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Abstract Gene–gene and gene–environment interactions

govern a substantial portion of the variation in complex

traits and diseases. In convention, a set of either unrelated

or family samples are used in detection of such interac-

tions; even when both kinds of data are available, the

unrelated and the family samples are analyzed separately,

potentially leading to loss in statistical power. In this

report, to detect gene–gene interactions we propose a

generalized multifactor dimensionality reduction method

that unifies analyses of nuclear families and unrelated

subjects within the same statistical framework. We used

principal components as genetic background controls

against population stratification, and when sibling data are

included, within-family control were used to correct for

potential spurious association at the tested loci. Through

comprehensive simulations, we demonstrate that the pro-

posed method can remarkably increase power by pooling

unrelated and offspring’s samples together as compared

with individual analysis strategies and the Fisher’s com-

bining p value method while it retains a controlled type I

error rate in the presence of population structure. In

application to a real dataset, we detected one significant

tetragenic interaction among CHRNA4, CHRNB2, BDNF,

and NTRK2 associated with nicotine dependence in the

Study of Addiction: Genetics and Environment sample,

suggesting the biological role of these genes in nicotine

dependence development.

Introduction

Understanding how genetic mechanisms contribute to the

formation of complex traits is one of the major challenges

in genetics studies. Although the recent surge of genome-

wide association studies (GWASs) has led to the discovery

of many new loci that contribute to phenotypic variation,

unraveling the so-called ‘‘missing heritability’’ (Manolio

et al. 2009) may require more sophisticated strategies not

limited to single-marker analysis. The ubiquitous existence

of gene–gene (G 9 G) interaction is well documented,

from the molecular interaction to statistical epistasis, and

composes pivotal determinants in the formation of pheno-

typic outcomes. It is consequently anticipated that G 9 G

interaction will help elucidate some of the missing herita-

bility (Zuk et al. 2012).

Conventional single-marker methods that isolate inter-

acting genes from their context likely obfuscate the inter-

connected networks and plausibly fail to model the

complex gene networks that genuinely relate to a pheno-

typic outcome. Therefore, methods in which association is

tested by incorporating multiple genes have been proposed

[see a recent review by Cordell (2009)]. Among them,

multifactor dimensionality reduction (MDR) method,
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originally for a case–control study, has sustained its pop-

ularity since it was proposed (Ritchie et al. 2001). Rather

than modeling the interaction term per se as with regression

methods, MDR seeks to capture a combination of loci of

interest, a pattern that maximizes the phenotypic variation

it explains. It treats the G 9 G interaction as a whole,

coinciding to the very original epistasis described by

Bateson and offering a solution that avoids decomposition

as concerned in regression methods. As it projects the high-

order interaction into one dimension, it theoretically

overcomes the issue of high dimensionality, provided that

the sample size is sufficient. Further development, such as

generalized multifactor dimensionality reduction (GMDR),

which integrated generalized linear model into MDR (Lou

et al. 2007), and pedigree-based generalized multifactor

dimensionality reduction (PGMDR) (Lou et al. 2008),

allows MDR to be applied to both binary and continuous

traits with adjustment for covariates whenever necessary

and to pedigree data.

The family-based design and the population-based

design (referred as unrelated-individual design) are among

the most commonly used designs in genetic studies. Fam-

ily-based association tests, such as transmission/dis-

equilibrium test (Spielman et al. 1993), are well known for

their robustness against population structure, such as pop-

ulation admixture and stratification. MDR has also been

extended to family data (Chen et al. 2011; Lou et al. 2008;

Martin et al. 2006). On the other hand, the power of family-

based designs may decrease when the parental genotypes

are uninformative. Although theoretically attractive, a

family design is usually not as economically advantageous

as an unrelated-individual design that is less laborious in

sample collection. However, the genetic backgrounds of

subjects in an unrelated-individual design can be quite

different from each other, and if the population structure is

not taken into account, false-positive and false-negative

associations may arise and thus diminish the advantages of

such designs. For unrelated subjects, methods have been

proposed to infer genetic ancestry, such as genomic control

(Devlin and Roeder 1999), structured association (Prit-

chard et al. 2000), and the principal components analysis

(PCA) method (Price et al. 2006; Zhu et al. 2008) that

provides a general solution for more complicated scenarios.

When data from both family-based and population-

based studies are available, the ideal strategy is to combine

the data, while eliminating the nuisance population struc-

ture that may inflate false-positive and false-negative rates.

