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Summary

For characterizing the genetic mechanisms of complex diseases familial data with multiple correlated quantitative traits
are usually collected in genetic studies. To analyze such data, various multivariate tests have been proposed to investigate
the association between the underlying disease genes and the multiple traits. Although these multivariate association tests
may have better power performance than the univariate association tests, they suffer from loss of testing power when
the genetic models of the putative genes are misspecified. To address the problem, in this paper we aim to develop a
family-based robust multivariate association test. We will first establish the optimal multivariate score tests for the recessive,
additive, and dominant genetic models. Based on these optimal tests, a maximum-type robust multivariate association test
is then obtained. Simulations are conducted to compare the power of our method with that of other existing multivariate
methods. The results show that the robust multivariate test does manifest the robustness in power over all plausible genetic
models. A practical data set is applied to demonstrate the applicability of our approach. The results suggest that the robust
multivariate test is more powerful than the robust univariate test when dealing with multiple quantitative traits.
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Introduction

Due to the tremendous availability of genetic variants,
genome-wide association studies have become a useful instru-
ment for identification of genes underlying complex diseases
in recent years (Diabetes Genetics Initiative of Broad Institute
of Harvard and MIT et al., 2007; Stefansson et al., 2009).
Because most complex diseases are measured in continuous
scale or so-called “quantitative traits,” the need to develop
methods for discovering the underlying loci of quantitative
traits has attracted the attention of researchers in modern
human genetics. On the basis of familial data, the quanti-
tative trait loci (QTLs) can be detected via investigation of
the association between a quantitative trait and a marker lo-
cus (Allison, 1997; Rabinowitz, 1997; Abecasis et al., 2000;
Monks & Kaplan, 2000; Kistner & Weinberg, 2004; Wheeler
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& Cordell, 2007; Guo & Shugart, 2012; Liu & Leal, 2012).
Such family-based association approaches have the merit that
they not only extract the required inheritance information
but also avoid spurious association results caused by popula-
tion stratification. However, since these methods often assume
that the true underlying genetic model (mode of inheritance)
of a putative locus is additive, they may incur a substantial loss
of power when the true underlying genetic model is misspec-
ified in practical studies. To deal with this problem, over the
past decade, many population- and family-based robust asso-
ciation analysis methods have been widely proposed in the
literature for investigating binary disease traits (Gastwirth &
Freidlin, 2000; Zheng et al., 2002; Zheng & Tian, 2006; Yuan
et al., 2009; Joo et al., 2010), though relatively fewer research
studies have been carried out in this regard for quantitative
traits (Wang & Tai, 2009; So & Sham, 2011).

Theoretically, in genetic association analysis, the use of
multiple quantitative traits should be able to extract more
information than use of a single trait (Liu et al., 2008; Melton
et al., 2010). Besides, it should be noted that because the
collected traits in a study may be affected simultaneously by
the target QTL and the common environment which they
share, correlations could exist among them. To analyze such
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multiple correlated quantitative trait data, a useful method is
to conduct separate analysis for each quantitative trait, and
then to draw conclusion from these multiple analysis results.
However, such a univariate analysis approach would suffer
from the problem of multiple comparisons and may lead to
the potential loss of power when neglecting the correlations
among multiple quantitative traits. An alternative method is
to adopt the multivariate analysis approach to enhance the
power (Lange et al., 2003; Klei et al., 2008; Zhang et al.,
2010; Zhu et al., 2012). Since these methods also ignore the
misspecification problem in genetic models, in this paper we
are interested in the development of a robust multivariate
association analysis method to address this issue.

In the Materials and Methods section, we will first demon-
strate how to extract the association information between
a marker and multiple quantitative traits through the con-
ditional likelihood (Schaid & Sommer, 1993; Kistner &
Weinberg, 2004; Wheeler & Cordell, 2007; Wang & Tai,
2009). We will establish three optimal multivariate score tests
under the recessive, additive, and dominant models, respec-
tively. We will combine the three tests to construct a robust
association test statistic. The robust testing method was orig-
inally proposed by Davies (1977) and has been widely ap-
plied to genetic studies (Zheng, 2004; Zheng & Chen, 2005;
González et al., 2008; Li et al., 2008b; Zang et al., 2010). In
the Results section, we conduct simulation studies to com-
pare the proposed robust multivariate association test with
the optimal multivariate score tests under the correct and in-
correct genetic models and with other existing multivariate
association tests on type I error rates and testing powers. In
addition, the GAW 14 Collaborative Study on the Genet-
ics of Alcoholism (COGA) data are used to demonstrate the
applicability of our proposed robust multivariate association
test. Finally, we will conclude our studies with the Discussion
section.

