That is, none
of the weights would dominate all the others in an asymptotic
sense.

Theorem 2 implies the asymptotic unbiasedness of the semi-
parametric statistic ÛIPW under our null hypothesis H0, when
the propensity scores are estimated using a parametric model.
This property has not been achieved by either the nonweighted
or the weighted statistics in the previous work (Zhang et al.
2010; Jiang and Zhang 2011; Zhu, Jiang, and Zhang 2012).
This agrees with our observation in Section 2.2 when the true
values of propensity scores are assumed to be known.

In addition, a comparison between Theorems 1 and 2 reveals
that the asymptotic variance of ÛIPW is smaller than that of
UIPW, the U-statistic with true propensity scores. This confirms
a surprising but known fact that “it is better to use the ‘estimated
propensity score’ than the true propensity score even when the
true score is known” (Robins, Mark, and Newey 1992). This
phenomenon has been revealed by both theory (Rosenbaum
1987; Robins, Mark, and Newey 1992) and empirical studies
(Gu and Rosenbaum 1993). Nonetheless, it is the first time (to
the best of our knowledge) to rigorously formalize the idea either
from a U-statistic viewpoint or in the framework of association
tests.

2.5 A Specific Example

As a specific example of model (5), we consider the ordinal
logistic regression model

logit{P (Gi ≤ g | Zi = zi)} = λg + β ′zi , g = 0, 1;

i = 1, . . . , n, (11)

where λ0 < λ1 are ascending level parameters, andβ reflects the
association between the gene and covariates. Using the notation
in Section 2.4, θ = (λ0, λ1,β

′)′ ∈ Rq+2 and d = q + 2.
Let

qg(zi ; θ ) = exp(λg + β ′zi)

1 + exp(λg + β ′zi)
, g = 0, 1,

be the cumulative probabilities with qg(zi ; θ ) =∑
g′≤g pg′(zi ; θ ), then the first-order derivatives in (6) can

be explicitly written as

∂

∂θ
p0(zi ; θ) = π{q0(zi ; θ )}φ10i ,

∂

∂θ
p1(zi ; θ) = π{q1(zi ; θ )}φ01i − π{q0(zi ; θ )}φ10i ,

∂

∂θ
p2(zi ; θ) = −π{q1(zi ; θ )}φ01i ,

with π (x) = x(1 − x), φ10i = (1, 0, z′
i)

′ and φ01i = (0, 1, z′
i)

′.
The second-order derivatives in (9) and (10) can also be explic-
itly written as

∂2

∂θ∂θ ′ p0(zi ; θ ) = � {q0(zi ; θ )}φ10iφ
′
10i ,

∂2

∂θ∂θ ′ p1(zi ; θ ) = � {q1(zi ; θ )}φ01iφ
′
01i − � {q0(zi ; θ )}φ10iφ

′
10i ,

∂2

∂θ∂θ ′ p2(zi ; θ ) = −� {q1(zi ; θ )}φ01iφ
′
01i ,

with � (x) = x(1 − x)(1 − 2x). In this way, we can write the
explicit form of the information matrix in (7) as

Iθ (zi) =
[

1

p0(zi ; θ )
+ 1

p1(zi ; θ )

]
π2{q0(zi ; θ )}φ10iφ

′
10i

+
[

1

p1(zi ; θ )
+ 1

p2(zi ; θ )

]
π2{q1(zi ; θ )}φ01iφ

′
01i

− 1

p1(zi ; θ )
π{q0(zi ; θ )}π{q1(zi ; θ )}

× (φ10iφ
′
01i + φ01iφ

′
10i), (12)

and the matrix �θ0 in (8) as

�θ0 = −2

n

n∑
i=1

ūi

[
π{q0(zi ; θ0)}φ′

10i + π{q1(zi ; θ0)}φ′
01i

]
/ eθ0 (zi). (13)

The main result in Theorem 2 follows as long as its con-
ditions are satisfied. Indeed, some of the conditions become
redundant in this specific example, such as the twice continuous
differentiability of the likelihood function. Moreover, condi-
tions (9) and (10) can be simplified into a simple condition
max1≤i≤n ‖zi‖ = O(1). In summary, we present the following
corollary parallel to Theorem 2 specifically for this example.

Corollary 1. Assume model (11) holds. Suppose
that there exist some δ > 0 and cθ0 > 0 such that
pg(zi ; θ ) ∈ [δ, 1 − δ] for all θ satisfying ‖θ − θ0‖ ≤ cθ0

with g = 0, 1, 2 and i = 1, . . . , n; max1≤i≤n ‖zi‖ = O(1),
max1≤i≤n ‖ūi‖2 = o(n), and λmax(

∑n
i=1 ūi ū′

i) = O(n);
max1≤i≤n λmax(γ i1γ

′
i1 + γ i2γ

′
i2) = o[λmin{

∑n
i=1(γ i1γ

′
i1 +

γ i2γ
′
i2)}] and λmin{

∑n
i=1(γ i1γ

′
i1 + γ i2γ

′
i2)} ≥ nε for some

ε > 0, where

γ i1 = {ū′
ie

−1
θ0

(zi),−1 − pi0pi2p
−1
i1 , pi2 + pi0pi2p

−1
i1 ,

−(pi0 + pi1)z′
i}′,

γ i2 = {
2ū′

ie
−1
θ0

(zi),−pi1 − pi2,−pi0 − pi1,−(1 + pi1)z′
i

}′
,

with the simplified notation pig = pg(zi ; θ0); there exists a pos-
itive definite matrix Iθ0 such that 1

n

∑n
i=1 Iθ0 (zi) → Iθ0 with

Iθ0 (zi) in (12). Then, the conclusion of Theorem 2 holds with
the explicit form of �θ0 given in (13).
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Following the asymptotic distribution of ÛIPW in Corollary 1,
we define the test statistic

T̂IPW = nÛ′
IPW�̂

−1
ÛIPW,

where �̂ = �θ̂ is the estimator of �θ0 . The consistency of �̂
can be verified under the conditions of Corollary 1. Therefore,
it is clear that

T̂IPW → χ2
p,

in distribution, conditioning on all the traits and covariates. This
serves as the reference distribution in our numerical studies.

2.6 Genotype Coding

As mentioned in Section 2.1, the genotype G is coded as
0, 1, 2 representing aa,Aa,AA, respectively, which record the
number of a reference allele A. The choice of a different ref-
erence allele a leads to a different coding of genotype such as
G′ = 2 − G. We illustrate in this section the effect of different
genotype codings on the association measurements we studied
in Sections 2.1–2.2.

First, notice that the genotype kernel φg(Gi,Gj ) in (1) is
invariant to the change of genotype coding from G to G′, that
is, φg(Gi,Gj ) = φg(G′

i , G
′
j ). Therefore, the nonweighted U-

statistic U in (1) and the weighted U-statistic UW,1 in (2) are
both invariant to the genotype codings.

Second, the propensity score vector p(zi) = {P (Gi = g |
Zi = zi) : g ∈ G}′ in the weighted U-statistics UW,2 in (3) is
invariant except that the order of its elements is reversed. It
leads to the invariance of UW,2, as long as the weight function
w(u1, u2) in (3) is not changed by the synchronous permutation
of the elements in u1 and u2. This is often the case. For example,
Jiang and Zhang (2011) used w(u1, u2) = exp(−‖u1 − u2‖2/2),
which satisfies the above condition.

Finally, we should note that our proposed measurement UIPW

does not possess the invariance property under the two genotype
codings. The revised genotype kernel φg(Gi,Gj ; Zi , Zj ) is not
invariant under codings G and G′. Using a different genotype
coding will actually change our association measurement UIPW

and further change the test result. This is understandable be-
cause we apply a new weighting scheme. In the nonweighted
U-statistic U, the genotypes Gi are treated equally in the geno-
type kernel. However, to achieve the unbiasedness under H0,
the new U-statistic UIPW inversely weights the genotypes by
their expected values conditional on the covariates. It is the new
weighting scheme that violates the invariance but achieves the
unbiasedness. From the practical viewpoint, the new method
can give us more flexibility to choose a genotype coding which
better fits the real situation.

For clarity, we recommend the simple genotype coding. We
choose the major allele as the reference allele for practical rea-
sons. In practice, the inverse probability weighting often encoun-
ters the difficulty of small weights in the denominator. However,
it is fairly easy to see that the above choice is much less likely to
result in small denominators e(zi) (or ê(zi)) in UIPW (or ÛIPW)
than the other choice. Therefore, we try to avoid the situation
where the weights e(zi) (or ê(zi)) in the denominator are close
to zero.

3. SIMULATION STUDIES

3.1 Settings

We conduct simulation studies to compare the performance
of our semiparametric association test T̂IPW with the three meth-
ods mentioned in Section 2.1. They are the nonweighted and
weighted tests derived from the association measures (1)–(3),
denoted by T , TW,1, and TW,2, respectively. We use the same
“conditional independence” null hypothesis H0 (see Section
2.2) for all four tests for a fair comparison. The simulation re-
sults are obtained from samples with size of 500, which are
generated as follows.