The consequently enlarged sample size will increase the

chances of detecting gene–gene interactions. However,

several practical issues arise in the application of this

strategy. The major issues are how to correct for the pop-

ulation structure in founders of family samples and unre-

lated samples and how to pool two kinds of samples

together. A realized solution in association studies is to

correct with a fixed effect model for the structure that can

be inferred through a PCA of unrelated individuals (Zhu

et al. 2008).

Although the issues related to population structure and

sample pooling have been well addressed in single-marker

association studies, they remains unexplored in detection of

interactions. The purpose of this study is to establish a

general framework for detecting gene–gene interactions

using unrelated and family samples. We proposed a unified

nonparametric method, called unified generalized multi-

factor dimensionality reduction (UGMDR), which detects

gene–gene interactions by incorporating both unrelated

individuals and families. Simulations were conducted to

demonstrate the benefit of the unified analysis to statistical

power. A working example, from the Study of Addiction:

Genetics and Environment (SAGE), was used to show the

application of this method.

Materials and methods

Correction for population structure in family

and unrelated samples

When the dataset consists of both unrelated and family

samples, we need to correct for population structure and

construct appropriate statistics for combining GMDR

analysis. We use unrelated samples including unrelated

founders in families to infer ancestral composition of the

whole sample and compute the SNP loading for unrelated

and children (see the supplementary method for details).

Then we can adjust the phenotype of interest for elimi-

nating effects of population structure by fitting a null

generalized linear model (i.e., no effects of factors of

interest), for example, a linear model Y¼l1þPBþZcþe

for a continuous phenotype, in which Y the vector for the

phenotype, l is the grand mean of the model 1, is a vector

of which all elements are 1, P is a N 9 L matrix repre-

senting the top L principal components for N individuals,

B is a vector representing the effects of population struc-

ture, Z is the incidence matrix for the covariates such as

age and gender, c is the covariate effect vector, and e is the

vector of residuals. The population structure effects can be

corrected by

~Y¼Y � l̂1� PB̂� Zĉ ð1Þ

~Y is the adjusted phenotypic value for both the principal

components and the covariates. In their approach, Zhu

et al. (2008) suggested adjusting the genealogical effects

both on the phenotypes and on the genetic markers, which

is more theoretically attractive. In our approach that treats

the markers as categorical variables, differing from the
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typical regression methods that treat genetic markers as

quantitative or count variables (e.g., the number of alleles

of interest in an additive model), we adjust only on the

phenotypes, but not on the genetic markers, as

incorporating the principal components can substantially

eliminate the confounding effects of other covariates. The

resulting GMDR is valid in the sense of controlling correct

type I error rates. As demonstrated in the simulations, the

type I error rates were in good agreement with the given

significance levels.

After adjusting for the principal components that account

for the potential cryptic population structure, the phenotype

and genotype will be independent under the null hypothesis.

We use the adjusted phenotype to define an appropriate

statistic and integrate with the multifactor data reduction

strategy mentioned below. There are two kinds of data

involved in the statistic: the siblings in nuclear families are

genetically related, and parents of the nuclear families and

the singletons are nominally unrelated. For unrelated sub-

jects, the adjusted phenotype is used directly in the data

reduction; for convenience of notation, we consider each

unrelated individual as a family with only one member and

denote statistic sij ¼ ~yij where j = 1. For siblings, to take

the genetic dependence among the relatives into account,

the within-family association statistic is used in the data

reduction—the within-family association statistic can be

computed via the conditioning algorithms under the null

hypothesis, e.g., the within-family association statistic of

the jth individual in the ith nuclear family with respect to a

combination of loci L, sL
ij ¼ ~yijgLðxijÞ; where gLðxijÞ is a

function contrasting the transmitted genotype at locus

combination L to its reference distribution under the null

hypothesis (Chen et al. 2011). For simplicity of notation, we

discard the sign of locus combination in sL
ij and gLðxijÞ

thereinafter. The principle behind the conditioning algo-

rithm is as follows: given a mating type (parental geno-

types) or its minimal sufficient statistic, we have the

reference genotypic distribution of offspring under the null

hypothesis, denoted by GM; different mating types have

their respective genotypic distributions of offspring. Each

of these genotypic distributions follows Mendel’s law only,

and thus is independent of any phenotype. Nevertheless, the

observed (or transmitted) genotypic distribution of off-

spring may differ conditional on the mating type and a trait

of interest in the presence of genotype–phenotype associa-

tion, denoted by GM,T. The discrepancy between them will

ascribe to the association of the combination of loci with the

trait only, thus eventually eliminating the impact of locus-

specific spurious association through comparison between

GM and GM,T. Detailed numerical examples for conditional

genotype distribution on nuclear families can be found in

Rabinowitz and Laird (2000).