Materials and Methods

Data Structure

A random sample of n parent–offspring nuclear families is
collected to extract the information of association between a
marker and a set of quantitative traits. In each family, the two
parents and their offspring are genotyped for the marker, and
the multiple quantitative traits of the offspring are measured.
The data of nuclear families can be restructured to become
the data of triad families by dividing the families with multi-
ple offspring into a number of single offspring families (Laird
et al., 2000). If pedigrees are also included in the sample, the
same dividing operation can be applied to yield simple triad
data as well. However, triad data obtained by this restructur-

ing procedure would lead to the situation that triad families
separated from the same nuclear family (or pedigree) clus-
ter together and thus the quantitative traits of the offspring
in a cluster should be correlated. In general, analysis of such
clustered data should take the within-cluster correlation into
consideration, but in the following discussion, since a con-
ditional likelihood-based analysis approach is adopted under
the scenario that the offsprings’ QTL genotypes are indepen-
dently inherited and the quantitative traits of the offspring in a
cluster are assumed conditionally independent on their QTL
genotypes, the effect of within-cluster correlation is ignored.
Note that if the restructured triad data are used in practice, the
analysis procedure would be somewhat similar to a method
which assigns weights to different clusters. Clusters of a greater
number of divided triads are assigned higher weights. For sim-
plicity, we will assume that there is merely one offspring in
each collected family to illustrate our method in the follow-
ing investigation. Consider the situation that the marker locus
has two alleles A and a with frequencies p and q, respectively,
where A labels the mutant allele and a the normal allele and
p + q = 1. For a sample of n triad families, 10 categories
can be classified based on the parental mating type and the
offspring genotype (Table 1). Following Wang & Tai (2009),
denote the ith parental mating type by g p = i , i = 1, . . . , 6,
the jth offspring genotype by g c = j , j = 0, 1, 2, and the m
quantitative traits of the kth offspring member of the cate-
gory (g p = i , g c = j ) by yi j k = (y(1)

i j k, . . . , y(r )
i j k, . . . , y(m )

i j k )T ,

where y(r )
i j k is the rth quantitative trait of the offspring in the kth

triad family of the category (g p = i , g c = j ), r = 1, . . . , m ,
k = 1, . . . , ni j , and ni j is the number of families in the cate-
gory (g p = i , g c = j ).

Construction of Conditional Likelihood of
Parent–Offspring Triad Families

Using case-parent triad families and conditional on the
parental mating type and the affected offspring, Schaid &
Sommer (1993) proposed a likelihood approach for assessing
the association between a marker and a binary disease trait.
Such an approach has the advantage that it is free from the
necessity of assuming Hardy–Weinberg equilibrium for the
marker locus, and from the result of spurious association
due to population stratification. In the light of this conditional
idea, two extended methods had been further developed for
investigating the association between a marker and a quanti-
tative trait (Kistner & Weinberg, 2004; Wheeler & Cordell,
2007). A robust quantitative trait association approach for
handling the problem where the mode of inheritance of the
investigated QTL is unknown was also proposed (Wang &
Tai, 2009). In the following discussion, the method of Wang
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Table 1 Classification of n parent–offspring triad families in terms of the parental mating types and the offspring genotypes.

Parental mating types (g p ) Offspring genotypes (g c ) Offspring multiple quantitative traits (yi j k) Number of triad families (ni j )

AA × AA(i = 1) AA( j = 2) y121, . . . , y12n12 n12

AA × Aa (i = 2) AA( j = 2) y221, . . . , y22n22 n22

Aa ( j = 1) y211, . . . , y21n21 n21

AA × a a (i = 3) Aa ( j = 1) y311, . . . , y31n31 n31

Aa × Aa (i = 4). AA( j = 2) y421, . . . , y42n42 n42

Aa ( j = 1) y411, . . . , y41n41 n41

a a ( j = 0) y401, . . . , y40n40 n40

Aa × a a (i = 5) Aa ( j = 1) y511, . . . , y51n51 n51

a a ( j = 0) y501, . . . , y50n50 n50

a a × a a (i = 6) a a ( j = 0) y601, . . . , y60n60 n60

& Tai (2009) is extended to allow for assessing the associa-
tion between a marker and multiple quantitative traits. The
conditional probabilities of observing the offspring genotype
g c = j given the parental mating type g p = i and the mul-
tiple quantitative traits yi j k for an offspring member k in the
category (g p = i , g c = j ) as shown in Table 1 can be ex-
pressed as:

P (g c = j | g p = i, yi j k)

= P (yi j k | g c = j )P (g c = j | g p = i )∑
j ′

P (yi j k | g c = j ′)P (g c = j ′ | g p = i )
. (1)

Note that in the above setting we have assumed P (yi j k|g c =
j, g p = i )=P (yi j k|g c = j ). That is, given that the offspring’s
genotype is available, we assume that the parental genotype
can provide no more information for measuring the probabil-
ity of the traits yi j k . Assume also that the genotyped bi-allelic
marker locus is indeed the QTL responsible for the varia-
tions of the collected multiple quantitative traits. This marker
is also referred to as the candidate gene of these quantita-
tive traits. The quantities of the three marker genotypes AA,
Aa, and aa corresponding to the m traits could be differ-
ent and they are denoted by three vectors: u2, u1, and u0,
where u j = (u1 j , . . . , um j )T , j = 2(AA), 1(Aa ), 0(a a ). Let
the vector d = (d1, . . . , dm )T be the displacement effects be-
tween the genotypes AA and aa for the m traits and let t be the
common degree of dominance of the QTL. The genotypic
values u2 and u1 can be reparameterized by d, t, and u0, as
u2 = u0 + d and u1 = u0 + td. Note that here the degrees
of dominance of the QTL for the m traits are set as a constant,
which means that the modes of inheritance of the QTL cor-
responding to the m different traits are assumed to be identical.
The value of t would correspond to 0, 1/2, or 1, respectively,
if the underlying genetic model of the QTL is recessive, ad-
ditive, or dominant. These three typical genetic models are
chosen for deriving three optimal multivariate score tests in
the next subsection. Theoretically, all the elements of the dis-

