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Summary. In the genetic association analysis of Holstein cattle data, researchers are interested
in testing the association between a genetic marker with more than one estimated breeding value
phenotype. It is well known that testing each trait individually may lead to problems of controlling
the overall type I error rate and simultaneous testing of the association between a marker and
multiple traits is desired. The analysis of Holstein cattle data has additional challenges due
to complicated relationships between subjects. Furthermore, phenotypic data in many other
genetic studies can be quantitative, binary, ordinal, count data or a combination of different
types of data. Motivated by these problems, we propose a novel statistical method that allows
simultaneous testing of multiple phenotypes and the flexibility to accommodate data from a
broad range of study designs. The empirical results indicate that this new method effectively
controls the overall type I error rate at the desired level; it is also generally more powerful than
testing each trait individually at a given overall type I error rate. The method is applied to the
analysis of Holstein cattle data as well as to data from the Collaborative Study on the Genetics
of Alcoholism to demonstrate the flexibility of the approach with different phenotypic data types.
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1. Introduction

In genetic studies of complex traits, data for multiple phenotypic traits are typically collected
for each individual. For example, the Holstein cattle data set that we shall analyse later includes
more than 20 estimated breeding value (EBV) phenotypic traits of proven bulls—those that have
shown to have high economic value in producing progenies and/or producing progenies that
have high profile in economical important traits. The EBVs of a bull predict its genetic merit
on economic traits. For example, the milk yield, protein yield, fat yield, protein percentage
and fat percentage EBVs of a bull predict the quality and quantity of milk products of its
female descendants. Animal breeding researchers are interested in finding single-nucleotide
polymorphisms (SNPs) or genome regions that are associated with any of these EBV traits.
The use of genomic information in genetic evaluation of animals enhances the animal selection
process for breeding. Testing each trait individually is subject to problems of multiple testing.
Procedures such as familywise error rate control or Bonferroni control will generally lead to a
stringent and thus less powerful test. This issue becomes more problematic as the number of
phenotypes to be tested increases.
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In genetics, the effect of a single variant influencing more than one trait, or pleiotropy, was
first introduced by Ludwig Plate in 1910. In complex traits, pleiotropic effects are considered
to play indispensable roles. In general, numerous genes are involved in a complex trait. With
a massive number of complex traits, the majority of genes play roles in more than one trait.
Many examples of pleiotropy have been published. For example, about 40% of cats with white
fur and blue eyes are found to be deaf owing to a single gene that is responsible for both
the pigmentation and hearing (Hartl and Jones, 2005). Following this line, pleiotropic genetic
effects influencing pigment phenotypes and hearing are also found in other animals such as
chickens and mice (Sunquist, 2007). In human diseases, phenotypic traits such as insulin secre-
tion and insulin action are reported to share common genetic variants (Mitchell et al., 1996).
The gene TP53 is found to play a prominent role in longevity and cancer suppression (Rodier
et al., 2007). Multiple research groups have confirmed pleiotropic genetic effects contributing
to hypertension-related traits (Mahaney et al., 1995; Edwards et al., 1999; Kullo et al., 2005).
With respect to mental illness, several genes have been found to influence both schizophrenia
and bipolar disorder (Lin and Mitchell, 2008), with more still to be determined. Thus, research
to discover genes with pleiotropic effects is an important direction in genetics, and statistical
methods for identifying genetic pleiotropic effects by simultaneously testing for multiple traits
become appealing.

In many studies, phenotypic traits can be of different types of data (e.g. quantitative,
binary, ordinal, count data or a combination thereof). For example, in the Collaborative Study
on the Genetics of Alcoholism data, the phenotypic data comprise different types of data,
including

(a) ordinal traits, such as the affection status (ALADX1), which is determined on the basis
of both the DSM-III-R criteria of the American Psychiatric Association (1987) and the
criteria for definite alcoholism specified by Feighner et al. (1972),

(b) quantitative traits, such as the maximum number of drinks in a 24-h period and
(c) binary traits, such as if an individual has physical health problems from drinking or not.

In this case, a method that can accommodate traits with different types of data is attractive.
Recently, problems with respect to testing the genetic association of multiple traits have

received much attention. Several methods have been proposed for the simultaneous testing of
multiple traits. Lange et al. (2003) extended the family-based association test (FBAT) to multi-
variate traits using generalized estimating equations. The FBAT–generalized estimating equa-
tion approach does not require any distributional assumption for the phenotypes and hence can
be applied to association studies including different phenotypic data types. The FBAT is also
well known to be robust to population stratifications (Horvath et al., 2001; Laird et al., 2000).
However, as an extension of the FBAT, the FBAT–generalized estimating equation approach
has inherited some limitations. The FBAT statistic depends on the known allele transmission
pattern from parents to offspring, and subjects with unknown parental genotypes or homozy-
gous parents are not useful in the analysis. This problem is quite common in the study of late
onset disease or when the SNP being tested has a small minor allele frequency. In addition, for a
binary trait, such as the affection status of a disease, the population prevalence of a disease must
be known to make use of unaffected offspring in the test statistic. Thus, accurate knowledge of
population prevalence is crucial for the analysis. The information that is provided by unaffected
offspring also becomes extraneous in the case of a rare disease. Moreover, the FBAT ignores
relationships across related families because it typically breaks down a large pedigree into small
nuclear families and treats them independently. For these reasons, the FBAT approach is gen-
erally less powerful (Bourgain et al., 2003; Feng et al., 2011; Risch and Teng, 1998; Thornton
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and McPeek, 2007). Zhang et al. (2011) proposed a method based on the generalized Kendall
τ , which allows testing for association with a set of traits of different types. The method is based
on dissimilarity measures of the traits of individuals and their parental genotypes of the marker.
Empirical results show that the simultaneous testing of multiple traits is more powerful than
testing each trait individually. However, this method is limited to family-based study designs.
Parental information is crucial as, otherwise, the conditional expectation of parental genotype
given the offspring’s observed genotype will be used. In summary, these methods are useful for
data from family-based study designs.