Multifactor-reduction algorithm

Our method is devised by integrating the statistic defined in

the previous subsection (i.e., sij ¼ ~yij for unrelated subjects

and sij ¼ ~yijgðxijÞ for siblings) into the GMDR framework,

whose implementation of C-fold cross-validation (CV) is

summarized as follows.

In step one, regardless of their familial or ethnic origins,

individuals are assigned into C even or nearly even sub-

divisions. One of the subset is used as the testing set and

the remaining one(s) as the training set. We set C = 10

throughout this report, but it can be other integers, such as

C ¼ 5 (Motsinger and Ritchie 2006).

In step two, a subset of c factors are selected from all x
discrete factors of either genetic and/or environmental

origin. A total of
x
c

� �
distinct subsets can be chosen in

this manner. Each such subset corresponds to a c-dimen-

sional finite grid, and each subject who is genotyped and

assessed for the environmental exposures will fall into

exactly one cell in this grid. The values of the statistic

defined in the previous subsection are averaged over each

cell. Each nonempty cell is labeled either high-risk if its

average statistic value is not less than some threshold T, or

low-risk otherwise. Without loss of generality,

T ¼
PN

i¼1

PKi

j¼1 ŝij=NT , the mean of the sample, is used

throughout the paragraphs below.

In step three, a multilocus model is formed by pooling

high- and low-risk cells into two groups (i.e., high-risk and

low-risk). The classification accuracy can be assessed by

the averages of the statistic values in the high-risk group

and the low-risk group, respectively.

In step four, the corresponding independent testing set

(the set that is left out in steps two and three), is used to

evaluate the testing accuracy for the model identified in

step three. The testing accuracy is defined in the next

subsection.

In step five, as there are C different pairs of training–

testing sets, the above procedure is repeated for C rounds

on the C training sets. The average testing accuracy over

C testing sets can be calculated.

In step six, steps two to five are iterated for all other

possible c factor combinations, and the above procedure is

repeated for
x
c

� �
combinations.

Evaluation of p value

In each round of cross-validation, testing accuracy (TA) is

defined as
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TA ¼ TPþ TN

TP + TN + FP + FN
; ð2Þ

where TP is True Positive, defined as having a high-risk

value in the high-risk group, TN is True Negative, defined

as having a low-risk value in the low-risk group, FP is

False Positive defined as having a low-risk value in the

high-risk group, and FN is False Negative defined as

having a high-risk value in the low-risk group. For a

training set, the rule of classification guarantees that clas-

sification accuracy is not less than 0.5, whereas TA may be

lower than 0.5 due to statistical fluctuation. TA has an

expected value of about 0.5 under the null hypothesis. Over

C-fold CV, the mean of TA, i.e., TA ¼
PC

i¼1 TAi, is cal-

culated and employed as the test statistic for evaluating

G 9 G interaction.

In general, we use a permutation method to determine

empirical p value from the distribution of the permuted

TAs under the null hypothesis. When the sample size is

sufficiently large, as the result of the central limit theory,

the p value can be approximately assessed by the normal

distribution of the C-fold mean of TA under the null

hypothesis. An approximate Z score is Z ¼ TA�EðTAÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðTAÞ

p . The

mean and standard deviation of TA could also be computed

through permutations. It should be noticed that there are

two kinds of data involved in the test statistic. The siblings

in nuclear families are genetically related, and parents of

the nuclear families and the singletons are nominally

unrelated. Although the genealogical effects of unrelated

individuals can be adjusted through regression on the

principal components, the family structure should be fully

accounted for in building the test statistic. We use a hybrid

strategy to evaluate the mean and empirical variance of the

test statistic in permutations. As the genealogical effects of

the unrelated individuals have already been adjusted, these

singletons are exchangeable with each other in permuta-

tions, but the siblings are randomly shuffled only within the

family because of the family structure effects. Permutations

can be run for either the phenotype or the genotype at loci

under consideration; both permutation schemes often yield

nearly identical results. In this report, we permute pheno-

types only.