placement effects in d should be greater than zero, if the test
locus is indeed the QTL of the measured traits. Accordingly,
testing whether or not d = 0 is equivalent to testing whether
there is any association between the marker and any one of
the measured traits. That is, the displacement effects are absent
for the m quantitative traits (viz., u2 = u1 = u0). It should be
noted that when testing the displacement effects d, the de-
gree of dominance t plays a role of nuisance parameter, which
is absent under the null hypothesis, but is present under the
alternative hypothesis (Davies, 1977).

To implement the conditional inference procedure using
parent–offspring triad families, we first have to formulate
the conditional distribution of the multiple quantitative traits
yi j k in (1). Under the assumption that the sampled multi-
ple quantitative traits are influenced by a target QTL and
environmental factors and there is no interaction between
them, the multiple quantitative traits of an offspring with the
QTL genotype g c = j can be expressed as yi j k = u j + ei j k ,
where e i j k = (e (1)

i j k, . . . , e (m )
i j k )T are the m environmental fac-

tors corresponding to the m traits. Assume that the envi-
ronmental factors ei j k of all offspring members are jointly
distributed as a multivariate normal distribution with mean
vector 0 and m × m environmental variance–covariance ma-
trix �, then the multiple quantitative traits yi j k of an off-
spring with the QTL genotype g c = j are jointly distributed
as a multivariate normal distribution with mean vector u j and
m × m variance–covariance matrix �. Therefore, the proba-
bility density function P (yi j k|g c = j ) in (1) is formulated as

P (yi j k | g c = j ) = (2π )−
m
2 |�|− 1

2

exp

[
−

(
yi j k − u j

)T
�−1

(
yi j k − u j

)
2

]
, (2)

which implies that the multiple quantitative traits of all off-
spring members in the population have the same distribution
form but have different mean vectors according to their
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corresponding genotypes. Because the offspring members of
all triad families are independent under the random sampling
procedure, and u2 and u1 are the functions of the param-
eters d, t, and u0, based on the conditional probability in
(1) and the probability density function in (2), a conditional
likelihood for test of H0 : d = 0 is further established as

L (d, t,u0; y)

= ∏
i, j

ni j∏
k=1

(2π )−
m
2 |�|− 1

2 exp

[
− (yi j k−u j )T

�−1(yi j k−u j )
2

]
·p j |i∑

j ′
(2π )−

m
2 |�|− 1

2 exp

[
− (yi j k−u j ′ )

T
�−1(yi j k−u j ′ )
2

]
·p j ′ |i

, (3)

where p j |i denotes the transmission probability P (g c =
j |g p = i ).

The Optimal Multivariate Score Tests for
Recessive, Additive, and Dominant Models

In this subsection, we will derive the optimal multivariate
score test statistics corresponding to the recessive, additive, and
dominant models. Let vector UH0 = (U (1)

H0
, . . . ,U (m )

H0
)T be the

m-dimensional score statistics under the null hypothesis H0 :
d = 0 and IH0 = (Cov(U (�)

H0
,U (�′)

H0
)) be the m × m variance–

covariance matrix of UH0 , � and �′ = 1, . . . , m . The �th score
statistic of UH0 (see the Appendix in Supporting Information)
is obtained as

U (�)
H0

=
∑
i, j

ni j∑
k=1

[(
yi j k − μ

)T
�−1

·�
] {

D�j − Ei (D�)
}
, (4)

where μ is the population mean vector for the m quantitative
traits, �−1

·� is the �th column of the inverse of the variance–
covariance matrix �, D�j = ∂u�j /∂d� is the first derivative of
the �th genotypic value u�j of the vector u j with respect to
the �th displacement effect d� of the vector d for j = 0, 1, 2
and � = 1, . . . , m such that D�0 = 0, D�1 = t and D�2 = 1,
and Ei (D�) = ∑2

j ′=0 D�j ′ p j ′|i is the conditional expectation
of the first derivative D� on the ith parental mating type,
i = 1, . . . , 6. Note that since E[D�j − Ei (D�)] in (4) is 0,
the expected value of the score statistic U (�)

H0
is also 0, that

is, E(U (�)
H0

) = 0. Moreover, the covariance between any two

score statistics U (�)
H0

and U (�′)
H0

is calculated as

Cov
(
U (�)

H0
,U (�′)

H0

)
=

∑
i, j

ni j∑
k=1

[(
yi j k − μ

)T
�−1

·�
]

×
[(

yi j k − μ
)T

�−1
·�′

]
Covi (D�, D�′ ) , (5)

� and �′ = 1, . . . , m , where Covi (D�, D�′ ) is the conditional
covariance between any two first derivatives D� and D�′ on
the ith parental mating type.