Generally, a flexible method that can accommodate data from different study designs is
desired. This paper is motivated by the challenges of analysing data from Holstein cattle. Per-
forming genetic association studies on these data is difficult owing to the complicated relation-
ship between subjects in the data. First, dams are not genotyped, and sires are genotyped only
if they appear as proven bulls in the data set. Second, most of the bulls in the data are inbred.
For these reasons, both the FBAT and the generalized Kendall’s τ -method are unsuitable for
the analysis of this data set. The aim of this paper is to propose a method to test simultaneously
genetic association with multiple traits and to accommodate data from a broad range of study
designs, including conventional population-based studies with unrelated subjects, founder or
isolated population-based studies with related subjects, extended large pedigree studies, family-
based studies or hybrids of these designs. Our method is also flexible for simultaneously testing
associations involving different phenotypic data types. To demonstrate this flexibility, we also
apply the method to the Collaborative Study on the Genetics of Alcoholism data.

Our method is based on the generalized quasi-likelihood scoring (GQLS) approach that was
proposed by Feng et al. (2011). The GQLS method focuses on testing the association between
a marker and a trait. The observed allele frequency is treated as the response variable and
the phenotypic value of the trait is treated as a covariate. For a biallelic marker such as an
SNP, a logistic link is used to model the association between the distribution of the marker
allele frequency and the phenotypic values. Given the relationship between subjects, an exact
covariance matrix of the response vector can be explicitly computed. Provided that the mean
and the covariance of the response vector are known, a quasi-likelihood scoring function and
the quasi-likelihood statistic (which is denoted by WG) can be expressed explicitly. Extending to
the test involving multiallelic markers, the WG-statistic follows an asymptotic χ2

a-distribution
with a determined by the number of alleles of the marker. Because the phenotype is treated
as a covariate, the distribution of the phenotype does not need to be specified. The GQLS
method can then be extended to test multiple traits simultaneously. We name this new method
the generalized quasi-likelihood scoring method (GQLSM) for multiple traits. In this paper,
we shall derive the proposed GQLSM in Section 2. Section 3 describes the simulation studies
to assess the validity and the power of the method proposed. In Section 4, we shall apply our
method to the Holstein cattle data and the Collaborative Study on the Genetics of Alcoholism
data. Discussions and suggestions for future work are provided in Section 5.

Some example data and the programs that were used to analyse them can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Methods

We first describe the model for subjects sampled from a single extended family or from an
isolated or founder population in Section 2.1. Then, we extend the model to the case when the
subjects are from multiple independent families in Section 2.2.
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2.1. Single large family study design
Suppose that in a genetic study we have phenotypic information on k traits for a sample of
n individuals from a single pedigree or an isolated or founder population. The relationships
between individuals are assumed to be known. To accommodate an inbred population, the
inbreeding configuration within each individual is also assumed to be known. This requirement
can be relaxed if genomewide genetic data are available from which the relationships can be
inferred. Let X be an n× .k +1/ design matrix such that

X=

⎛
⎜⎜⎝

1 X11 · · · X1k

1 X21 · · · X2k
:::

:::
: : :

:::

1 Xn1 · · · Xnk

⎞
⎟⎟⎠,

where the .j +1/th column is for the jth trait, j =1, : : : , k. Let X′
i = .1, Xi1, Xi2, : : : , Xik/ be the

ith row of X for individual i. Note that the phenotypes are now treated as covariates. Thus, they
can be of any type of data (e.g. binary, ordinal, count or continuous). For a biallelic marker to be
tested, without loss of generality, label the two alleles ‘0’ and ‘1’. Let Y = .Y1, : : : , Yn/′ represent
the proportion of allele 1 in the observed genotype for each individual, so that Yi equals 0, 1

2
or 1. Let μ= .μ1, : : : , μn/′ = E.Y|X/, 0 < μi < 1, for all i. Then, 2Yi follows a binomial (2, μi/

distribution. With a logistic link,

μi =E.Yi|Xi/= exp.X′
iβ/

1+ exp.X′
iβ/

, .1/

where β= .β0, β1, : : : , βk/′. If the marker under investigation is not associated with any trait, all
coefficients that are associated with the traits should be 0. Thus, we can perform a simultaneous
association test for all traits in the form of

H0 :β1 =β2 =: : :=βk =0 against Ha : at least one βj �=0:

Under the null hypothesis, μi =μ=exp.β0/={1+exp.β0/} for all i and the mean response vector
becomes μ=E.Y|X/=E.Y/=μ1 with 1 being an n-vector of 1s. The covariance matrix of Y
under H0 is given by Σ0 = 1

2μ.1−μ/ρ, where

ρ=

⎛
⎜⎜⎝

1+φ1 2φ12 · · · 2φ1n

2φ12 1+φ2 · · · 2φ2n
:::

:::
: : :

:::

2φ1n 2φ2n · · · 1+φn

⎞
⎟⎟⎠ .2/

is the correlation matrix of Y. In ρ, φi is the inbreeding coefficient of individual i and φij is the
kinship coefficient between individual i and individual j. When two individuals are not related,
φij =0. When a population is outbred, φi =0. See Feng et al. (2011) for justification.

The quasi-likelihood score functions are in a .k +1/-vector that has the form

U.β/= .Uβ0.β/, Uβ1.β/, : : : , Uβk
.β//′ =D′Σ−1.Y −μ/, .3/

where D is an n× .k +1/ derivative matrix of the form

D= @μ

@β
=

(
@μ

@β0
,

@μ

@β1
, : : : ,

@μ

@βk

)
.4/

and Σ is the covariance matrix of Y. Under the null hypothesis, μ=μ1, the covariance matrix
Σ=Σ0, D=μ.1−μ/X, and
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U.β/=2X′ρ−1.Y −μ1/: .5/

Under the null hypothesis H0 that .β1, : : : , βk/=0, setting the quasi-likelihood score of Uβ0.β0,
0/=0 yields the estimate of μ given by

μ̂= .1′ρ−11/−11′ρ−1Y: .6/

According to Cox and Hinkley (1974) and Heyde (1997), the quasi-score statistic is given by

W =Uβ−0.β̂0, 0/′ cov−1
0 {Uβ−0.β̂0, 0/}Uβ−0.β̂0, 0/, .7/

where Uβ−0.β̂0, 0/ is a vector of score functions given by equation (3) under the null hypothesis
and omitting the score function for β0 and cov−1

0 {Uβ−0.β̂0, 0/} is a k × k matrix that omits the
first row and the first column of the inverse of the information matrix I.β/. Both are computed
under the null hypothesis H0 that β1 =β2 =: : :=βk = 0. We derive an explicit form for the W -
statistic and denote it as WM, where the subscript M stands for multiple traits. The WM-statistic
is given by

WM = 2
μ̂.1− μ̂/

.Y − μ̂1/′ρ−1X−1[.X′ρ−1X/−1]−1,−1X′
−1ρ

−1.Y − μ̂1/: .8/

Here, X−1 indicates the removal of the first column (the intercept column) of the design matrix
X, and [.X′ρ−1X/−1]−1,−1 indicates the removal of the first row and the first column of the
matrix .X′ρ−1X/−1. Under the null hypothesis, WM follows a χ2-distribution with the degrees
of freedom determined by the rank of X′ρ−1X. If the k phenotypes being tested are linearly
independent, WM ∼ χ2

k asymptotically. When k = 1, we test only a single trait, and the WG-
statistic that was described in Feng et al. (2011) for a test on a single trait becomes a special case
of our WM-statistic.

2.2. Multiple-families study design
Now we derive the WM-statistic when a sample of n individuals is from F independent fam-
ilies. Suppose that, among n individuals, nf are from the f th family and n = ΣF

f=1nf . Let
Yf = .Y1f , : : : , Ynf f /′ for the observed genotypes of individuals from family f . Similarly, the
correlation matrix ρf is defined for family f . We arrange the response vector Y = .Y′

1, : : : , Y′
F /′

and, correspondingly, the design matrix is of the form

X= .X′
1, X′

2, · · · , X′
f , · · · , X′

F /′,

where

Xf =

⎛
⎜⎜⎝

1 X1f 1 · · · X1fk

1 X2f 1 · · · X2fk

:::
:::

:::

1 Xnf f 1 · · · Xnf fk

⎞
⎟⎟⎠:

Again, under the null hypothesis, the mean response vector becomes a constant vector in the
form of μ=E.Y|X/=E.Y/=μ1. The overall covariance matrix of Y for the whole sample has
the form

Σ0 = 1
2μ.1−μ/ρ, .9/

where
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ρ=

⎛
⎜⎜⎝

ρ1 0 · · · 0
0 ρ2 · · · 0
:::

:::
: : :

:::

0 · · · 0 ρF

⎞
⎟⎟⎠:

Under the null hypothesis that β1 =: : :=βk =0, the quasi-likelihood estimate of μ is given by
equation (6) or can be rewritten as

μ̂=
(

F∑
f=1

1′
f ρ−1

f 1f

)−1( F∑
f=1

1′
f ρ−1

f Yf

)
,

where 1f is the nf -vector of 1s. We derive the explicit form for the WM-statistic as

WM = 2
μ̂.1− μ̂/

(
F∑

f=1
X′

f ,−1ρf .Yf − μ̂1f /

)′[(
F∑

f=1
X′

f ρf Xf

)−1]
−1,−1

(
F∑

f=1
X′

f ,−1ρf .Yf − μ̂1f /

)
:

.10/

Similarly, X′
f ,−1 indicates the removal of the first column of design matrix X′

f for the f th family
and [.ΣF

f=1X′
f ρf Xf /−1]−1,−1 indicates the removal of the first row and the first column of the

matrix .ΣF
f=1X′

f ρf Xf /−1. If the k phenotypes being tested are not linearly dependent, the WM-
statistic follows the χ2

k-distribution asymptotically. Here, equation (10) is the alternative form
of equation (8). When the sample size is large, equation (10) breaks down the whole sample to F

independent families, which avoids the manipulation of high dimensional matrices and makes
the computation more feasible.