Monte Carlo simulations

Systematic simulations were performed to investigate the

power in various scenarios. A recent admixed population

with a similar ancestry to African–Americans was simu-

lated for the scenarios considered. Four study designs with

different sample size and ratio of families to singletons

were adopted in the simulation study as tabulated in

Table 1. Various disease models, relative risks, and allele

frequencies were considered in simulations (refer to the

supplementary materials for details). To compare the pro-

posed unified strategy with the separate analysis strategies,

we computed the power of four methods: FAM for family-

based method conditional on parental genotypes in which

only sibs were used, CC for case–control method in which

only case–control samples but no family samples were

used, UN for method of unrelated individuals in which

cases, controls and founders of families were used, and UI

for the proposed unified method in which all cases, con-

trols, founders of families, and siblings are used. These first

three methods are used as the reference methods for power

comparison.

UI was also compared with a benchmark method, the

meta-analysis implemented with the Fisher’s combining

p value method for individual UN and FAM analyses

(Fisher 1954). A Chi square test statistic with four degrees

of freedom was computed from the p values of UN and

FAM to determine the overall p value and statistical power.

A case study

In this study, we managed to detect interactions among

genes in the cohort for SAGE. Majority of SAGE samples

are unrelated, in addition to a few families, including, after

Table 1 Design of the simulation experiments

Design I Design II Design III Design IV

Samples 200 families each with a

discordant sibling pair and 200

cases and 200 controls

200 families each with three

siblings and 200 cases and

200 controls

200 families each with three

siblings and 500 cases and

500 controls

320 families each with three

siblings and 200 cases and

200 controls

Case–

control

400 400 1,000 400

Unrelated 800 800 1,400 1,040

Siblings 400 600 600 960

Total

individuals

1,200 1,400 2,000 2,000

In design I, neither parent was affected, whereas in design II–IV at least one parent was affected
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quality control, a total of 3,897 individuals from three

subsamples: the Collaborative Study on the Genetics of

Alcoholism (COGA) (1,178 individuals), the Collaborative

Study on the Genetics of Nicotine Dependence (COGEND)

(1,427 individuals) and the Family Study of Cocaine

Dependence (FSCD) (1,292 individuals). Although many

phenotypes were recorded, we were primarily interested in

the genetic mechanism of nicotine dependence. SNPs in the

nicotinic acetylcholine receptor (nAChR) a4 subunit

(CHRNA4), the nAChR b2 subunit (CHRNB2), the neuro-

trophic tyrosine kinase receptor 2 (NTRK2, also known as

the tyrosine kinase receptor gene, TrkB), and the brain-

derived neurotrophic factor (BDNF) were selected to detect

the G 9 G interaction among these genes.

The PCA was run for the SAGE data to investigate the

population mixture. The score statistics for nicotine

dependence were computed in a logistic regression with

adjustment for age, sex, and the top five principal com-

ponents. The unified method proposed in our study was

used for three sub-samples individually and the whole

sample. As a contrast, the meta-analysis was also con-

ducted with the Fisher’s combining p value method.

Results

Simulation study

As the principal component method can precisely identify

the ancestry of each individual (see the supplementary

result section and supplementary Figs. 1, 2), we could use

principal components to control population structure and

get well-controlled type I error rates (supplementary

Table 1). Simulations suggested UI in general outper-

formed the three reference methods in terms of power

under various settings in the simulations (see supplemen-

tary Table 2 for the impact of the power due to the simu-

lated factors simulated). Figure 1 presents the power

comparison of UI to the three reference methods. As shown

in the first vertical panels (on the left side in Fig. 1), the

means of power over the 1,200 scenarios, denoted by the

black circles whose coordinates in the horizontal and the

vertical axes were the mean of UI and that of a method

compared in each panel, respectively, were about 0.55 for

UI, 0.22 for FAM, 0.21 for CC, and 0.41 for UN. In other

words, UI had a higher, at least 0.14, average power than

the other methods (Also see Table 2 for details). The dots

below the green lines indicate the power values of the other

three methods that were less than 80 % of UI, and most of

those scenarios seemed to be of moderate statistical power

values. And for those over the green lines, most were of

powers close to 1 (few were close to zero), when relative

risk was not less than 2.5 as indicated in panel B. In terms

of power, the second best method was UN (Fig. 1a3), since

around 35 % scenarios reached 80 % power of UI when

relative risk not less than 2.5 under designs III and IV. In

very few scenarios, the dots highlighted in brown in the

first vertical panels, the powers of UI appeared to be lower

than those of the other three methods, but their values were

extremely low. It seemed to be more likely attributed to

sampling errors. Compared with other two reference

methods, UN had the closest power to UI (supplementary

Fig. 3) probably because UN can use more individuals than

CC and FAM (Table 1). As UI can use all individuals in

the simulated samples, whereas the other three methods

could only use a part of them, it seemed quite reasonable

that UI outperformed other methods.