The estimates of U (�)
H0

and Cov(U (�)
H0

,U (�′)
H0

) can be ob-
tained by replacing the overall population mean vector μ

and the population variance–covariance matrix � of the
m traits in these statistics with the sample mean vector
ȳ = 1

n

∑
i, j,k yi j k and the sample variance–covariance ma-

trix S = 1
n−1

∑
i, j,k (yi j k − ȳ)(yi j k − ȳ)T such that the es-

timated score vector is ÛH0 = (Û (1)
H0

, . . . , Û (m )
H0

)T and the
estimated variance–covariance matrix of UH0 is ÎH0 =
(Côv(U (�)

H0
,U (�′)

H0
)), � and �′ = 1, . . . , m . The multivariate

score test statistic for test of association between a marker
gene and the m quantitative traits is constructed as X2 =
ÛT

H0
Î−1

H0
ÛH0 , which is asymptotically distributed as a χ2 dis-

tribution with degrees of freedom ν, ν = rank(ÎH0 ) ≤ m
(Lange & Laird, 2002). If the m quantitative traits are lin-
ear and independent, then ν = m (Lange et al., 2003). By
setting t = 0 (recessive), 1/2 (additive), and 1 (dominant),
the three corresponding multivariate score test statistic X2

are further obtained as X2
REC = ÛT

REC Î−1
RECÛREC, X2

ADD =
ÛT

ADD Î−1
ADDÛADD, and X2

DOM = ÛT
DOM Î−1

DOMÛDOM , respec-
tively (see the Appendix in Supporting Information). These
three optimal multivariate score test statistics X2

REC, X2
ADD,

and X2
DOM are employed for constructing a robust multivari-

ate association test statistic in the following subsection.

Robust Multivariate Association Test

When the genetic model of the investigated quantitative trait
cannot be identified in practical studies, developing a robust
multivariate association test that can deal with uncertainty is
useful. Here, we adopt the maximum statistic procedure to
construct such a method (Davies, 1977). It is noted that hy-
pothesis testing with a nuisance parameter can be addressed
by use of the union-intersection test (Casella & Berger, 2002);
the maximum test statistic is robust against the nuisance pa-
rameter due to the fact that it is indeed the optimal test
statistic in the union-intersection test. In dealing with the
model uncertainty problem here, if there is absence of either
overdominance or underdominance of the QTL, the nui-
sance parameter t (degree of dominance) ranges from 0 to
1 (recessive to dominant model). Previous studies on coping
with this problem had utilized the maximum of the score test
statistics at the two extreme genetic models (i.e., X2

REC and
X2

DOM ) and an additional intermediate genetic model (i.e.,
X2

ADD) for establishment of a robust test statistic (Zheng et al.,
2002; Zheng & Chen, 2005; Wang & Tai, 2009). In analogy
to their approaches, here the robust multivariate association
test statistic is set up as

MAXm = max
{
X2

REC, X2
ADD, X2

DOM

}
.
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The asymptotic distribution of the test statistic MAXm

is generally unavailable, a resampling-based procedure is
adopted to simulate the null distribution of MAXm . Re-
call that under the null hypothesis the displacement effect
d is equal to 0, so the multiple quantitative traits of off-
spring members given their genotypes are all distributed as
the multivariate normal distribution with the common mean
vector μ and the variance–covariance matrix �. In simu-
lation, based on a random mating assumption for a des-
ignated frequency p of allele A, the parental genotypes of
a triad family can be generated and the offspring geno-
types are randomly assigned according to Mendelian trans-
mission. The corresponding multiple quantitative traits of
the offspring will be produced by the multivariate normal
distribution with an assigned mean vector ȳ and variance–
covariance matrix S. By generating a sufficiently large num-
ber B of null samples, the robust multivariate association
test statistic for the bth replicate of the B null samples is
obtained as MAX (b )

null = max{X2(b )
REC,null, X2(b )

ADD,null, X2(b )
DOM,null}.

The proportion of the MAX (b )
nulls that exceeds the

observed test statistic M ÂXm is the P-value of
MAXm , which is denoted by P (MAXm ≥ M ÂXm |H0) ≈
1
B

∑B
b=1 I (MAX (b )

null ≥ M ÂXm ).
In the real analysis, if the degree of dominance t can

be narrowed down to a restricted extent through the prior
knowledge of molecular biology (Schaid & Sommer, 1994),
the robust statistic MAXm can be further modified to be
of higher power. For example, if previous studies supported
the conjecture that the dominant model is reasonably ex-
cluded, then the MAXm should be modified as MAX RA =
max{X2

REC, X2
ADD}. Moreover, if the recessive model is fairly

excluded, then the MAX AD = max{X2
ADD, X2

DOM } can be
considered. Comparison and assessment of robustness and
power performances among the aforementioned multivari-
ate test statistics are presented in the following section.