Step 1. For the ith sample, a continuous covariate Zi1 is
simulated from N (0, 1) distribution, and a binary covariate Zi2

is randomly sampled from {−1, 1} with equal probabilities.
Step 2. For the relationship between the covariates and the

test-locus genotype Gi , we generate Gi from the ordinal logistic
regression model

OLR: logit{P (Gi ≤ g | Zi1, Zi2)} = μg − ν1Zi1 − ν2Zi2,

g = 0, 1,

where ν1 and ν2 control the association between the genotype
and the covariates. An alternative genotype model is to gen-
erate Gi according to a binomial distribution Bin(2, ri) with
probability ri satisfying

BIN: logit(ri) = μ + ν1Zi1 + ν2Zi2 + εi,

where εi ∼ N (0, 1) is a random error. We refer to the former
model “OLR” and the latter model “BIN.” The former model
is the one we specified in Section 2.5, while the latter model
is used to assess the effect of model misspecification with εi

deliberately added for additional complexity.
Step 3. Conditional on the genotype Gi and the covariates

Zi1 and Zi2, two binary traits Yi = (Y (1)
i , Y

(2)
i )′ are generated

according to a logistic regression phenotype model,

logit{P (Y (j )
i = 1 | Gi,Zi1, Zi2)}

= αj + βGGi + βZ1Zi1 + βZ2Zi2 + βGZ1GiZi1

+ βGZ2GiZi2 + εij ,

with i = 1, . . . , n; j = 1, 2; and (εi1, εi2)′ ∼ N (0,�ε).
In the two genotype models (OLR and BIN), the minor allele

frequency (MAF) of the simulated genotype depends on the
values of μ0, μ1, μ and ν1, ν2. To investigate the possible effect
of different minor allele frequencies on our results, we fix ν1 =
ν2 = 1 and select appropriate values of μ0, μ1, and μ. Their
values are chosen so that the simulated minor allele frequency is
equal to one of the following values: 0.05, 0.10, 0.15, . . . , 0.40.
These choices give a broad and reasonable range for evaluating
how an association test performs with different minor allele
frequencies.

In the phenotype model, we set α1 = −0.75, α2 =
−1, and �ε = ( 1 0.25

0.25 1 ). The choices of the coefficients
(βG, βZ1 , βZ2 , βGZ1 , βGZ2 )′ are provided by Table 1 as differ-
ent phenotype models. The models N1 and N2 are null models
under H0 in which Yi and Gi are independent conditional on
(Zi1, Zi2), and the models A1–A6 are under our alternative
hypothesis.
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Table 1. Phenotype models

Null models

N1 βG = 0 βZ1 = βZ2 = 0 βGZ1 = βGZ2 = 0
N2 βG = 0 βZ1 = βZ2 = 0.5 βGZ1 = βGZ2 = 0

Alternative models

A1 βG = 0.5 βZ1 = βZ2 = 0 βGZ1 = βGZ2 = 0
A2 βG = 0.5 βZ1 = βZ2 = 0.5 βGZ1 = βGZ2 = 0
A3 βG = 0.5 βZ1 = βZ2 = 0 βGZ1 = βGZ2 = 1
A4 βG = 0.5 βZ1 = βZ2 = 0.5 βGZ1 = βGZ2 = 1
A5 βG = 0.5 βZ1 = βZ2 = 0 βGZ1 = βGZ2 = 2
A6 βG = 0.5 βZ1 = βZ2 = 0.5 βGZ1 = βGZ2 = 2

3.2 Results for Bivariate Phenotypes

In this section, we present simulation results for the generated
bivariate phenotypes. In terms of Type I error, Table 2 presents
the empirical Type I error of the four tests based on 10,000
replications when the nominal level is set to 0.001. Table 2
also includes the Type I error results when the nominal level
is 5 × 10−7. To save the computational time, we fix the minor
allele frequency at 0.10 there. This smaller nominal level pro-
vides an additional comparison among different methods in a
situation similar to the real application (Burton et al. 2007). To
illustrate the necessity of using the “conditional independence”
null hypothesis H0, we also include T ′, the nonweighted test
under the original “unconditional independence” null hypoth-
esis H′

0—no association between phenotype and genotype. In
terms of power, Figures 1–4 present the statistical power of the
four tests with respect to a wide range of minor allele frequen-

cies. Figures 1 and 2 correspond to the nominal level 0.001 and
Figures 3 and 4 correspond to the nominal level 5 × 10−7.

From the perspective of Type I error (in models N1 and N2),
we find that all four tests under H0 behave fairly well since they
all possess reasonably accurate Type I errors under both nominal
levels. This is partially because H0 removes the confounding
effects of covariates. By contrast, T ′ cannot control its Type I
error in model N2. The reason is clear: T ′ does not remove the
confounding effect in model N2 (Jiang and Zhang 2011; Zhu,
Jiang, and Zhang 2012).

From the perspective of power, we consider models A1–A6.
Models A1–A2 are from a phenotype model without the gene-
environment interaction, and A3–A6 are with an interaction. To
assess situations with different gene-environment interactions,
in models A5–A6, we double the interaction coefficients from
models A3–A4, respectively.

In model A1 with the genetic effect only, the nonweighted test
T possesses the highest power among all four methods, although
their differences are actually quite small. This agrees with our
expectation since it is not necessary to adjust for covariates in
this case. But adjusting for covariates does not harm the statis-
tical power. In model A2 with both genetic and environmental
effects, the nonweighted test T performs the worst for most
values of minor allele frequency. The other three methods are
slightly better, indicating the essentiality of including covariates
in the association test. It is noteworthy that the proposed inverse
probability weighted test favors the region of a small minor al-
lele frequency in both models A1 and A2. Compared to other
weighted tests, the proposed test is comparable or even better
for low MAFs, but is slightly underpowered when the MAF is
higher than 0.30.

Table 2. Type I error for bivariate phenotypes

Model N1 Model N2

MAF T TW,1 TW,2 T̂IPW T ′ T TW,1 TW,2 T̂IPW T ′

Model OLR (Nominal level: 0.001)
0.05 1.0e-3 0.9e-3 1.6e-3 1.1e-3 0.5e-3 0.5e-3 0.8e-3 0.6e-3 1.1e-3 0.2358
0.10 0.7e-3 0.7e-3 0.7e-3 1.0e-3 0.7e-3 0.4e-3 0.9e-3 1.2e-3 0.9e-3 0.4913
0.15 1.4e-3 0.8e-3 0.8e-3 1.3e-3 0.6e-3 0.5e-3 0.6e-3 0.7e-3 1.0e-3 0.6463
0.20 1.0e-3 0.7e-3 0.9e-3 1.0e-3 0.7e-3 1.0e-3 1.1e-3 1.0e-3 1.4e-3 0.7249
0.25 0.8e-3 0.9e-3 0.6e-3 0.7e-3 0.5e-3 0.8e-3 1.0e-3 1.1e-3 1.1e-3 0.7804
0.30 0.9e-3 0.9e-3 1.0e-3 1.1e-3 0.7e-3 0.7e-3 1.2e-3 0.8e-3 0.7e-3 0.8049
0.35 0.9e-3 0.6e-3 0.8e-3 1.5e-3 0.8e-3 0.5e-3 0.8e-3 1.4e-3 0.9e-3 0.8250
0.40 0.9e-3 1.3e-3 1.0e-3 1.0e-3 1.3e-3 0.5e-3 0.9e-3 0.5e-3 1.2e-3 0.8391

Model BIN (Nominal level: 0.001)
0.05 0.5e-3 1.1e-3 0.5e-3 0.8e-3 0.8e-3 0.2e-3 0.1e-3 0.3e-3 0.7e-3 0.1937
0.10 1.2e-3 1.2e-3 0.7e-3 1.7e-3 1.3e-3 0.2e-3 0.4e-3 0.5e-3 0.6e-3 0.4293
0.15 0.8e-3 0.7e-3 0.4e-3 0.9e-3 0.8e-3 0.6e-3 1.1e-3 0.8e-3 1.7e-3 0.5950
0.20 1.1e-3 1.2e-3 1.0e-3 1.5e-3 1.5e-3 0.6e-3 0.6e-3 0.7e-3 1.1e-3 0.6954
0.25 0.5e-3 0.6e-3 0.7e-3 0.5e-3 1.1e-3 0.4e-3 0.6e-3 0.6e-3 0.7e-3 0.7691
0.30 1.2e-3 0.9e-3 0.8e-3 1.7e-3 1.3e-3 0.6e-3 1.1e-3 1.2e-3 0.8e-3 0.8072
0.35 0.7e-3 0.7e-3 0.5e-3 1.4e-3 0.8e-3 1.0e-3 1.6e-3 1.4e-3 0.7e-3 0.8263
0.40 1.1e-3 1.2e-3 1.4e-3 0.9e-3 1.3e-3 0.8e-3 0.9e-3 1.2e-3 0.8e-3 0.8437