We also examined the influences of different relative

risks on power. Under each factor, simulations under each

relative risk level were plotted as scattered points accord-

ing to the means of power of UI (x-axis) and a reference

method (y-axis) in each panel, providing a straight com-

parison. Then the distributions of the points filled with

different color elucidated the pattern of power value under

each method. As anticipated, the power increased with the

relative risk. UI appeared to increase power substantially

by 0.46 when the relative risk was increased in the interval

of 2.0 (mean power = 0.39) to 2.5 (mean power = 0.85),

but increased by only 0.09 in the interval of 2.5–3.0.

Similar trends were observed in the other three methods.

When relative risk was as low as 1.5, neither UI nor a

reference method demonstrated a practically appreciated

statistical power regardless of the change of other factors.

The mean powers of UI were 0.45 and 0.53 for designs I

and II, respectively, showing an improvement of *0.08

caused by the addition of one offspring in each of the 200

nuclear families. After adding other 600 individuals to

design II, by either recruiting more unrelated samples in

design III or family samples in design IV, the power

increased to 0.606 and 0.607, respectively. This indicates

that an increase in unrelated samples can give a power gain

similar to an increase in nuclear families and, in practical

application, we can adopt either of the two alternative

recruitment schemes according to how easily the sample

can be recruited.

The powers always increased corresponding to the

magnitude of relative risk. The checkerboard models tended

to have higher powers compared with the other two models.

The general patterns are summarized in Fig. 1. The corre-

sponding patterns could be connected to their causes. For

example, in Fig. 1b2, red points (RR = 2.0) were clustered

into two groups, and Table 1 indicates that the upper group

was arisen from an increase in the case–control sample size

by 600 individuals. When the alpha was decreased to 0.01,

powers dropped off (supplementary Table 3). But the

averaged powers (in bold font) dropped less with UI

Hum Genet (2014) 133:139–150 143
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compared with the reference methods. In design IV, the

mean powers of UI decreased from 0.607 down to 0.519 (by

14 %), but for CC, from 0.138 down to 0.07 (by 49 %).

Meta-analysis is used as a method to strengthen the

signal from independent studies. Although FAM method

using siblings only and the UN method using unrelated

Fig. 1 Power comparison between the unified method and three

reference methods given a = 0.05. a The overall comparison of the

power values. The gray points below the blue lines indicate the power

values in their respective reference methods were less than 80 % as

much as the UI method, yellow points (yellow) larger than 80 % but

less than UI, the brown points greater than UI. The means of power

are indicated with black circle, filled with gray, the horizontal value.

b Comparison of the power with regard to the levels of relative risk.

The means of power are indicated by the black circles, filled with

their respective color of the level which they referred to. c Compar-

ison of the power with regard to the study design. The means were

represented the same as the panel b (color figure online)
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individuals can add up together to use the whole sample,

their combined p values, determined by the Fisher’s

method, were not as powerful as our proposed unified

method (supplementary Table 4), consistent with the

results from single-marker association studies (Macgregor

2008; Skol et al. 2007).

Real data analysis

As illustrated in Fig. 2a, there were black, white, and mixed

individuals in the SAGE cohort, and the admixed genetic

background in fact was across each of the three subsamples

in SAGE (Fig. 2b). In this sense, SAGE made itself a suitable

sample for demonstrating the unified GMDR methods.

Recent studies revealed genetic associations with nico-

tine dependence of CHRNA4 (Feng et al. 2004; Li et al.

2005), NTRK2 and BDNF (Beuten et al. 2005). As indi-

cated by biochemical studies, in the brain the a4b2-con-

taining nAChR subtype makes up the majority of the high-

affinity nicotine-binding sites and that under chronic nic-

otine exposure the genes for both subunits are upregulated.