Results

Simulation Studies

To assess the robustness and power performances of our pro-
posed robust multivariate association test, two existing tests,
the multivariate family-based association test (FBAT-GEE)
proposed by Lange et al. (2003) and the nonparametric gen-
eralized Kendall’s tau-based association test (FBAT-Tau) pro-
posed by Zhang et al. (2010), were included for compari-
son. Overall, the three optimal multivariate score tests X2

REC,
X2

ADD, and X2
DOM , the three robust multivariate tests MAXm ,

MAX RA, and MAX AD, and the FBAT-GEE and FBAT-Tau
were investigated. Parent–offspring triad families were gen-
erated to implement the comparisons. In each family, the

genotypes of a bi-allelic QTL (A, a) of the parents and the
offspring and the two investigated quantitative traits of the
offspring were generated. Let y(1) and y(2) be the two quan-
titative traits and y = (y(1), y(2))T . The environmental fac-
tors which are involved in the mechanism of y(1) and y(2)

are denoted by e = (e (1), e (2))T . We assume that the two
quantitative traits were influenced by a common bi-allelic
QTL and environmental factors e and there is no interac-
tion between them. Let vectors u2 = (u10 + d1, u20 + d2)T ,
u1 = (u10 + t d1, u20 + t d2)T , and u0 = (u10, u20)T be the
genotypic values of AA, Aa, and aa of the QTL correspond-
ing to y = (y(1), y(2))T , where d1 and d2 are the displacement
effects between the genotypes AA and aa for the traits y(1)

and y(2), respectively, and t is the common degree of domi-
nance of the QTL for the two quantitative traits. Accordingly,
conditional on the generated offspring genotype AA, Aa, or
aa, the two quantitative traits of the offspring in a family
were produced by the model y = u2 + e, y = u1 + e, or
y = u0 + e.

Two scenarios were considered in the simulation studies.
In the first scenario, we assumed that conditional on the gen-
erated offspring genotype AA, Aa, or aa, the two quantitative
traits of the offspring in a family were produced by the bi-
variate normal distribution with mean vector u2, u1, or u0

and 2 × 2 variance–covariance matrix � in which the diag-
onal elements were set to 1 (viz., the variances of the two
quantitative traits were assigned value 1) and the off-diagonal
elements was set to 0.3 (viz., the correlation coefficient ρ

between the two quantitative traits was assigned value 0.3).
Without loss of generality, in the simulation both u10 and u20

were fixed with value 0. In the second scenario, we assumed
that conditional on the generated offspring genotype AA,
Aa, or aa, the two quantitative traits of the offspring in a fam-
ily were produced by the bivariate gamma distribution with
shape parameter vector u2, u1, or u0 and fixed scale parame-
ter vector 1. Note that here the bivariate gamma distribution
was generated by the Clayton copula with a preset correla-
tion coefficient ρ = 0.3 (viz., the correlation between the
two quantitative traits was assigned value 0.3; Nelsen, 2006).
Because all the shape parameters in the bivariate gamma dis-
tribution should be greater than zero, both u10 and u20 were
fixed with value 6 as an example. Characterizing the skew-
ness of the simulated bivariate data under the second scenario
can be carried out via the univariate assessments (Ferreira &
Steel, 2007). Table S1 lists the calculated result for the two
variables/traits y(1) and y(2) given each specific QTL genotype,
which shows that the simulated data are asymmetric and par-
ticularly skewed to the right in each variable direction. The
frequency of allele A of the QTL was set at 0.1, 0.2, or 0.5
and a Hardy–Weinberg equilibrium population was assumed.

Because the power performances are diverse among differ-
ent genetic models, in order to ensure that the robust tests
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Table 2 Comparisons of empirical type I error rates under the null hypothesis and power under the three true models among the three
optimal multivariate score tests (X2

REC , X2
ADD, and X2

DOM ), the three robust multivariate association tests (MAXm , MAX RA, and MAX AD)
and the two existing multivariate methods (FBAT-GEE and FBAT-Tau), under the scenario that the two quantitative traits are distributed as
bivariate normal with correlation coefficient 0.3. Allele frequency of the QTL is 0.1, 0.2, or 0.5, and sample size is 500.

Underlying
genetic models X2

REC X2
ADD X2

DOM MAXm MAX RA MAX AD FBAT-GEE FBAT-Tau

p = 0.1
Null 0.045 0.049 0.049 0.049 0.051 0.048 0.049 0.050
Recessive 0.803 0.409 0.058 0.731 0.748 – 0.408 0.205
Additive 0.139 0.795 0.771 0.743 0.731 0.796 0.800 0.784
Dominant 0.054 0.760 0.800 0.736 – 0.790 0.762 0.751
p = 0.2
Null 0.047 0.047 0.047 0.046 0.047 0.046 0.050 0.051
Recessive 0.795 0.305 0.057 0.708 0.736 – 0.306 0.275
Additive 0.243 0.807 0.744 0.748 0.743 0.795 0.797 0.778
Dominant 0.056 0.753 0.831 0.763 – 0.815 0.740 0.725
p = 0.5
Null 0.047 0.048 0.047 0.049 0.048 0.047 0.052 0.050
Recessive 0.796 0.541 0.063 0.708 0.751 – 0.550 0.534
Additive 0.540 0.796 0.540 0.734 0.754 0.754 0.799 0.780
Dominant 0.063 0.551 0.806 0.718 – 0.761 0.559 0.541

have a reasonable basis for comparison with other tests under
the three genetic models, we chose the values of d1 and d2