Model OLR (Nominal level: 5 × 10−7)
0.10 2e-7 2e-7 6e-7 3e-7 2e-7 3e-7 6e-7 7e-7 5e-7 0.0466208

Model BIN (Nominal Level: 5 × 10−7)
0.10 2e-7 4e-7 1e-7 5e-7 5e-7 1e-7 1e-7 1e-7 5e-7 0.0331154
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Figure 1. Power versus minor allele frequency for bivariate phenotypes. The significance level is 0.001. The genotype is simulated using
model OLR. Solid line with circles: inverse probability weighted test T̂IPW; dashed line with triangles: nonweighted test T; dotted line with
pluses: covariate weighted test TW,1; dotdash line with crosses: propensity score weighted test TW,2.
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Figure 2. Power versus minor allele frequency for bivariate phenotypes. The significance level is 0.001. The genotype is simulated using
model BIN. Solid line with circles: inverse probability weighted test T̂IPW; dashed line with triangles: nonweighted test T; dotted line with pluses:
covariate weighted test TW,1; dotdash line with crosses: propensity score weighted test TW,2.
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Figure 3. Power versus minor allele frequency for bivariate phenotypes. The significance level is 5 × 10−7. The genotype is simulated using
model OLR. Solid line with circles: inverse probability weighted test T̂IPW; dashed line with triangles: nonweighted test T; dotted line with
pluses: covariate weighted test TW,1; dotdash line with crosses: propensity score weighted test TW,2.
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Figure 4. Power versus minor allele frequency for bivariate phenotypes. The significance level is 5 × 10−7. The genotype is simulated using
model BIN. Solid line with circles: inverse probability weighted test T̂IPW; dashed line with triangles: nonweighted test T; dotted line with pluses:
covariate weighted test TW,1; dotdash line with crosses: propensity score weighted test TW,2.
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By including gene-environment interactions (models
A3–A4), different methods perform quite differently. It is fairly
clear from all figures that the proposed test T̂IPW outperforms all
competitors for all minor allele frequencies. When the nominal
level is 0.001, the proposed test has a power close to 1, which
means that it can identify the genetic signal in almost every
replicate of the simulated data. The covariate weighted test TW,1

wins the second place in terms of power. The nonweighted test
T and the propensity score weighted test TW,2 do not have a
comparable power for a wide range of minor allele frequencies.

A further study with stronger gene-environment interactions
(models A5–A6) provides additional evidence for our conclu-
sion drawn from models A3–A4. When the gene-environment
interactions dominate both genetic and environmental effects,
the semiparametric inverse probability weighted test outper-
forms other tests in all minor allele frequencies we considered,
showing the power of the proposed test in detecting the gene-
environment interactions.

Comparing the two genotype models (OLR versus BIN), we
have not observed a major impact from the misspecified model
on testing the associations. When the genotype is generated
using the binomial distribution, our test derived from the ordinal
logistic regression (Section 2.5) still has a quite accurate Type
I error and also a high power (even higher in some cases) to
detect either genetic effects or gene-environment interactions.

Between the two nominal levels (0.001 and 5 × 10−7), the
statistical power becomes smaller with the lower nominal level
given the same effect sizes (β’s in Table 1), especially in models
A1–A2. All methods are underpowered there; with the sample
size of 500, it is expected that we cannot achieve a reasonable
power for a full GWAS scan, but unfortunately, the simulation
for a much larger sample size takes a very long time to complete.
Since our objective is to compare the relative power, we can
achieve this goal with the modest sample size. In fact, for models
A3–A6, the power of our proposed test is only slightly affected
by this small nominal level, and it still dominates all others. In a
situation similar to the real application (nominal level 5 × 10−7),
it is clear that some adjustment is necessary when there is a
gene-environment interaction.

3.3 Results for Individual Phenotypes

In addition to the simulation results for the bivariate pheno-
types in Section 3.2, we also present the results for each indi-
vidual phenotype Y (1) and Y (2) separately. For simplicity, we fix
the nominal level to be 0.001 throughout this section. In terms
of Type I error, Table 3 presents the empirical Type I error of the
tests based on 10,000 replications. In terms of power, Figures
5–8 present the statistical power of the four tests with respect
to a wide range of minor allele frequencies, where Figures 5–6
correspond to the first phenotype and Figures 7–8 correspond to
the second phenotype.

In our simulations, the single-trait results are very similar to
the bivariate-trait results in Section 3.2. From the perspective of
Type I error, all four tests under H0 behave fairly well since they
all possess reasonably accurate Type I errors. By contrast, T ′

cannot control its Type I error in model N2. From the perspective
of power, we observe that the inverse probability weighted test
is generally comparable to others when there is only genetic

effects and/or environmental effects, and it outperforms others
when there are gene-environment interactions.

3.4 Impact of Model Misspecification

In Sections 3.2–3.3, we observed no major impact on test-
ing the genetic associations caused by a possibly misspecified
parametric gene-environment model. To better understand how
the model misspecification affects the estimation of the propen-
sity scores, we compare the estimation results under the two
genotype models (OLR and BIN) used in Section 3.1. Figure 9
provides the boxplot of the mean squared errors of the estimated
propensity scores p̂0, p̂1, and p̂2 from random samples with size
of 500 based on 1000 replications.

Since we use the ordinal logistic regression model to estimate
the propensity scores (Section 2.5), when the genotype is simu-
lated using model OLR, the estimation performance is the best.
The mean squared errors of the estimated propensity scores are
higher when the genotype data are simulated from model BIN.

We would like to note that we deliberately added a random
error εi in model BIN for additional complexity, which can cause
spurious estimation errors. For a more fair comparison, we also
simulate genotype data using model BIN without the random
error (referred to as model BIN’) and further present the results
for BIN’ in Figure 9. From the results, it is obvious that the extra
estimation error for model BIN is mainly caused by the random
error we added. There is no significant difference between the
estimation errors for models OLR and BIN’, indicating that the
difference between the estimation performance under the two
genotype models is negligible if no additional noise is included.

4. DATA ANALYSIS

4.1 Data and Methods

The Study of Addiction: Genetics and Environment (SAGE)
aims to identify susceptible genetic factors that contribute to
substance dependence through three large-scale genome-wide
association studies: the Collaborative Study on the Genetics of
Alcoholism (COGA), the Family Study of Cocaine Dependence
(FSCD), and the Collaborative Genetic Study of Nicotine De-
pendence (COGEND). These three studies have been reported
separately in previous work (Reich et al. 1998; Hartel et al. 2006;
Luo et al. 2008; Bierut et al. 2008). The SAGE data include 4121
subjects for whom the addiction to alcohol, nicotine, marijuana,
cocaine, opiates, and other drugs and genome-wide SNP data
(ILLUMINA Human 1M platform) were available. Lifetime de-
pendence on these six categories of substances was diagnosed in
accordance with the Diagnostic and Statistical Manual of Men-
tal Disorders, Fourth Edition (DSM-IV). We hypothesize that
there is a common genetic effect for the comorbidity including
the addiction to the six categories of substances. We thus use
multivariate traits, each of which stands for whether or not the
subject is addicted to a single substance. The six phenotypes
are coded into binary scales according to whether the subject is
addicted to a particular substance.

In our study, we excluded 60 duplicate genotype samples
and removed nine subjects with ethnic backgrounds other than
African origin (black) or European origin (white). In total we
have 3627 unrelated subjects for whom we have both genotype
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Figure 5. Power versus minor allele frequency for phenotype Y (1). The significance level is 0.001. The genotype is simulated using model
OLR. Solid line with circles: inverse probability weighted test T̂IPW; dashed line with triangles: nonweighted test T; dotted line with pluses:
covariate weighted test TW,1; dotdash line with crosses: propensity score weighted test TW,2.
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Figure 6. Power versus minor allele frequency for phenotype Y (1). The significance level is 0.001. The genotype is simulated using model
BIN. Solid line with circles: inverse probability weighted test T̂IPW; dashed line with triangles: nonweighted test T; dotted line with pluses:
covariate weighted test TW,1; dotdash line with crosses: propensity score weighted test TW,2.
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Figure 7. Power versus minor allele frequency for phenotype Y (2). The significance level is 0.001. The genotype is simulated using model
OLR. Solid line with circles: inverse probability weighted test T̂IPW; dashed line with triangles: nonweighted test T; dotted line with pluses:
covariate weighted test TW,1; dotdash line with crosses: propensity score weighted test TW,2.
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Figure 8. Power versus minor allele frequency for phenotype Y (2). The significance level is 0.001. The genotype is simulated using model
BIN. Solid line with circles: inverse probability weighted test T̂IPW; dashed line with triangles: nonweighted test T; dotted line with pluses:
covariate weighted test TW,1; dotdash line with crosses: propensity score weighted test TW,2.
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Figure 9. Mean squared error of the estimated propensity scores p̂0, p̂1, and p̂2. Each panel includes the boxplots for mean squared errors of
the estimated propensity scores p̂0, p̂1, and p̂2, in that particular order, from genotype models OLR, BIN, and BIN′, respectively.
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Table 3. Type I error for individual phenotypes