In our previous study, we also discovered the interaction

among CHRNA4, CHRNB2, BDNF, and NTRK2 underlying

nicotine dependence (Li et al. 2008; Lou et al. 2007).

Given the SNP information (dbSNP, Build 135), SAGE

sample was mapped to eight SNP markers in CHRNA4,

four in CHRNB2, 25 in BNDF, and 130 in NTRK2,

respectively, and in total it generated 104,000

(8 9 4 9 25 9 130) tetragenic interactions, one SNP from

each of the four genes. The phenotype of interest was

nicotine dependence, of which SAGE had 1,765 nicotine-

dependent individuals and 2,036 -nondependent individu-

als. The numbers of individuals that survived after quality

control and also had the nicotine dependence phenotype are

shown in Table 3 but the exact individuals used varied, due

to missing genotypes or availability of other covariates,

with each interaction model tested.

Using the unified method, we tested 104,000 tetragenic

interaction models, which include one SNP marker from

each gene. As expected, the distribution of the testing

accuracy is a normal distribution (supplementary Fig. 4).

Figure 3 shows Manhattan plots of the p values from the

analyses of the whole sample and three sub-samples, and

Fig. 2 The principal

components analysis for SAGE.

As there were relatives in the

SAGE sample, two-stage

method, as described in our

method, was used for building

principal components. a The

genetic background of the

SAGE sample were plotted into

the first and the second PC axes.

b The genetic background for

the three sub samples in SAGE

in the first and the second PC

spaces

Table 3 Interaction SNPs detected among CHRNA2, CHRNA4,

BDNF, and NTRK2

Modela Effective

individualsb
Variance

contributed

Testing

accuracy

p value

rs1013402–rs1044394–rs2072660–rs6559840

SAGE 3,786 (134) 0.0176 0.5468 6.46e-06

FSCD 1,275 (121) 0.036 0.5428 5.81e-03

COGA 1,089 (5) 0.0352 0.5156 1.35e-01

COGEND 1,422 (6) 0.0125 0.4691 9.20e-01

META 2.48e-02

a In each model, from left to right, the SNPs are located in BDNF,

CHRNA4, CHRNB2, and NTRK2, respectively
b The used individual for detecting each tetragenic interaction model,

and in the parenthesis were the number of siblings
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the meta-analysis, respectively. The most significant tet-

ragenic interaction model was rs1013402–rs1044394–

rs2072660–rs6559840, having a p value of 6.46e-06,

which was detected in SAGE, whereas its p values in the

each of the subsamples and the meta-analysis for the three

subsamples were less significant. It should also be noticed

that because of the high linkage disequilibrium between

SNPs within genes, the practical threshold of p value would

not be as conservative as the one given by Bonferroni

correction. The p value to declare significance remains an

open question for the detected interactions. However,

accounting for our previous discovery (Li et al. 2008; Lou

et al. 2007), this p value indicated that there was potential

interaction of these four genes underlying nicotine

dependence.

The high-risk and low-risk distribution of the identified

multilocus models could be further illustrated (Fig. 4). The

patterns of high-risk and low-risk cells varied across each

of the different multilocus dimensions, presenting evidence

of epistasis. With increasing interaction loci, it is possible,

given limited sample size, that merging empty genotypic

cells might decrease robustness of a model. The biological

mechanism, partially as revealed (Li et al. 2008), under-

lying the tetragenic model requires further investigation

both through in silico analysis and laboratory verification

in the future. However, it should be noticed that genetic
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Fig. 3 Manhatton plots for SAGE, FSCD, COGEND, COGA, and the meta-analysis. The black square represents the interaction, rs1013402–

rs1044394–rs2072660–rs6559840, which had the highest p value in SAGE and in the three sub samples
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heterogeneity on etiology has not been considered espe-

cially when across multiple cohorts of differential genetic

admixture. It remains to be further investigated whether the

variation of the strength of the illustrated tetragenic signals

in three cohorts reflects power issue or various genetic

etiologies.