to yield the testing powers of the three optimal multivariate
score tests X2

REC, X2
ADD, and X2

DOM at a level around 80%. For
example, for the situation of allele A frequency p = 0.1 in
the bivariate normal distribution, we considered d1 = 2.50
and d2 = 3.70 under the recessive model, d1 = 0.75 and
d2 = 0.80 under the additive model, and d1 = 0.40 and
d2 = 0.42 under the dominant model as depicted in Table
S2. According to the above settings, the corresponding pow-
ers of the three optimal tests are 0.803, 0.795, and 0.800
for the three specific genetic models (Table 2). In the sim-
ulation, 10,000 replicates were yielded for evaluation of the
empirical type I error rates and powers of all tests at a prede-
termined significance level 0.05. For all replicates, 500 triad
families and B = 1000 null samples were generated in each
replicate.

Comparison of Empirical Type I Error Rates
and Powers of the Multivariate Association Tests

Table 2 lists the simulated results of empirical type I error
rates and powers of all association tests when the allele A fre-
quency of the QTL was fixed at p =0.1, 0.2, or 0.5 and the
two quantitative traits were generated from the bivariate nor-
mal distribution (scenario 1). It is obvious that the empirical
type I error rates of all association tests approximate the pre-
scribed nominal significance level 0.05. From Table 2, we can
see that each specific multivariate score test surpasses the other

tests in power under the true corresponding genetic model,
but would incur loss of power under an incorrect genetic
model. For example, in the case of p = 0.1, X2

REC, X2
ADD,

and X2
DOM , respectively, manifest the best power performance

at the levels of 0.803, 0.795, and 0.800 under the recessive,
additive, and dominant models. However, the power of X2

REC
is down to the level of 0.139 under the additive model, and
even down to the level of 0.054 under the dominant model.
Unlike the three specific score tests, the robust multivariate as-
sociation test MAXm has relatively stable power performances
over the three genetic models. For example, in Table 2 in the
scenario of p = 0.1, all the powers of MAXm achieve the level
of 0.73 under the three genetic models. It is noted that X2

ADD
also exhibits robustness under the three genetic models, but
compared with the MAXm , the power performances of X2

ADD
are relatively low under the recessive model. The two exist-
ing multivariate methods, FBAT-GEE and FBAT-Tau have
similar power performances as X2

ADD. When the dominant
or recessive model is reasonably excluded from our plausible
genetic models, a modified robust multivariate association test
MAX RA or MAX AD can be selected to replace the MAXm

to enhance the power of the test. For example, for p = 0.1
in Table 2, the power of MAX RA is 0.748, which is notably
greater than the power of MAXm 0.731 under the recessive
model. Similarly, it is shown that the power of MAX AD is
predominant over the MAXm when the recessive model is
reasonably excluded. For other allele A frequencies, p = 0.2
and p = 0.5, similar results in terms of power are observed in
Table 2.
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Table S3 lists the simulation results of empirical type I error
rates and powers of all association tests when the frequency
of allele A of the QTL was fixed at p =0.1, 0.2, or 0.5 and
the two quantitative traits were generated from the bivariate
gamma distribution (scenario 2). It can be seen that the em-
pirical type I error rates of all association tests also approximate
the significance level 0.05 and the robust multivariate associ-
ation test MAXm also exhibits its stable power performances
over the three genetic models. This result suggests that even
if the multiple quantitative traits are not distributed as multi-
variate normal distribution, the robust test MAXm may still
be valid for testing association.

Power Performance of the Multivariate
Association Tests over the Extent of Degree of
Dominance

In order to address the disparity of power performances of
the multivariate association tests with respect to the degree of
dominance t, in this subsection we assess the power perfor-
mances of the whole extent [0, 1] of t with a step size 0.1 in
the situations of p = 0.2 and p = 0.5 as the two quantitative
traits were generated from the bivariate normal distribution
with correlation coefficient 0.3. For each situation, the dis-
placement effects d1 and d2 were set to allow the heritabilities
of the two quantitative traits around 2% and 3%, respectively.
These simulation results are depicted in Figures 1 and S1.
From the curve patterns in Figure 1 for p = 0.2, we see that
the farther the degree of dominance t deviates from that of
the true genetic model, the more power loss appears on the
optimal multivariate score test X2

REC or X2
DOM . It is note-

worthy that the testing powers of X2
ADD, FBAT-GEE and

FBAT-Tau have a similar curve pattern over the whole extent
of t, which indicates that the three tests may lose reliable ca-
pability to detect the authentic association between a putative
QTL gene and the two quantitative traits when the value of t
approaches 0. In contrast, the robust multivariate association
test MAXm reveals relatively stable power performances over
the whole extent of t. The curve patterns in Figure S1 for
p = 0.5 are similar to those in Figure 1 and, in particular,
they exhibit a symmetric pattern over the whole extent of
degree of dominance.