3. Simulation studies

We conduct simulation studies to validate the approximation of the distribution of the WM-
statistic under the null hypothesis by the χ2-distribution. We also compare the power that is
achieved by testing multiple traits simultaneously with the power achieved by testing each trait
individually. SNP data are simulated. We consider three study designs: a single large pedigree
study design, a multiple small family study design and a multiple large family study design.
In the first study, all phenotypes are quantitative. In the second study, we consider a com-
bination of three different types of trait: quantitative, binary and ordinal. In the third study,
we consider combinations of different genetic models (e.g. additive, epistasis and recessive) in
the disease model as well as different numbers of traits influenced by a single gene. The soft-
ware KinInbCoef (Bourgain and Zhang, 2009) is used to compute the kinship coefficients for
calculating the correlation matrix ρ.

3.1. Study 1: single large pedigree study design
We grow a family from a single individual, where each single individual has a probability of 0.8 of
being assigned a spouse or a probability of 0.2 of remaining single. For each couple, a number of
offspring are generated according to a Poisson distribution with a mean of 3. We grow families for
six generations. Family members of the top three generations are removed to mimic the practical
situations in which phenotypic information and deoxyribonucleic acid samples are less likely to
be available for more than three generations back. However, the genealogy information of the
entire pedigree remains for calculating the correlation matrix ρ. In our simulation procedure,
any family that stops growing before the completion of six generations by natural degeneration,
or any family with the number of family members in the last three generations less than the
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Table 1. Empirical null rejection rate comparison
for the single large pedigree study design

α Quantitative Rejection rates for the
trait following sample sizes:

100 200 500

0.05 1 0.055 0.047 0.045
2 0.056 0.055 0.053
3 0.042 0.053 0.043
4 0.056 0.046 0.058
5 0.066 0.056 0.047
Union 0.243 0.213 0.222
Simultaneous 0.056 0.054 0.055

0.01 1 0.01 0.012 0.013
2 0.012 0.013 0.013
3 0.011 0.010 0.009
4 0.011 0.010 0.013
5 0.013 0.011 0.013
Union 0.056 0.054 0.057
Simultaneous 0.009 0.011 0.013

desired size, is disregarded. Here, we generate large outbred pedigrees that have sizes of at least
100, 200 and 500 in the last three generations. For each founder (an individual with parental
information unknown), the marker genotype is generated by random mating. The genotypes of
descendants are generated according to the Mendelian law of segregation.

In the first study, we consider an association test with five quantitative phenotypes. To assess
the type I error rate, five quantitative traits are generated for each individual. To do this, we
first generate an SNP with the minor allele frequency set to 0.3. Denote the genotype of the
SNP by G= 0, 1, 2 for individuals having no, one or two copies of the minor allele respectively.
We denote the five traits for individual i by Xi1, Xi2, Xi3, Xi4 and Xi5. Given the genotype Gi of
the SNP, each quantitative trait Xij is generated from N{bj.−1 +Gi/, σ2}, j = 1, : : : , 5, where
b= .0:6, 0:4, 0:2, −0:1, 0:3/ are the effects of the SNP on each of the five traits respectively, and
σ2 = 1. By doing this, an individual’s traits are genetically correlated. Then, another SNP that
is not linked to the causal SNP is generated. The minor allele frequency of this unlinked SNP
is set at 0.3. We generate 1000 data sets. Here, the analysis of the causal SNP is used to access
the power and the analysis of the unlinked SNP is to evaluate the type I error control.

For each simulated data set, we perform the association test on five traits simultaneously.
We compute the WM-statistic and take the .1 −α/th quantile of the χ2

5-distribution to be the
rejection threshold. We also perform the association test on each individual trait. For each trait,
we compute the WG-statistic that was given by Feng et al. (2011) and take the rejection threshold
to be the .1−α/th quantile of the χ2

1-distribution.
The empirical rejection rates are summarized in Table 1. For our simultaneous test, the empir-

ical null rejection rates are very close to each nominal level of significance. For each individual
test, the empirical null rejection rates are again very close to each nominal level of significance;
however, the overall type I error rate, calculated as the union of the null rejections from the five
individual tests, is elevated from 0.213 to 0.243 for α=0:05 and from 0.054 to 0.057 for α=0:01.
These overall type I error rates are very close to the theoretical familywise error rates. Denote
the familywise error rate by αF and αF =1− .1−α/k if there are k individual tests. When k =5,
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Table 2. Power comparison with the single large pedigree
study design

Quantitative Results for the
trait following sample sizes:

100 200 500

αF =0.05
0.01† 1 0.461 0.898 0.992
0.01 2 0.183 0.525 0.834
0.01 3 0.038 0.119 0.209
0.01 4 0.018 0.030 0.38
0.01 5 0.108 0.227 0.537

Union 0.599 0.952 1
0.05 Simultaneous 0.720 0.985 1

αF =0.01
0.002 1 0.290 0.780 0.967
0.002 2 0.075 0.344 0.674
0.002 3 0.011 0.054 0.087
0.002 4 0.004 0.008 0.013
0.002 5 0.035 0.139 0.333

Union 0.366 0.870 0.990
0.01 Simultaneous 0.511 0.943 0.999

αF =0.001
0.0002 1 0.118 0.548 0.917
0.0002 2 0.024 0.156 0.398
0.0002 3 0.001 0.015 0.023
0.0002 4 0.000 0.001 0.000
0.0002 5 0.008 0.046 0.146

Union 0.141 0.625 0.950
0.001 Simultaneous 0.248 0.844 0.973

†For an individual test, α=αF=5.

an individual test of α=0:05 corresponds to an αF of 0.226 and an individual test of α=0:01
corresponds to an αF of 0.049. These empirical results show that the union of the individual null
rejection rate is very close to the αF. Our method effectively controls the overall type I error rate
αF at nominal levels. In addition, the Q–Q-plots in Fig. S1 in the on-line supplementary materi-
als show that the χ2

5-distribution very closely approximates the distribution of the WM-statistic
under the null hypothesis for three different sample sizes.

In assessing the power of the GQLSM test and comparing the power with multiple individual
tests, we control the overall type I error rate αF at 0.05, 0.01 and 0.001 to obtain a fair compar-
ison. The α-value for each individual test can be obtained by using αF = 1 − .1 −α/k or using
the Bonferroni control α=αF=k, which give almost identical values.

The results that are summarized in Table 2 show that our simultaneous testing of five traits
is consistently more powerful than the union of five individual tests over different αF levels of
significance and sample sizes. The gain in power is particularly obvious when the sample size is
relatively small.

3.2. Study 2: multiple small pedigrees study design
For the multiple small pedigree study design, families are grown for a maximum of three genera-
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tions. We allow the simulated sample to consist of families and independent individuals. Family
sizes range from 1 to 22 with an average of about 6. We let the total sample sizes be about
100, 200 and 500. To show the flexibility of our method for the analysis of phenotypic traits
of different types of data, we consider three different traits: quantitative, binary and ordinal.
They are denoted for individual i by Xi1, Xi2 and Xi3 respectively. Similarly, we first generate
an SNP G with the minor allele frequency set to 0.3. Given the genotype Gi of the SNP, the
quantitative trait Xi1 is generated from N{b.−1+Gi/, σ2}, where b=0:3 and σ2 =1. The binary
trait Xi2 is generated from a Bernoulli(π) distribution where π =0:5−0:2Gi. The ordinal trait
Xi3 will take a value of 1, 2 or 3 according to the probability of π1 =1−π, π2 =π −π2, π3 =π2

and Σ3
i=1πi = 1. By doing this, phenotypes of individuals within a family are genetically con-

nected. Then, another SNP that is not linked to the causal SNP is generated. The minor allele
frequency of this unlinked SNP is set at 0.3. We generate 1000 data sets. For each simulated
data set, we perform the association test on the three traits simultaneously with both the causal
SNP and the unlinked SNP. We compute the WM-statistic and take the .1 −α/th quantile of
the χ2

3-distribution to be the rejection threshold. We also perform the association test on each
individual trait. For each trait, we compute the WG-statistic and take the rejection threshold to
be the .1−α/th quantile of the χ2

1-distribution.
The empirical rejection rates are summarized in Table S1 in the on-line supplementary mate-

rials. The results show a similar pattern to that of the results based on the single large pedigree
study design. The empirical null rejection rates based on the simultaneous test are very close to
each nominal level of significance. For each individual test, the empirical null rejection rates are
again very close to each nominal level of significance; however, the overall type I error rates αF
are elevated from 0.132 to 0.16 for α=0:05 and from 0.024 to 0.036 for α=0:01. These overall
type I error rates are very close to the theoretical familywise error rates of an individual test with
α= 0:05 (an αF of 0.142) and an individual test with α= 0:01 (an αF of 0.0297) for the union
of three individual tests. In addition, the Q–Q-plots in Fig. S2 in the on-line supplementary
materials show that the χ2

3-distribution well approximates the distribution of the WM-statistic
under the null hypothesis for the three different sample sizes.

The power assessment results are summarized in Table S2 in the supplementary materials.
The results show that our simultaneous testing of three traits is consistently more powerful than
the union of three individual tests over different αF levels of significance and sample sizes.

3.3. Study 3: multiple large pedigrees study design
With the multiple large pedigree study design, families are grown for six generations. In contrast
with study 1, the number of family members in the last three generations could be relatively
small and, thus, each sample of size of at least 100, 200 and 500 in the last three generations
would consist of more than one family.

In this study, we consider three traits, X1, X2 and X3, with five causal SNPs G1, G2, G3, G4
and G5 and their minor allele frequencies set at 0.2, 0.3, 0.15, 0.25 and 0.25 respectively. As
shown in Table 3, SNPs G1, G2 and G3 influence all three traits. SNP G4 influences trait 1 and
2. SNP G5 influences only trait 3. These five SNPs are on different chromosomes. So, genotypes
of each SNP are generated independently.