Model N1 Model N2

MAF T TW,1 TW,2 T̂IPW T ′ T TW,1 TW,2 T̂IPW T ′

Phenotype Y (1), Model OLR
0.05 0.7e-3 0.9e-3 0.5e-3 0.9e-3 1.2e-3 0.4e-3 0.6e-3 0.8e-3 0.7e-3 0.1288
0.10 1.2e-3 1.2e-3 1.3e-3 1.1e-3 0.6e-3 0.3e-3 0.6e-3 0.6e-3 0.9e-3 0.2689
0.15 1.0e-3 0.8e-3 1.2e-3 1.0e-3 0.9e-3 0.4e-3 0.4e-3 1.1e-3 0.8e-3 0.3703
0.20 1.4e-3 1.3e-3 1.1e-3 1.2e-3 1.1e-3 0.9e-3 1.2e-3 1.0e-3 1.1e-3 0.4441
0.25 1.3e-3 1.5e-3 1.0e-3 0.6e-3 0.7e-3 1.1e-3 1.2e-3 1.2e-3 1.7e-3 0.4966
0.30 1.0e-3 1.0e-3 0.7e-3 1.0e-3 1.0e-3 0.5e-3 0.9e-3 0.8e-3 0.9e-3 0.5173
0.35 0.7e-3 0.7e-3 0.9e-3 0.8e-3 0.7e-3 0.7e-3 1.2e-3 1.0e-3 1.3e-3 0.5402
0.40 1.2e-3 1.1e-3 1.3e-3 1.6e-3 0.7e-3 0.5e-3 0.9e-3 1.1e-3 0.9e-3 0.5566

Phenotype Y (1), Model BIN
0.05 0.6e-3 0.2e-3 0.6e-3 0.7e-3 1.2e-3 0.3e-3 0.3e-3 0.5e-3 1.2e-3 0.1099
0.10 0.5e-3 0.6e-3 0.2e-3 1.0e-3 1.5e-3 1.0e-3 1.2e-3 0.8e-3 1.8e-3 0.2319
0.15 0.5e-3 0.8e-3 0.7e-3 1.2e-3 1.4e-3 0.6e-3 0.3e-3 0.3e-3 1.0e-3 0.3321
0.20 1.0e-3 1.3e-3 1.2e-3 1.2e-3 1.0e-3 1.0e-3 1.2e-3 1.3e-3 1.5e-3 0.4100
0.25 0.6e-3 1.1e-3 0.9e-3 1.2e-3 1.1e-3 0.7e-3 0.9e-3 0.7e-3 1.1e-3 0.4768
0.30 0.5e-3 0.4e-3 0.3e-3 0.9e-3 1.0e-3 0.3e-3 0.7e-3 0.4e-3 1.4e-3 0.5136
0.35 1.3e-3 1.4e-3 1.2e-3 1.3e-3 0.8e-3 0.5e-3 0.8e-3 0.9e-3 0.7e-3 0.5491
0.40 1.2e-3 1.1e-3 0.7e-3 0.7e-3 1.1e-3 0.8e-3 0.8e-3 1.2e-3 0.7e-3 0.5665

Phenotype Y (2), Model OLR
0.05 0.9e-3 0.7e-3 0.7e-3 0.9e-3 0.8e-3 0.7e-3 1.0e-3 0.9e-3 1.1e-3 0.1246
0.10 0.6e-3 0.9e-3 0.6e-3 0.4e-3 0.3e-3 0.3e-3 0.9e-3 1.0e-3 0.9e-3 0.2586
0.15 1.2e-3 1.4e-3 1.5e-3 1.3e-3 1.1e-3 0.5e-3 0.7e-3 0.6e-3 0.7e-3 0.3620
0.20 1.7e-3 1.3e-3 1.7e-3 1.3e-3 1.4e-3 0.5e-3 0.6e-3 1.5e-3 1.3e-3 0.4232
0.25 1.0e-3 0.8e-3 1.0e-3 0.9e-3 0.9e-3 0.7e-3 1.1e-3 0.9e-3 1.0e-3 0.4678
0.30 1.0e-3 0.7e-3 1.3e-3 0.8e-3 0.9e-3 0.5e-3 0.9e-3 0.5e-3 1.0e-3 0.5047
0.35 1.1e-3 0.9e-3 1.2e-3 1.3e-3 0.6e-3 0.9e-3 0.9e-3 0.9e-3 1.1e-3 0.5170
0.40 0.4e-3 0.7e-3 0.6e-3 0.7e-3 1.0e-3 0.7e-3 1.4e-3 1.5e-3 1.2e-3 0.5235

Phenotype Y (2), Model BIN
0.05 0.7e-3 0.7e-3 1.2e-3 0.8e-3 0.9e-3 0.5e-3 0.8e-3 0.4e-3 1.3e-3 0.1091
0.10 0.3e-3 0.4e-3 0.6e-3 0.7e-3 0.6e-3 0.7e-3 0.7e-3 0.2e-3 1.0e-3 0.2282
0.15 0.8e-3 0.9e-3 0.5e-3 0.8e-3 0.5e-3 0.2e-3 0.5e-3 0.2e-3 0.9e-3 0.3195
0.20 0.7e-3 0.7e-3 0.4e-3 1.0e-3 0.9e-3 0.9e-3 1.1e-3 0.9e-3 1.6e-3 0.4007
0.25 0.7e-3 0.6e-3 0.4e-3 1.0e-3 1.0e-3 0.5e-3 0.6e-3 1.1e-3 0.8e-3 0.4558
0.30 0.4e-3 0.6e-3 0.6e-3 0.3e-3 1.0e-3 0.7e-3 0.9e-3 1.0e-3 0.6e-3 0.4942
0.35 0.5e-3 0.7e-3 0.5e-3 1.4e-3 0.7e-3 1.1e-3 1.1e-3 1.3e-3 1.4e-3 0.5106
0.40 0.8e-3 0.9e-3 0.7e-3 1.2e-3 1.0e-3 0.6e-3 0.7e-3 1.0e-3 0.8e-3 0.5313

and phenotype data. Following Chen et al. (2011), we performed
a separate analysis for both race (black or white) and gender (fe-
male or male), due to the complexity of substance dependence
with possible environmental components. Therefore, our anal-
ysis was performed in each of the four subpopulations: 1393
white women, 1131 white men, 568 black women, and 535
black men (Chen et al. 2011). In addition, we filtered SNPs by
setting thresholds for call rate (> 90%), minor allele frequency
(MAF) in each subpopulation (> 1%), and Hardy-Weinberg
equilibrium in each subpopulation (p-value > 0.0001).

As we have already split the data by the covariates race
and gender, they were not adjusted in the further analysis in
each subset. Hence, the remaining covariates include age and
some environmental risk factors, such as whether experienced
rape/sexual assault, whether experienced physical assault, and
whether experienced nonassaultive trauma. Some other risk fac-
tors, such as whether experienced neglect as a child, whether
experienced physical abuse as a child, and childhood sexual

abuse, were not included due to their high rates of missing
values.

Similar to the simulation study, we compare four association
tests: nonweighted test T , covariate-weighted test TW,1, propen-
sity score-weighted test TW,2, and our semiparametric propen-
sity score-inverse probability weighted test T̂IPW. With the above
selected covariates, the weight functions w(·, ·) in both weighted
tests TW,1 and TW,2 are chosen following previous work (Jiang
and Zhang 2011; Zhu, Jiang, and Zhang 2012) with default pa-
rameters. Meanwhile, we continue to use the ordinal logistic
regression model for the genotype-covariate relationship in our
proposed test. In addition to the above tests with multivariate
traits, we also tabulate the results from analyses using a single
trait at a time. For each of the six traits, we use two approaches to
analyze them. First, we fit a logistic regression model including
both genotype and the selected covariates. The statistical signif-
icance is drawn from a likelihood ratio test based on the logistic
regression model. Second, we apply the same association tests
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Table 4. Dependence and co-dependence rate of six substances. nic:
nicotine; mj: marijuana; coc: cocaine; op: opiates; alc: alcohol; oth:
other drugs. The percentage in the parenthesis is the dependence or

co-dependence rate in the 3627 unrelated subjects

Substance dependence

nic (%) mj (%) coc (%) op (%) alc (%) oth (%)

nic 1625 (45)
mj 486 (13) 620 (17)
coc 686 (19) 464 (13) 937 (26)
op 203 (6) 145 (4) 217 (6) 258 (7)
alc 1154 (32) 577 (16) 820 (23) 238 (7) 1693 (47)
oth 332 (9) 258 (7) 335 (9) 168 (5) 406 (11) 432 (12)

T , TW,1, TW,2, and T̂IPW as above to each trait, and present the
significant findings.