An Application to GAW 14 COGA Data

The COGA, which provided one of the data sets made
available by the Genetic Analysis Workshop 14, is a nine-
site national collaborative family study, which aims at map-
ping the genes to characterize the susceptibility of alcohol
dependence and related phenotypes (Begleiter et al., 1995;

Edenberg, 2002; Edenberg et al., 2005). The COGA data
consist of 143 pedigrees with a total of 1614 individuals. The
genetic data collected for each individual include multiple
alcohol-related phenotypes and 328 highly polymorphic mi-
crosatellite markers for a 10 cM genome map. Previous results
suggested that electrophysiological traits are highly heritable
phenotypes associated with the risk of alcoholism (Porjesz
et al., 2002) and reported that linkage signals were detected
for alcohol dependence on Chromosome 4 (Long et al., 1998;
Corbett et al., 2005; Prescott et al., 2006). Here, we chose two
electrophysiological quantitative traits; ttth1 (the data from the
visual oddball experiment, measured from far frontal left side
channel) and ecb21 (the data from the eyes closed resting
electroencephalography experiment) for analysis. To analyze
the COGA data with the proposed method, the 143 pedi-
grees were first divided into 1109 triad families. A family of
these restructured triad families would be actually included
in the analysis if data from at least one of the two traits,
ttth1 and ecb21, were available in the offspring of the family.
Overall, of the 1109 triad families, 871 families conformed
to the criterion and were drawn for analysis. For a family of
a missing trait, that trait was imputed by the corresponding
mean trait value of the offspring of the 871 target families.
In summary, associations between the two quantitative traits,
ttth1 and ecb21, and the 17 selected microsatellite markers on
Chromosome 4, were evaluated using 871 informative triad
families. To avoid being overly conservative when Bonferroni
correction is applied to adjust for multiple testing for the fol-
lowing robust association analyses, the pairwise correlations
among the 17 markers were examined. The 136 correlation
coefficients range from 0.0022 to 0.1802. Because tests for sig-
nificance show that these correlations are either nonsignificant
or slightly significant, all 17 markers were included in the anal-
ysis. Moreover, because our proposed robust multivariate as-
sociation test was constructed under the assumption of multi-
variate normal distribution given each QTL genotype, here, as
was that of Chen et al. (2005), we also used log-transformation
values for ttth1 and ecb21 to cope with the skewness of the
two adopted electrophysiological traits. The coefficients of
correlation between the two traits are calculated as 0.1086
(P = 0.0013) and 0.1394 (P = 0.00004) for the raw and
log-transformed data, respectively. Basically, the two traits
can be viewed as weakly correlated. To demonstrate the
applicability of our proposed robust multivariate associa-
tion test MAXm , we compared it with the FBAT-GEE
(Lange et al., 2003) and FBAT-Tau (Zhang et al., 2010)
methods and with the univariate maximin efficiency ro-
bust test (MERT) proposed by Wang & Tai (2009). In
the calculation of the P-values of MAXm , B = 10,000
null samples were evaluated for the resampling-based
procedure.
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Figure 1 Power performances of the six multivariate association tests with respect to
the degree of dominance t under overall genetic models where the heritabilities of the
two quantitative traits are controlled around 2% and 3%, respectively. Allele frequency
p = 0.5 and correlation coefficient ρ = 0.3.

Figure 2 displays the results of the MAXm , FBAT-GEE
and FBAT-Tau tests for association between the two log-
transformed quantitative traits ttth1 and ecb21 and the 17
markers on Chromosome 4. Figure 2 shows that a higher
peak is observed at the location of marker D4S1629. The P-
values of the MAXm , FBAT-GEE and FBAT-Tau on marker
D4S1629 are calculated as 0.0019, 0.0179, and 0.0280, respec-
tively. After Bonferroni adjustment for multiple comparisons
among the 17 markers, only the robust multivariate asso-
ciation test MAXm reached statistical significance at a level
of αBon = 0.05/17 = 0.0029. It can be noted that the opti-
mal multivariate score test for dominant model X2

DOM also
showed a strong association with a P-value of 0.00067. These
results indicate that the mode of inheritance of the candidate
locus D4S1629 could be dominant. This explains why the
two additive genetic model-based methods, FBAT-GEE and
FBAT-Tau, do not have enough power to detect association
in the case studied here. Figure S2 shows the results of robust
univariate and multivariate association tests between the two
log-transformed quantitative traits ttth1 and ecb21 and the
17 markers on Chromosome 4. The P-values of MERT on

marker D4S1629 corresponding to the quantitative traits ttth1
and ecb21 are 0.0424 and 0.0597, respectively. After Bonfer-
roni correction, the two values cannot exceed the adjusted
level of αBon = 0.05/(2 × 17) = 0.0015. This result indicates
that the proposed MAXm test can indeed extract exclusive
association information from both traits and is thus more
powerful than either univariate robust association test in the
detection of a putative locus for the traits studied.