Given the genotypes Gi1–Gi5 for individual i, we generate the three traits according to the
following models:

Xi1 =μ1 +γ1.Gi1, Gi2/+aGi3 +bGi4 + "i1,

Xi2 =μ2 +aGi1 +bGi2 +γ2.Gi3, Gi4/+ "i2,
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Table 3. Involvement of five SNPs to
the three traits in study 3

Trait SNPs

G1 G2 G3 G4 G5

X1 Yes Yes Yes Yes No
X2 Yes Yes Yes Yes No
X3 Yes Yes Yes No Yes

Table 4. Interaction effect between
G1 and G2 on X1 in study 3

G1 γ1 for the following
values of G2:

0 1 2

0 −1.25 −1.25 0.25
1 −1.25 −1.25 0.25
2 0.25 0.25 1.25

Table 5. Interaction effect
between G3 and G4 on X2 in
study 3

G3 γ2 for the following
values of G4:

0 1 2

0 −1 −1 −1
1 −1 2 2
2 −1 2 2

Xi3 =μ3 +aGi1 +bGi2 + cGi3 +γ3.Gi5/+ "i3:

Without loss of generality, we set μj =0 for j =1, 2, 3. We set a=1, b=0:5 and c=1:2, with "ij

representing random environmental error generated from N.0, 1/ for all traits. Genotypes of all
Gij are in the form of 0, 1 and 2. As shown in Tables 4 and 5, γ1 quantifies the interaction effect
between G1 and G2 on X1, and γ2 quantifies the interaction effect between G3 and G4 on X2.
We set γ3 =2 if Gi5 =2, and γ3 =0 otherwise, for the recessive effect of G5 on the third trait X3.

We simulate 1000 data sets. For each simulated data set, we perform the simultaneous test
on the three traits and individual tests on each trait. We set αF =0:05, 0.01, 0.001. The results
are summarized in Table S3 in the on-line supplementary materials. Note that rejection rates
in parentheses are empirical type I error rates as, for example, G4 is not responsible for the
third trait X3. We see that the empirical null rejection rates are close to their nominal levels
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of significance. Overall, our GQLSM method is consistently more powerful than the union of
individual tests when the SNP under investigation influences more than one trait. When the
SNP influences only one single trait, the power that is achieved by our GQLSM method is
comparable with the power that is achieved by individual tests at the same αF-level.

4. Real data analysis

4.1. Application to Holstein cattle study
There are 821 progeny-tested proven bulls in the data. The relationship between bulls and their
sires and dams is complicated; some bulls are also the sires of other bulls. Most of the bulls in
the sample have non-zero inbreeding coefficients. A genealogy of the population, tracing back
25 generations to the earliest animal born in 1909, was used to compute the kinship–inbreeding
coefficient with the software CFC (Sargolzaei et al., 2006). Each bull was genotyped by using the
Affymetrix MegAllele GeneChip bovine mapping 10K SNP array (Affymetrix, 2005). SNPs on
sex chromosomes or with more than 20% values missing were excluded from the study. A total of
6418 SNPs are analysed. The experimental design is mainly a granddaughter design, in that the
milk productivities of daughter and granddaughter cows of a bull are used to estimate the EBVs
of the bull. The phenotypes that were used in the analysis were trait EBVs released in November
2008 and provided by the Canadian Dairy Network (Guelph, Canada). In this study, we aim to
identify SNPs or genome regions that are associated with the five milk-product-related EBVs:
milk yield MY, protein yield PY, fat yield FY, protein percentage PP and fat percentage FP.

First, we simultaneously test the association between each SNP and the five EBV traits by
using our GQLSM method. Second, we individually test the association between each SNP and
each of the five traits. We also record the union of significant SNPs from the five individual
tests. In Table 6, we report the number of significant SNPs found by the individual tests and
by the simultaneous test. The Venn diagrams in Fig. 1 show the overlap of significant SNPs
between the simultaneous test and the union of the five individual tests for each EBV trait while
controlling the overall type I error rate at αF =0:05, 0.01, 0.001. Over three levels of significance,
the simultaneous test covers the majority of the significant SNPs found by the union of the
individual tests. However, the union of the individual tests misses more than half of the SNPs
that were found to be significant by the simultaneous test. After Bonferroni adjustment for
multiple testing, 149 of the 6418 SNPs tested at αF = 0:05 for the simultaneous test (or, at the
7.78×10−6 level of significance for each SNP) remain significant; however, only 47 SNPs in the
union of individual tests remain significant at the αF = 0:05 level (or at the 1.56×10−6 level of
significance for each SNP). Of these 47 significant SNPs, 45 are also found to be significant by
the simultaneous test at the same αF-level.