4.2 Summary Statistics

We provided in Table 4 the codependence information of the
six substances among the 3627 unrelated subjects included in
our final analysis. The diagonal entries are the rates of each
substance dependence, and the lower-diagonal entries are the
codependence rates of each pair of substances. Comparing a
lower-diagonal entry to its two corresponding diagonal entries
suggests the statistical dependence among the six addictions.
For example, there are 1625 subjects (45%) who are addicted
to nicotine and 1693 subjects (47%) addicted to alcohol. The
codependence rate of nicotine and alcohol is 32% (1154 out of
3627), which is much higher than the rate if assuming these
two addictions are statistically independent. This observation
supports the existence of comorbidity among the six addictions
in this dataset.

Table 5 summarizes the addiction distribution in each subset
of data split by race and sex. We can see that the addiction
to some categories of substances is homogeneous across the
four subpopulations, such as nicotine, with addiction rates 47%,
48%, 47%, and 41%, respectively. However, other substance
dependencies differ by race (e.g., cocaine, 46% and 36% for
black men and women versus 27% and 12% for white men and
women) and/or sex (e.g., alcohol, 62% and 62% for black and
white men versus 39% and 31% for black and white women).
Throughout our analysis, the data are divided into four subsets
according to sex and race of the subjects. Therefore, we focus on

the subset specific analysis, removing the heterogeneity across
the subpopulations.

4.3 Single-Trait Results

Before presenting the multiple-trait results, we summarize the
single-trait results from logistic regression models and the asso-
ciation tests in Table 6 and Table 7, respectively. The p-values in
bold characters indicate that they reach the genome-wide signif-
icance level after Bonferroni correction for the number of traits
(p-value < 5 × 10−7/6) (Burton et al. 2007).

From Table 6, only one SNP achieves the genome-wide sig-
nificance level (after Bonferroni correction) in the subpopula-
tion of white women: rs445057 in gene FHIT is identified as a
significant marker for addiction to alcohol. Very recently, FHIT
has been documented to be in correlation with lifetime cigarette
addiction (Antczak et al. 2013). This existing result, combined
with our finding that FHIT is associated with alcohol depen-
dence, partially supports the hypothesis that common genes
underlie the comorbidity of multiple substance dependencies.

From Table 7, we have identified several significant SNP
markers for each of the two phenotypes: addiction to opiates
and addiction to other drugs, using the association tests T , TW,1,
TW,2, and T̂IPW.

For the addiction to opiates, three SNPs are identified to
be genome-wide significant in black men. Among these SNPs,
rs2377339 is located within gene NCK2, which has a strong
association with normal angle glaucoma (Akiyama et al. 2008;
Fuse 2010). Furthermore, a meta-analysis (Bonovas et al. 2004)
reported that smoking is a risk factor for glaucoma. These find-
ings indicate some intriguing interplay between smoking and
NCK2. A more recent study also verified the association of
NCK2 with opiates addiction (Liu et al. 2013).

Three SNPs, all in gene PCDH9, are significantly associated
with opiates dependence in white men. PCDH9 was discovered
to contain variants that contribute to general addiction vulnera-
bility (Liu et al. 2006), agreeing with our current finding.

Five additional SNPs, located in four known genes, achieve
the genome-wide significance in black women. Among these
genes, UBE3C has recently been discovered to be one of the
four particularly promising candidate genes susceptible to co-
caine dependence and major depressive episode (Yang et al.
2011); PCDH15 was also found to be associated with nicotine
dependence by multiple human genome-wide association stud-
ies (Uhl et al. 2008; Lind et al. 2010). These results partially

Table 5. Summary of substance dependence in each subpopulation. nic: nicotine; mj: marijuana; coc: cocaine; op: opiates; alc: alcohol; oth:
other drugs

Substance dependence

Subset Total nic (%) mj (%) coc (%) op (%) alc (%) oth (%)

Black men 535 254 (47) 136 (25) 248 (46) 44 (8) 332 (62) 61 (11)
Black women 568 271 (48) 78 (14) 206 (36) 35 (6) 224 (39) 37 (7)
White men 1131 528 (47) 285 (25) 309 (27) 112 (10) 704 (62) 203 (18)
White women 1393 572 (41) 121 (9) 174 (12) 67 (5) 433 (31) 131 (9)

Total 3627 1625 (45) 620 (17) 937 (26) 258 (7) 1693 (47) 432 (12)

NOTE: The percentage in the parenthesis is the substance dependence rate in each subpopulation.
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Table 6. Significant SNPs in the genome-wide association study of a single substance dependence from logistic regression. nic: nicotine; mj:
marijuana; coc: cocaine; op: opiates; alc: alcohol; oth: other drugs

p-values

Chr SNP Gene MAF nic mj coc op alc oth

White women
3 rs445057 FHIT 0.174 5.9e-1 2.2e-2 2.0e-4 1.7e-1 4.5e-8 1.8e-2

support our findings about the association between these two
genes and opiates dependence.

Three SNPs in gene EML2 are discovered for addiction to
opiates in white women. EML2 was found to be one of the
potential candidate genes for bipolar disorder comorbid with
alcoholism in mice (Le-Niculescu et al. 2008). However, no
human studies have suggested the association of EML2 with
substance dependence yet.

In addition to opiates, we have two more findings for addic-
tion to other drugs, for which we have not found supporting
evidence in the literature. All these single-trait findings can be
potentially important for researchers to better understand the
genetic components of substance dependence.

4.4 Multiple-Trait Results

The results from the analysis of multivariate traits are sum-
marized in Table 8, with the p-values in bold characters indicat-
ing that they reach the genome-wide significance level (p-value

< 5 × 10−7) (Burton et al. 2007). Comparing the four tests for
multivariate traits, it is fairly clear to see the advantage of ad-
justing for important covariates in this dataset. Without any
adjustment, no SNP can be identified at the genome-wide sig-
nificance level using test T . In addition, we find that different
adjusted tests work complementarily to each other. These three
tests (TW,1, TW,2, and T̂IPW) have some common findings and
also nonoverlapping discoveries. The results of the weighted
tests might depend on the strength of the genetic signals and/or
gene-environment interactions, as illustrated by our simulation
studies. Similar conclusions can also be drawn from the com-
parison among different methods for single-trait results in Table
7.

Interestingly, we have several common findings between the
multiple-trait results in Table 8 and the single-trait results in
Table 7. These common genes, such as NCK2, PCDH15, and
EML2, can be of particular interest to the addiction research. In
the following, we provide a brief overview of the multiple-trait
findings.

Table 7. Significant SNPs in the genome-wide association study of a single substance dependence from association tests. op: opiates; oth: other
drugs

p-values

Chr SNP MAF Gene T TW,1 TW,2 T̂IPW

op
Black men

2 rs2377339 0.019 NCK2 1.1e-8 1.1e-9 1.4e-9 8.2e-9
16 rs2042360 0.066 – 9.2e-7 6.5e-8 4.3e-7 9.6e-7
17 rs17544779 0.017 – 5.6e-8 6.3e-6 1.8e-6 4.6e-8

White men
13 rs9529180 0.111 PCDH9 1.5e-7 4.6e-7 4.9e-8 1.1e-7
13 rs9540995 0.112 PCDH9 2.2e-7 7.0e-7 5.9e-8 1.5e-7
13 rs9529185 0.111 PCDH9 1.6e-7 4.7e-7 5.2e-8 1.1e-7

Black women
5 rs2441010 0.012 – 1.0e-7 1.1e-4 8.2e-5 7.6e-8
7 rs2528381 0.084 UBE2D4 1.9e-5 5.1e-8 2.9e-5 1.6e-5
7 rs1182398 0.014 UBE3C 1.9e-7 5.6e-8 1.2e-6 1.1e-7
10 rs7911634 0.011 PCDH15 7.2e-5 2.7e-9 3.1e-6 6.6e-5
14 rs17197261 0.020 OR10G3 1.3e-5 4.5e-8 1.4e-3 1.0e-5

White women
19 rs3745816 0.016 EML2 2.2e-5 4.4e-11 2.0e-5 1.3e-5
19 rs4445998 0.015 EML2 1.2e-5 1.2e-11 2.4e-5 6.7e-6
19 rs1545040 0.020 EML2 1.5e-3 5.7e-8 2.5e-3 1.1e-3

oth
Black women

11 rs11603357 0.041 – 2.5e-7 2.6e-8 1.1e-8 1.5e-7
White women

17 rs3098945 0.187 ANKRD13B 4.5e-6 1.8e-8 6.0e-7 1.1e-6
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Table 8. Significant SNPs in the genome-wide association study of multiple substance dependencies

p-values

Chr SNP MAF Gene T TW,1 TW,2 T̂IPW

Black Men
2 rs2377339* 0.019 NCK2 1.1e-06 6.2e-08 1.4e-07 9.0e-07
5 rs251133 0.406 STARD4-AS1 5.3e-07 5.2e-06 2.8e-05 4.2e-07
5 rs10483285 0.037 ADCY4 2.4e-03 1.3e-07 5.0e-05 2.0e-03