Discussion

When studying complex diseases, researchers often collect
multiple quantitative traits to shed light on the genetic eti-
ology of the diseases (e.g., the metabolic disease risk study
by Small et al., 2011 and the psychiatric disorder study by
Edwards et al., 2012). In practical studies, one can analyze the
multiple traits data by performing multiple one-trait analysis
procedures to reach an overall conclusion. However, such a
procedure would encounter the problem of multiple compar-
isons among multiple quantitative traits. To circumvent this

124 Annals of Human Genetics (2014) 78,117–128 C© 2014 John Wiley & Sons Ltd/University College London



Robust Multivariate Association Test

Figure 2 Results of multivariate association analysis between the two log-transformed traits ttth1 and ecb21 and the
17 markers on Chromosome 4 using the robust test MAXm (solid line), FBAT-GEE (dashed line), and FBAT-Tau
(dotted line) methods. The horizontal axis represents the physical distance of the 17 markers on Chromosome 4, and
the vertical axis represents the negative log-transformed P-value of association analysis.

problem, the multivariate analysis procedures FBAT-GEE and
FBAT-Tau were proposed (Lange et al., 2003; Zhang et al.,
2010). The joint analysis of multiple traits would not only
avoid the problem of multiple comparisons but would also en-
hance the power of genetic association analysis. Since the two
tests were developed based on the allele-counting method for
modeling the genotypic effect, they can actually be viewed as
derived under the additive model (Li et al., 2008a). The sim-
ilar power performances of X2

ADD, FBAT-GEE and FBAT-
Tau, as shown by our simulation results in Figures 1 and S1,
confirm this point, due to the fact that the three tests are all
constructed under the assumption of the additive model. Our
simulation results also show that the proposed robust mul-
tivariate association test MAXm has relatively stable power
performance over all plausible genetic models for testing the
association between a QTL gene and multiple quantitative
traits. Comparisons among the MAXm , X2

ADD, FBAT-GEE,
and FBAT-Tau indicate that MAXm has comparable power
to the additive model-based tests X2

ADD, FBAT-GEE, and
FBAT-Tau when the underlying genetic model is additive.
According to these results, it should be highlighted that since
FBAT-GEE and FBAT-Tau can also be computed under the
recessive and dominant models, the MAX-type statistics can

be constructed for these tests as well. Given that the compari-
son of FBAT-GEE and FBAT-Tau shows no power advantage
over the proposed test here under the additive model, it would
be plausible to assume that all three approaches should also
have similar power when a MAX-type statistic approach is
applied to FBAT-GEE and FBAT-Tau under all three genetic
models. Because the merit of MAXm is its power perfor-
mance in robustness, especially when the underlying genetic
model is moving toward the recessive or dominant model,
and, additionally, because previous and current results show
that the association tests based on additive model assumption
are still valid, to some extent, under the models other than the
additive, it is suggested that in real studies one can conduct
those existing multivariate association tests at first, and then
consider the MAX-type statistics for verification of associa-
tion results when the values of those additive model-based
test statistics are relatively low.

The analysis results of the COGA data show that the
MAXm is capable of detecting the association between the
traits ttth1 and ecb21 and the marker D4S1629, but the robust
univariate test MERT is not. This result indicates that analysis
of multiple traits data using a robust univariate test like MERT
with Bonferroni adjustment may result in a loss of power in
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the detection of association. In other words, we can expect
that the robust multivariate association tests should be more
powerful than the robust univariate association tests when
dealing with multiple quantitative traits. Finally, although the
method proposed here is established under the assumption of
multivariate normal distribution, the simulation results indi-
cate that it is still a valid test as the underlying distribution
deviated from the multivariate normal distribution. In addi-
tion, extending the method to adjust for important covariates
should be addressed in future studies.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Table S1 Skewness coefficients of the bivariate gamma dis-
tribution under the simulation settings defined in Table S2
(b). Skew1 and Skew2 are the skewness for the traits y(1) and
y(2) given each specific QTL genotype.

Table S2 Simulation settings of the displacement effects d1

and d2 and their corresponding heritabilities H2
1 and H2

2 un-
der the three allele A frequencies and different genetic mod-
els for the two correlated quantitative traits with correlation
coefficient ρ = 0.3.

Table S3 Comparisons of empirical type I error rates under
the null hypothesis and power under the three true mod-
els among the three optimal multivariate score tests (X2

REC,
X2

ADD, and X2
DOM ), the three robust multivariate association

tests (MAXm , MAX RA, and MAX AD) and the two existing
multivariate methods (FBAT-GEE and FBAT-Tau) under the
scenario that the two quantitative traits are distributed as bi-
variate gamma with correlation coefficient 0.3. Allele fre-
quency of the QTL is 0.1, 0.2, or 0.5, and sample size is
500.

Table S4 The transmission probabilities p j |i , the con-
ditional expectations of the first derivative D�, and the

conditional covariances between any two first deriva-
tives D� and D�′ under the three genetic models
for each parent–offspring combination (i, j) defined in
Table 1.

Figure S1 Power performances of the six multivariate asso-
ciation tests with respect to the degree of dominance t under
overall genetic models where the heritabilities of the two
quantitative traits are controlled around 2% and 3%, respec-
tively; allele frequency p = 0.5 and correlation coefficient
ρ = 0.3.

Figure S2 Results of association analysis between the two
log-transformed traits ttth1 and ecb21 and the 17 markers on
Chromosome 4 using the robust univariate and multivariate
tests.

Appendix: Derivation of the optimal multivariate score test
statistics X2

REC, X2
ADD, and X2

DOM .

Software: An R-script to implement the proposed three
specific genetic model-based multivariate score tests and the
robust multivariate association test, as well as a brief manual
are available in Supporting Information.
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