Many of the 104 significant SNPs that were found by the simultaneous test but not by the

Table 6. Number of significant SNPs found by individual tests and
the simultaneous test in the Holstein cattle data analysis

αF Individual test results Simultaneous
test result

MY PY FY PP FP Union

0.05 312 264 318 266 290 880 1619
0.01 156 124 140 129 155 436 844
0.001 73 31 54 61 64 168 397
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Simultaneous 
test

Union of 

individual
tests

836 (470, 257)

783 (374, 140)

97 (62, 28)

Fig. 1. Venn diagram to show the overlap between the simultaneous test and the union of the five individual
tests for significance level αF at 0.05: results of αF at 0.01 and 0.001 are in parentheses

union of individual tests have been confirmed by others in the literature. For example, on
the first Bos taurus autosome chromosome BTA 1, an SNP at 47.9 cM is found to have a
strong level of significance in the simultaneous test (p-value 5.44×10−8) but moderate levels of
significance with milk yield (p-value 2.81×10−5), protein yield (p-value 1:61 × 10−5) and fat
yield (p-value 0.00841). This result is consistent with an SNP at 46 cM that was reported to
be associated with protein yield by Rodriguez-Zas et al. (2002) and an SNP at 47 cM that was
reported to be associated with milk yield and protein yield by Daetwyler et al. (2008). Another
nearby SNP at 48.7 cM is also found to be strongly significant in the simultaneous test (p-value
2:23×10−12). However, it is not significantly associated with any of the five traits (p-values are
all greater than 0.05) in the individual tests. On the same chromosome, an SNP at 110.6 cM has
a strong association signal (p-value 1 × 10−16 or less) according to the simultaneous test and
a moderate significant level of association with protein yield (p-value 0.00458). This confirms
the association with protein yield that was reported by Daetwyler et al. (2008), Heyen et al.
(1999) and Rodriguez-Zas et al. (2002). On BTA 3, an SNP at 73.34 cM (p-value 1.14×10−6)
is surrounded by SNPs at 72 and 74 cM reported to be associated with fat yield by Rodriguez-
Zas et al. (2002) and an SNP at 77.6 cM reported to be associated with protein percentage by
Bagnato et al. (2008). On BTA 6, an SNP with a strong significant signal (p-value 1×10−16 or
less) at 92.79 cM is flanked by an SNP at 91.5 cM that has been reported to be associated with
milk yield (Bagnato et al., 2008) and an SNP at 95 cM that has been reported to be associated
with fat percentage (Viitala et al., 2003). On BTA 8, an SNP with a p-value of 3:93 × 10−8 at
35.69 cM is flanked by two SNPs at 31.4 and 38 cM that are associated with protein percentage
and protein yield respectively (Daetwyler et al., 2008; Rodriguez-Zas et al., 2002). On BTA 26,
a significant SNP at 58 cM (p-value 7:37×10−7) is very close to SNPs at 55 and 56 cM that are
associated with milk yield (Boichard et al., 2003; Daetwyler et al., 2008) and an SNP at 57 cM
that is associated with fat yield and protein yield (Boichard et al., 2003).

There are also many literature confirmations of those SNPs found to be significant in both the
simultaneous test and the union of individual tests. For example, on BTA 1, an SNP at 142.64
cM is strongly significant in the simultaneous test (p-value 2.61×10−14) and also significantly
associated with milk yield (p-value 2:73×10−8), protein yield (p-value 3.53×10−6) and fat per-
centage (p-value 5.4×10−11). This is consistent with Daetwyler et al. (2008) who report an SNP
at 142 cM associated with milk yield and protein yield. On BTA 2, an SNP at 40.47 cM is signif-
icant in the simultaneous test (p-value 4.44×10−15) and is also significantly associated with fat
yield (p-value 3.54×10−7) and fat percentage (p-value 4:62×10−12) and moderately significant
with protein percentage (p-value 0.00018). Heyen et al. (1999) also reported that a microsatellite
marker TGLA377 at 40.6 cM has a significant effect on the protein percentage trait.
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Table 7. Number of significant SNPs by individual tests and the
simultaneous test

αF Individual test results Simultaneous
test result

ALDX1 MaxDrink Health Union

0.05 205 203 206 555 617
0.01 46 35 51 128 139
0.001 9 7 9 24 26

4.2. Genetics of alcoholism data
To illustrate the flexibility of our method in the simultaneous analysis of different pheno-
typic data types, we apply our method to the Collaborative Study on the Genetics of Alco-
holism data provided by the Genetic Analysis Workshop 14. This data set contains 1074 ‘white,
non-Hispanic’ individuals from 119 independent families. They were genotyped for a panel of
11555 SNPs by using Affymetrix. A set of alcoholism phenotypes is also provided. The alcohol
DX-DSM3R + Feighner (ALDX1) phenotype is considered as an ordinal trait with four levels:
1, ‘pure unaffected’, 2, ‘never drink’, 3, ‘unaffected with some symptoms’, and 4, ‘affected’. The
maximum number of drinks in a 24-h period (MaxDrink) phenotype is treated as a quantitative
trait. The physical health problems for drinking (Health) phenotype is treated as a binary trait:
1 for yes and 0 for no. We analyse only SNPs that are on autosomes. SNPs that show only one
allele type in the data set have been excluded from the analysis. In total, 10684 SNPs are tested
for association with the three traits.