White Men
3 rs4016435 0.042 CTNNB1 7.3e-07 6.2e-07 1.5e-07 2.6e-07
8 rs1477908 0.177 MMP16 1.1e-05 2.3e-05 2.3e-07 4.1e-06

Black Women
1 rs2175254 0.035 RASAL2 2.6e-05 4.1e-07 1.0e-05 1.7e-05
8 rs10504824 0.014 WWP1 1.1e-06 9.1e-09 2.7e-07 5.9e-07
8 rs17609515 0.014 CPNE3 1.1e-06 9.1e-09 2.7e-07 5.9e-07
10 rs7911634* 0.011 PCDH15 1.7e-04 1.1e-08 1.3e-05 1.6e-04

White Women
2 rs16866493 0.011 – 6.1e-04 1.9e-07 5.2e-04 3.3e-04
2 rs878167 0.010 – 1.3e-04 4.8e-08 1.0e-04 6.4e-05
2 rs6731600 0.039 – 2.1e-05 9.7e-06 7.1e-08 5.2e-06
2 rs6721762 0.039 MPV17 3.2e-05 1.1e-05 2.3e-07 8.7e-06
11 rs955396 0.068 TOLLIP/MUC5B 4.4e-05 1.5e-06 9.3e-08 4.4e-05
19 rs3745816* 0.016 EML2 5.2e-05 8.8e-10 1.7e-04 4.6e-05
19 rs4445998* 0.015 EML2 5.4e-05 3.8e-10 3.1e-04 4.6e-05
19 rs1545040* 0.020 EML2 6.7e-04 1.6e-07 2.4e-03 6.8e-04

NOTE: The symbol * indicates that the same SNP is also found by single-trait analysis in Table 7.

Three SNPs, rs2377339, rs251133, and rs10483285, which
are located in genes NCK2, STARD4-AS1, and ADCY4, re-
spectively, reach the genome-wide significance in black men. In
addition to NCK2, previous research has also provided evidence
for ADCY4: it is associated with opioid dependence (Wang
et al. 2005; Li, Mao, and Wei 2008). All these results support
NCK2 and ADCY4 as potentially relevant genes to substance
dependence.

Two other SNPs, rs4016435 and rs1477908, in genes
CTNNB1 and MMP16, achieve the genome-wide significance
level in white men. It has come to our attention that the gene
CTNNB1 has been suggested by microarray studies of nicotine
exposure in rats (Sullivan et al. 2004), but it is the first time that
this gene is discovered to be related to substance dependence
in a human study. In addition, MMP16 belongs to a family of
genes (matrix metalloproteinases, i.e., MMPs) that is known to
play an important role in drug addiction (Wright and Harding
2009).

Four SNPs located in four different genes are discovered to
be associated with substance dependence in black women. Sim-
ilar to CTNNB1, RASAL2 is also a candidate gene for nico-
tine dependence from pathway analysis (Sullivan et al. 2004).
Furthermore, multiple human genome-wide association studies
identified PCDH15 to be associated with nicotine dependence
(Uhl et al. 2008; Lind et al. 2010). These existing results provide
partial support to our findings.

Eight other SNPs are identified using multiple addictions
in white women. Similar to EML2, previous microarray study
in mice has provided evidence that MPV17 is associated with
alcohol dependence (Li, Mao, and Wei 2008). However, no
human studies have suggested the association of these two genes
with substance dependence yet.

Besides the SNPs/genes discussed above, there are other
SNPs/genes showing strong evidence of association with sub-
stance dependence in our study, and those SNPs/genes warrant
further investigation.

5. DISCUSSION

Understanding comorbidity related with addictions is one
of the most pressing challenges with enormous public health
significance (National Institute on Drug Abuse 2010). In this
work, we studied genetics of multiple addictions by analyzing
the data from the Study of Addiction: Genetics and Environ-
ment (SAGE). To properly use the information collected by
this study, we propose a novel statistical method to incorporate
environmental factors into a nonparametric U-statistic (gener-
alized Kendall’s tau) which can handle comorbidity of multiple
traits. Compared with directly imposing a weight function on
the U-statistic, the idea of inverse probability weighting is more
natural and convenient. On the one hand, the inverse probability
weighted U-statistic is asymptotically unbiased under the null
hypothesis while the nonweighted and other weighted tests are
not necessary. On the other hand, the proposed test is free of tun-
ing parameters, which is more convenient and accessible than
other weighted tests.

A byproduct of our theoretical work is to confirm a previous
finding that estimated propensity scores can be preferable to
their true values in applications. It is shown that our semipara-
metric U-statistic has a smaller asymptotic variance with

√
n-

consistent propensity score estimates than with true propensity
scores. Although this phenomenon has been revealed before, to
the best of our knowledge this is the first time to formalize it in
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the areas of U-statistics and genetic association tests. Moreover,
a recently proposed multiple-trait association test called “Scaled
Multiple-phenotype Association Test” (SMAT) (Schifano et al.
2013) was brought to our attention by a referee. It is noteworthy
that SMAT can only handle continuous phenotypes while our
proposed test can take any hybrid of dichotomous, ordinal, and
quantitative traits. Since we focus on binary responses in our
current investigation of addictions, we will leave the compari-
son study with SMAT to our future work.

We have demonstrated numerical performance of our method,
and should note the topics that deserve further research. For ex-
ample, a key assumption for the distribution of our statistic is
that the propensity scores are estimated under the correct para-
metric model. We assessed the impact of model misspecification
in simulation studies, and our empirical results did not reveal a
major impact. Nonetheless, a deeper theoretical understanding
is still important. Another issue is the choice of genotype cod-
ing in our method. As discussed in Section 2.6, our test is not
invariant to the genotype coding and we provided a practical
suggestion. Although it is not the focus of the current study, it
warrants some future investigations.

Applying the new method (together with other methods) to the
SAGE data leads to a few interesting findings. First, the multiple-
trait analysis reveals new markers that were not identified by the
single addiction analysis. When a genetic signal is not strong
enough for any single addiction and yet underlies multiple ones,
it can become stronger (to a detectable level) by combining
different substance dependencies.

Second, our analysis of the SAGE data reveals an advantage
of adjusting for environmental factors. To study comorbidity,
adjusted tests identified a few genetic variants to addiction but
the unadjusted test did not have any findings. This agrees with
the observations from our simulation studies. Most of the time,
the inclusion of important environmental factors can increase the
power to detect either the genetic effect or the gene-environment
interaction. Even under the situation with a genetic effect only
(no environmental effects), an unnecessary adjustment for
the environmental factors has little effect on the power of a
test.

Finally, tests with different adjustments behave differently.
Due to the nature of the real data analysis, we cannot really
tell which method performs the best. In a real application, it is
usually not practical to have one method that is always superior
to all others. Therefore, it is useful that different adjusted tests
work complementarily to each other in this dataset.

APPENDIX A

We split our derivation of Theorem 2 into three steps as follows. The
first step is to obtain an asymptotic representation of θ̂ . Under regu-
larity conditions, there exists a

√
n-consistent estimator θ̂ of θ 0. The

following lemma presents the result, with its proof given in Appendix
A.1.

Lemma 1. Let the parameter space � be an open set. Suppose that,
there exists some δ > 0 and cθ0 > 0 such that pg(zi ; θ ) ∈ [δ, 1 − δ] for
all θ satisfying ‖θ − θ0‖ ≤ cθ0 with g = 0, 1, 2 and i = 1, . . . , n; �i(θ)
is twice continuously differentiable; for each g = 0, 1, 2, condition (9)
holds, and there exists constants Cθ0 > 0 and α > 0 such that for all θ
satisfying ‖θ − θ0‖ ≤ cθ0 , condition (10) holds; there exists a positive

definite matrix Iθ0 such that 1
n

∑n

i=1 Iθ0 (zi) → Iθ0 . Then, there exists
a root of the likelihood equations θ̂ of θ 0 which has the following
representation:

√
n(θ̂ − θ0) = I−1

θ0

1√
n

n∑
i=1

ψθ0
(Gi, zi) + op(1). (A.1)

The result of Lemma 1 is fairly standard for a root of the likelihood
equations θ̂ in the framework of maximum likelihood. We refer to
Theorem 5.21 in van der Vaart (1998) and Theorem 4.17 in Shao
(2003) as similar conclusions. A distinct part of this lemma is that
the samples are only independent but not identically distributed due to
the conditional inference given all the covariates. In other words, the
covariates are regarded as nonrandom. This characteristic results in the
unique conditions (9) and (10) involving the covariate zi’s, compared
with the traditional theories. Thus, we provide a proof in Appendix A.1
for being clear and self-contained.

The second step is to investigate the asymptotic joint distribution of
{U′

IPW(θ0), θ̂
′}′. The idea becomes clear with the conclusion of Lemma

1, as both UIPW(θ0) and θ̂ − θ0 can be written in the form of a sum of
independent random vectors. Hence, {U′

IPW(θ0), (θ̂ − θ0)′}′ becomes a
sum of independent random vectors, on which we can apply the central
limit theorem. Thus, we leave the proof in Appendix A.2 and present
the result in the following lemma.