Discussion

Detecting G 9 G interaction underlying complex traits is

getting increasing attention in genetic studies. Many the-

oretical and application studies have revealed the

importance of interactions in the formation of phenotypic

outcomes (Zuk et al. 2012). There is little doubt that

interactions among genes play an important role in the

genetic architecture of complex traits. In order to foster

drug development and establish proper medical interven-

tions, identifying G 9 G can be crucial. There are a few

terms, such as statistical interaction, epistatic interaction,

and additive interaction, commonly used in describing

gene–gene interactions, as summarized in the literature

(Wang et al. 2010). In our study, the interpretation of the

interaction defined in this report is close to multilocus

model or joint action of genes. Once interaction models of

interest are identified using the method proposed, follow-

Fig. 4 The interaction pattern among rs1013402–rs1044394–

rs2072660–rs6559840. In each cell, the left bar represents a positive

score, and the right bar a negative score. High-risk cells are indicated

by dark shading, low-risk cells by light shading, and empty cells by

no shading. Note that the patterns of high-risk and low-risk cells

differ across each of the different multilocus dimensions, presenting

evidence of epistasis
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up analysis might be applied depending on the purpose of

the study. If statistical interaction is of interest, for exam-

ple, main effects and interaction effects can be further

estimated for a detected multilocus model. Given the

method introduced in this report, after correction for pop-

ulation stratification, the unified GMDR can maximize the

number of individuals available in the sample. As dem-

onstrated in our simulations, the unified method had higher

power in many of the scenarios simulated.

For the unified method proposed, the first step is to

capture the genetic background of the sample. Currently, a

couple of methods have been proposed (Price et al. 2010).

PC coordinates can be inferred from the unrelated set of the

sample (Zhu et al. 2008), such as used in our method, or

inferred from another independent dataset. As demon-

strated in our study, this method, either applied to an

admixed population or a discrete population, can extract

population structure in terms of ancestral origin very well

and consequently control the type I error rate. The genetic

interpretation of the first principal component was well

connected to the averaged coalescent times between pop-

ulations and Wright’s Fst statistics (McVean 2009),

whereas the interpretation of admixed population, such as

African Americans, requires careful modeling of the his-

torical gene flow (Gravel 2012). Alternatively, mixed

model approaches are also applied to control for population

structure which may inflate the type I error rate (Wu et al.

2011). From the viewpoint of genetics, both methods used

nearly the same genetic information. Using PCA tends to

consider the effects due to genetic origin as fixed, whereas

mixed model approaches treat them as random. So far, no

conclusion is reached on which method is more appropriate

in application. Although we demonstrated the advantage of

improving statistical power after adjusting population

structure by PCA, which are served as covariates in

building the score statistic, the impact of including covar-

iates may depend on other factors, such as prevalence of

the disease. It should be noticed that decreasing power may

occur under some scenarios (Pirinen et al. 2012). This topic

deserves further investigation in relation to our method.

We assume there is no relatedness between the case–

control individuals and the founders, who are used in esti-

mating eigenvectors. In some cases, particularly in the

context of samples from isolated populations, cryptic

relatedness may be problematic or there exists known

relatedness. The kinship coefficients or estimated kinship

coefficients need to be incorporated into the statistical

model for eliminating relatedness effects (Bourgain et al.

2003; Choi et al. 2009). Furthermore, stringent quality

control should be applied for excluding subjects with

cryptic relatedness from GMDR analysis when it is an issue.

In the real data analysis, although our previous analysis

(Lou et al. 2007) also detected tetragenic interaction

analysis for nicotine dependence, a case–control sample,

with 382 subjects, was used at that time and as a result the

p value was not as significant as demonstrated in the

present study. Classifying nicotine dependence into cases

and controls also results in loss of information and con-

sequently in underestimating the genetic variance it

explains. The real data analysis in this report showed more

advantageous in power than our previous study. With our

proposed method, it used a much bigger sample size,

superior in statistical power after its population stratifica-

tion had been corrected. As a typical complex trait, the

genetic variants underlying the formation of nicotine

dependence may be tiny in effect size but large in their

total number. To reveal their genetic architecture, using

single-marker based methods seems insufficient. As dem-

onstrated in this report, as well as previous success cases,

methods such as UGMDR may empower the discovery of

the genetic determinants.

Limitations should be noticed for the proposed method.

As it is currently designed for pooling unrelated sample

with siblings from the nuclear families, complex pedigrees

require more sophisticated calculation, such as attempt of

controlling population structures with linear models or

using flexible permutation strategies. In theory, the unified

method can be extended to complex pedigrees but will

increase the computational time exponentially with the

generations included. The computational challenge and

multiple testing problem also pose another hurdle in

practice, especially for detecting high-order interactions for

the whole genome data. More theoretical and computa-

tional work is required to address these challenges.
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