The number of significant SNPs for different levels of significance in terms of αF are sum-
marized in Table 7. More SNPs are found to be significant in the simultaneous test than in the
union of individual tests when αF is controlled at the same level. Note that, after adjusting for
Bonferroni’s corrections on 10684 SNPs tested at αF =0:05, five SNPs remain significant in the
simultaneous test (at the 4.68×10−6 level of significance for each SNP) and four SNPs remain
significant in the union of individual tests (at the 1.56×10−6 level of significance for each SNP).

In chromosome 2, SNP tsc0057308 is strongly significant in both the simultaneous test
(p-value 4:22×10−6) and in the union of individual tests (p-value 4:6×10−7) and is less than 2
M bases away from the KIAA1912 gene. In addition, two neighbouring SNPs, tsc0521398 and
tsc1707844, which are less than 1 M base from genes KIAA1912 and EFEMP1 respectively, are
found to be significant (p-values 0.0083 and 0.0097 respectively) in the simultaneous test. Heath
et al. (2011) also identified two SNPs close to these two genes that are significantly associated
with alcohol dependence factor score and weekly alcohol consumption. In chromosome 3, SNP
tsc0050826 is strongly significant in both tests (p-values 9:96 × 10−5 and 0.0001 respectively)
and is less than 500 k bases from gene MGLL. In chromosome 4, SNP tsc0280570 is less than
1 M base from genes DKK2 and PAPSS1 and is strongly significant in the simultaneous test
(p-value 0.0003) but less significant in the union of individual tests (p-values 0.0279 and 0.0374
with ALDX1 and MaxDrink). Kalsi et al. (2010) also reported the association of genes DKK2
and PAPSS1 with a quantitative trait of alcohol dependence symptom counts.

5. Discussion

In many genetic studies of complex traits, multiple traits are often recorded. In most cases,
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genetic association tests are performed for each individual trait and p-values must be adjusted
for multiple tests. When more traits are considered, the test will be more stringent and, as a
result, the test will have a lower power to detect true associations. Reducing the number of
hypotheses tested becomes an appealing way to control the overall type I error rate. Simulation
studies show that the simultaneous testing of multiple traits effectively controls the overall type
I error rate. When the level of significance is controlled at the same level, simultaneous tests are
found to be more powerful than the union of individual tests.

In a genomewide association study, when multiple traits are considered, the GQLSM method
proposed would be applied in the first step to screen for SNPs that are associated with any one
of the traits. Then, subsequent individual tests would be performed on the subset of significant
SNPs to look at which particular traits the SNPs associated with. Results of simulation studies
suggest that the GQLSM method proposed is appropriate for identifying SNPs that influence
only one single trait, as the simultaneous test has a comparable power compared with individual
tests. In contrast, the GQLSM method outperforms the union of individual tests for identifying
SNPs that influence more than one trait. In other words, the GQLSM method would be a more
powerful approach to screen SNPs for genetic pleiotropic effects.

The GQLSM method proposed is an extension of the GQLS method and thus inherits some
of its features. For example, the GQLS method is a general method that enables the analysis
of data from a broad range of study designs and with different phenotypic data types. The
GQLSM method can be further generalized to test for multiple traits that are of different types
of data or hybrids of different types of data. When computing the test statistic WM, all trait
information is used. Unless traits are linearly dependent, the number of degrees of freedom
of the χ2-distribution equals the number of traits being tested. When testing a large number
of correlated quantitative traits, techniques such as principal components analysis might be
considered to reduce the dimensions. Instead of testing all traits simultaneously, one may test
only the most important principal components. By doing this, a smaller degree of freedom
of the χ2-distribution is used to approximate the distribution of the WM-statistic and thus
a smaller threshold value will be used. However, selection of the principal components for
the association test must be done carefully. The first m most important principal components
among all p principal components could contribute nothing to explaining the variation in the
response variable. This problem has been reported by Hadi and Lin (1998) and Jolliffe (1982)
via various examples in real analysis. Therefore, the possibility of incorporating dimension
reduction techniques in the GQLSM method to increase the power of the test further by lowering
the threshold value is worth investigating.

In genetic association studies, confounding factors such as other environmental factors that
contribute to the variation of the phenotypic traits should also be considered. However, in the
current GQLSM model, the phenotypic traits are treated as covariates and confounding factors
that affect these traits cannot be directly incorporated in the model. One possible way to adjust
for the confounding effects is to perform a so-called ‘two-stage residual outcome’ analysis. In the
two-stage residual outcome analysis, regression analysis of the phenotype on the confounding
factors is performed in stage 1 to obtain residuals. Then, the residual is treated as a phenotype
for the genetic association test in the second stage. For application of our GQLSM method in
the two-stage residual analysis, multiple residual outcomes can be obtained through multiple
individual regression analyses on each trait. Then, in the second stage, we test the association
between an SNP and multiple residual outcomes simultaneously by using our GQLSM method.
However, the current two-stage residual analysis method mainly focuses on quantitative traits
and a normality assumption on the residual is often required. Further investigation is warranted
with respect to the application of the GQLSM method in the two-stage residual outcome strategy
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and extension of the current method to accommodate other types of data, such as binary, ordinal
or count phenotypic traits, as well as other study designs.

6. Supplementary materials

Please see the on-line supporting information for the link to the R code (R Development Core
Team, 2011) implementing the GQLSM method and additional simulation study results.
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