Lemma 2. In addition to the conditions in Lemma 1, assume
that λmax(

∑n

i=1 ūi ū′
i) = O(n) and max1≤i≤n λmax(γ i1γ

′
i1 + γ i2γ

′
i2) =

o[λmin{
∑n

i=1(γ i1γ
′
i1 + γ i2γ

′
i2)}]. Then, under the null hypothesis H0,

√
n


−1/2
θ0

[
UIPW(θ0)
θ̂ − θ0

]
→ N (0, Ip+d ), (A.2)

in distribution, conditioning on all the traits Y = y and covariates Z =
z. In (A.2),


θ0 =
(

�θ0 �θ0 I−1
θ0

I−1
θ0
�′
θ0

I−1
θ0

)
,

where �θ0 and �θ0 are defined in Section 2.4.

Finally, as the last step, the asymptotic distribution of ÛIPW follows
from the joint asymptotic distribution of UIPW(θ0) and θ̂ , borrowing the
idea from Pierce (1982) and Randles (1982). The proof of this step can
be found in Appendix A.3.

A.1 Proof of Lemma 1

In this section, all probability related arguments/operations will be
conditioning on the covariates. However, to simplify the notation, we
still write E(·) or var(·) instead of E(· | Z = z) or var(· | Z = z).

We first prove that
√

n(θ̂ − θ0) = Op(1). This is implied by the fact
that for any ε > 0, there exists C > 0 and n0 > 1 such that

P {log �(θ ) − log �(θ0) < 0 for all θ ∈ ∂Bn(C)} ≥ 1 − ε, n > n0,

(A.3)

where log �(θ ) = ∑n

i=1 log �i(θ ) and ∂Bn(C) is the boundary
of Bn(C) = {θ :

√
n‖θ − θ0‖ ≤ C}. Let �n(θ ) = 1

n

∑n

i=1 ψθ (Gi, zi).
The Taylor expansion gives that

1

n
{log �(θ ) − log �(θ0)}

= � ′
n(θ0)(θ − θ0) + 1

2
(θ − θ0)′

∂�n(θ̃ )

∂θ ′ (θ − θ0), (A.4)

where θ̃ is the generic notation of a vector lying between θ0 and θ . We
will show at the end that,

‖�n(θ0)‖ = Op(n−1/2),
∂�n(θ̃ )

∂θ ′ + Iθ0 = op(1). (A.5)
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Combining (A.4) and (A.5),

1

n
{log �(θ ) − log �(θ0)}

= ‖θ − θ0‖Op(n−1/2) − 1

2
(θ − θ0)′{Iθ0 + op(1)}(θ − θ0),

therefore, (A.3) holds with large enough C and n0. The
√

n-consistency
of θ̂ is proved.

To obtain the asymptotic representation (A.1) of θ̂ , we consider the
Taylor expansion of �n(θ̂ ) at θ 0. On the one hand, �n(θ̂ ) = 0 by the
definition of a root of the likelihood equations; on the other hand,

�n(θ̂ ) = �n(θ0) + ∂�n(θ̃)

∂θ ′ (θ̂ − θ0), (A.6)

where θ̃ lies between θ0 and θ̂ . Then the representation (A.1) in Lemma
1 holds by (A.6),

√
n(θ̂ − θ0) = Op(1), and the same result as the

second part of (A.5) but with θ̃ denoting a vector between θ0 and θ̂
(which will be proved immediately).

At the end, we provide the proof of (A.5). For�n(θ0), it is seen that

E{�n(θ0)} = 0, nvar{�n(θ0)} = 1

n

n∑
i=1

Iθ0 (zi) → Iθ0 ,

because of the exchangeability of the partial derivative and integration
with respect to a discrete measure. Then, for any ε > 0, we can choose
Cε large enough such that

P {‖√n�n(θ0)‖ > Cε} ≤ C−2
ε E{n‖�n(θ0)‖2}

= C−2
ε tr[nvar{�n(θ0)}] < ε.

This is the first part of (A.5). For the second part, we need to show
it holds for θ̃ satisfying either

√
n‖θ̃ − θ0‖ ≤ C or

√
n‖θ̃ − θ0‖ =

Op(1). In either case, we have that

∂�n(θ̃ )

∂θ ′ = ∂�n(θ0)

∂θ ′ + op(1), (A.7)

E

{
∂�n(θ0)

∂θ ′

}
= − 1

n

n∑
i=1

Iθ0 (zi) → −Iθ0 , (A.8)

var

{
∂�n(θ0)

∂θ ′ c
}

= 1

n2

n∑
i=1

var

[{
∂

∂θ ′ψθ0
(Gi, zi)

}
c
]

→ 0, (A.9)

for an arbitrary d-dimensional vector c. (A.7) follows from the follow-
ing equation

∂�n(θ)

∂θ ′ = 1

n

n∑
i=1

2∑
g=0

I (Gi = g)

{
p−1

g (zi ; θ )
∂2

∂θ∂θ ′ pg(zi ; θ )

− p−2
g (zi ; θ )

∂

∂θ
pg(zi ; θ )

∂

∂θ ′ pg(zi ; θ )

}

and the conditions (9) and (10) in Lemma 1. (A.8) follows from the
exchangeability of the partial derivative and integration with respect to
a discrete measure. (A.9) follows from the condition (9) in Lemma 1.
By Markov’s inequality, for any ε > 0,

P

[∥∥∥∥
{

∂�n(θ0)

∂θ ′ + Iθ0

}
c

∥∥∥∥ > ε

]

≤ ε−2E

[∥∥∥∥
{

∂�n(θ0)

∂θ ′ − E
∂�n(θ0)

∂θ ′

}
c

∥∥∥∥
2
]

+ ε−2E

[∥∥∥∥
{
E

∂�n(θ0)

∂θ ′ + Iθ0

}
c

∥∥∥∥
2
]

= ε−2tr

[
var

{
∂�n(θ0)

∂θ ′ c
}]

+ ε−2

∥∥∥∥
{
E

∂�n(θ0)

∂θ ′ + Iθ0

}
c

∥∥∥∥
2

→ 0.

(A.10)

The second part of (A.5) is implied by (A.7) and (A.10).

A.2 Proof of Lemma 2

In the next two sections (Sections A.2 and A.3), all probability
related arguments/operations will be conditioning on the traits and
covariates. However, to simplify the notation, we still write E(·) or
var(·) instead of E(· | Y = y, Z = z) or var(· | Y = y, Z = z).

From the Cramér-Wold device, it suffices to find the asymptotic dis-
tribution of c′

1UIPW(θ0) + c′
2(θ̂ − θ0) for arbitrary p- and d-dimensional

vectors c1 and c2. As
√

nUIPW(θ0) = Op(1) from Theorem 1 and the
condition λmax(

∑n

i=1 ūi ū′
i) = O(n), it is seen that

√
n{c′

1UIPW(θ0) + c′
2(θ̂ − θ0)}

= 1√
n

n∑
i=1

[
2c′

1ūiGi/eθ0 (zi) + c′
2I−1
θ0
ψθ0

(Gi, zi)
] + op(1).(A.11)

A direct calculation gives its variance

σ 2
n = var

[
1√
n

n∑
i=1

{
2c′

1ūiGi/eθ0 (zi) + c′
2I−1
θ0
ψθ0

(Gi, zi)
}]

= c′
1

[
4

n

n∑
i=1

ūi ū′
ivθ0 (zi)/e

2
θ0

(zi)

]
c1 + c′

2

[
I−1
θ0

1

n

n∑
i=1

Iθ0 (zi)I−1
θ0

]
c2

(A.12)

+2c′
1

[
2

n

n∑
i=1

ūiE
{
Giψ

′
θ0

(Gi, zi)
}

I−1
θ0

/eθ0 (zi)

]
c2, (A.13)

where we have in (A.12) that

c′
2

[
I−1
θ0

1

n

n∑
i=1

Iθ0 (zi)I−1
θ0

]
c2 → c′

2I−1
θ0

c2, n → ∞,

and in (A.13) that

2c′
1

[
2

n

n∑
i=1

ūiE
{
Giψ

′
θ0

(Gi, zi)
}

I−1
θ0

/eθ0 (zi)

]
c2

= 2c′
1

⎛
⎜⎝ 2

n

n∑
i=1

ūi

2∑
g=0

[
E{GiI (Gi = g)}p−1

g (zi ; θ0)
∂

∂θ ′ pg(zi ; θ0)

]

× I−1
θ0

/eθ0 (zi)

⎞
⎟⎠c2

= 2c′
1

⎡
⎣ 2

n

n∑
i=1

ūi

2∑
g=0

{
g

∂

∂θ ′ pg(zi ; θ0)

}
I−1
θ0

/eθ0 (zi)

⎤
⎦ c2.

Therefore,

σ 2
n = c′

1�θ0 c1 + c′
2I−1
θ0

c2 + 2c′
1�θ0 I−1

θ0
c2 + o(1).

To apply the central limit theorem as in Corollary 1.3 in Shao (2003),
we need to rewrite (A.11) into

1√
n

n∑
i=1

[
2c′

1ūiGi/eθ0 (zi) + c′
2I−1
θ0
ψθ0

(Gi, zi)
]

= 1√
n

n∑
i=1

d′
i{Ri − E(Ri)},
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with di = (di1, di2)′, Ri = {I (Gi = 1), I (Gi = 2)}′, and

di1 = 2c′
1ūi/eθ0 (zi) + c′

2I−1
θ0

{
p−1

1 (zi ; θ0)
∂

∂θ
p1(zi ; θ0)

− p−1
0 (zi ; θ0)

∂

∂θ
p0(zi ; θ0)

}
= (2c′

1, c′
2I−1
θ0

)γ i1,

di2 = 4c′
1ūi/eθ0 (zi) + c′

2I−1
θ0

{
p−1

2 (zi ; θ0)
∂

∂θ
p2(zi ; θ0)

− p−1
0 (zi ; θ0)

∂

∂θ
p0(zi ; θ0)

}
= (2c′

1, c′
2I−1
θ0

)γ i2

using the notation introduced in Lemma 2.
From the condition max1≤i≤n λmax(γ i1γ

′
i1 + γ i2γ

′
i2) =

o[λmin{
∑n

i=1(γ i1γ
′
i1 + γ i2γ

′
i2)}], we see that

max
1≤i≤n

‖di‖2/

n∑
i=1

‖di‖2 → 0.

The conditions in Lemma 2 also lead to infn,i λmin({var(Ri)}) > 0 and
supn,i E(‖Ri‖2+δ) < ∞ for δ = 2. These regularity conditions imply
that

1

σn

√
n{c′

1UIPW(θ0) + c′
2(θ̂ − θ0)} → N (0, 1)

in distribution. If 
θ0 is positive definite, then substituting (c′
1, c′

2) =
(c̃′

1, c̃′
2)
−1/2

θ0
already leads to the result in Lemma 2.

The last piece to prove is the positive definiteness of 
θ0 . Let Vi =
var(Ri) and Ai = diag(2Ip, I−1

θ0
)(γ i1, γ i2), then


θ0 = 1

n
(A1, . . . , An)diag(V1, . . . , Vn)(A1, . . . , An)′ + o(1).

We see that infn[λmin{diag(V1, . . . , Vn)}] > 0. In addition, there exists
some δn > 0,

‖(x′, y′)(A1, . . . , An)‖2

= (2x′, y′I−1
θ0

)

{
n∑

i=1

(γ i1γ
′
i1 + γ i2γ

′
i2)

}
(2x′, y′I−1

θ0
)′ ≥ δn‖(x′, y′)‖2,

for arbitrary p- and d-dimensional vectors x and y. Therefore, for n
sufficiently large,

(x′, y′)
θ0 (x′, y′)′ ≥ {δn/(2n)} inf
n

[λmin{diag(V1, . . . , Vn)}]‖(x′, y′)‖2,

(A.14)

which implies the positive definiteness of 
θ0 .

A.3 Proof of Theorem 2

The proof follows from the idea in Pierce (1982) and Randles (1982)
who provided a general guidance of deriving the asymptotic distribution
of statistics with estimated parameters. In our situation, the statistic is
ÛIPW = UIPW(θ̂) where θ̂ are the estimated parameters. The proof starts
from the following fact,

ÛIPW = UIPW(θ̂ ) = UIPW(θ0) + ∂

∂θ ′ UIPW(θ̃ )(θ̂ − θ0), (A.15)

with some θ̃ lying between θ0 and θ̂ . As

UIPW(θ ) = 2

n − 1

n∑
i=1

ūiGi/eθ (Zi),

it is seen that

∂

∂θ ′ UIPW(θ0) = − 2

n − 1

n∑
i=1

ūiGi

∂

∂θ ′ eθ0 (Zi)/e
2
θ0

(Zi)

= − 2

n − 1

n∑
i=1

ūiGi

2∑
g=0

{
g

∂

∂θ ′ pg(Zi ; θ0)

}
/e2
θ0

(Zi)

= −�θ0 {1 + o(1)} + op(1). (A.16)

The equality in (A.16) follows from the facts that

E

{
∂

∂θ ′ UIPW(θ0)

}
= − n

n − 1
�θ0 , and

var

{
∂

∂θ ′ U
(l)
IPW(θ0)

}
= 4

(n − 1)2

n∑
i=1

{ū(l)
i }2vθ0 (zi)

2∑
g=0

{
g

∂

∂θ
pg(zi ; θ0)

}

×
2∑

g=0

{
g

∂

∂θ ′ pg(zi ; θ0)

}
/e4
θ0

(zi)

→ 0,

due to the condition max1≤i≤n ‖ūi‖2 = o(n) and the first part of condi-
tion (9). In addition, since θ̃ − θ0 = Op(n−1/2),

∂

∂θ ′ UIPW(θ̃ ) − ∂

∂θ ′ UIPW(θ0) = ∂2

∂θ∂θ ′ UIPW(θ̃
∗
)(θ̃ − θ0) = op(1),

(A.17)

with θ̃
∗

between θ0 and θ̃ . The equality in (A.17) follows from the fact
that for each l = 1, . . . , p,

∂2

∂θ∂θ ′ U
(l)
IPW(θ̃

∗
)

= − 2

n − 1

n∑
i=1

ū
(l)
i Gi

2∑
g=0

{
g

∂2

∂θ∂θ ′ pg(Zi ; θ̃
∗
)

}
/e2
θ̃
∗ (Zi)

+ 4

n − 1

n∑
i=1

ū
(l)
i Gi

2∑
g=0

{
g

∂

∂θ
pg(Zi ; θ̃

∗
)

}

×
2∑

g=0

{
g

∂

∂θ ′ pg(Zi ; θ̃
∗
)

}
/e3
θ̃
∗ (Zi)

= op(
√

n),

by the condition max1≤i≤n ‖ūi‖2 = o(n) and the condition (9). Substi-
tuting (A.16) and (A.17) into (A.15) leads to

√
n�

−1/2
θ0

ÛIPW

= √
n�

−1/2
θ0

UIPW(θ0) −�
−1/2
θ0

�θ0

√
n(θ̂ − θ0) + op(1) (A.18)

= �
−1/2
θ0

√
n{UIPW(θ0) − �θ0 (θ̂ − θ0)} + op(1)

= {�−1/2
θ0

(Ip, −�θ0 )
1/2
θ0

}√n

−1/2
θ0

[
UIPW(θ0)
θ̂ − θ0

]
+ op(1). (A.19)

The equality in (A.18) follows if

‖�θ0‖2 = O(1) and ‖�−1/2
θ0

‖2 = O(1), (A.20)

where ‖A‖2 = {λmax(A′A)}1/2 is the spectral norm for any matrix A.
We will prove (A.20) at the end. Combining Lemma 2 and the fact that{

�
−1/2
θ0

(Ip, −�θ0 )
1/2
θ0

}{
�

−1/2
θ0

(Ip, −�θ0 )
1/2
θ0

}′ = Ip,

(A.19) leads to the following convergence in distribution

√
n�

−1/2
θ0

ÛIPW → N (0, Ip).
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At the end, we verify (A.20) to complete our proof. There exists a
constant C > 0 such that

‖�θ0‖2 ≤ C

2∑
g=0

1

n

∥∥∥∥∥
n∑

i=1

gūi

∂

∂θ
pg(Zi ; θ0)

∥∥∥∥∥
2

≤ C

2∑
g=0

2

n

∥∥∥∥∥
n∑

i=1

ūi ū′
i

∥∥∥∥∥
1/2

2

∥∥∥∥∥
n∑

i=1

∂

∂θ
pg(Zi ; θ0)

∂

∂θ ′ pg(Zi ; θ0)

∥∥∥∥∥
1/2

2

= 1

n
O(

√
n)O(

√
n) = O(1).

Also, for an arbitrary x ∈ Rp ,

x′�θ0 x = x′(Ip, −�θ0 )
θ0 (Ip, −�θ0 )′x
= (x′, −x′�θ0 )
θ0 (x′, −x′�θ0 )′

≥ inf
n

{λmin(
θ0 )}‖x‖2. (A.21)

With the condition λmin{
∑n

i=1(γ i1γ
′
i1 + γ i2γ

′
i2)} ≥ nε in Theorem 2,

δn in (A.14) can be replaced with nδ for some δ > 0, which in turn
implies that infn{λmin(
θ0 )} > 0. Then we know infn{λmin(�θ0 )} > 0
according to (A.21). So ‖�−1/2

θ0
‖2 = O(1).

[Received August 2012. Revised Decmber 2013.]
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