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ABSTRACT: Although comorbidity among complex diseases (e.g., drug dependence syndromes) is well documented, genetic
variants contributing to the comorbidity are still largely unknown. The discovery of genetic variants and their interactions
contributing to comorbidity will likely shed light on underlying pathophysiological and etiological processes, and promote
effective treatments for comorbid conditions. For this reason, studies to discover genetic variants that foster the development
of comorbidity represent high-priority research projects, as manifested in the behavioral genetics studies now underway. The
yield from these studies can be enhanced by adopting novel statistical approaches, with the capacity of considering multiple
genetic variants and possible interactions. For this purpose, we propose a bivariate Mann-Whitney (BMW) approach to
unravel genetic variants and interactions contributing to comorbidity, as well as those unique to each comorbid condition.
Through simulations, we found BMW outperformed two commonly adopted approaches in a variety of underlying disease and
comorbidity models. We further applied BMW to datasets from the Study of Addiction: Genetics and Environment, investigat-
ing the contribution of 184 known nicotine dependence (ND) and alcohol dependence (AD) single nucleotide polymorphisms
(SNPs) to the comorbidity of ND and AD. The analysis revealed a candidate SNP from CHRNA5, rs16969968, associated
with both ND and AD, and replicated the findings in an independent dataset with a P-value of 1.06 × 10–03.
Genet Epidemiol 00:1–8, 2013. C© 2013 Wiley Periodicals, Inc.
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Introduction

Radical breakthroughs in biotechnologies have made it pos-
sible to rapidly and accurately genotype millions of sin-
gle nucleotide polymorphisms (SNPs) at an affordable cost.
Benefiting from these high-throughput technologies and the
HapMap project [The International HapMap Consortium,
2003], there has been significant progress in genome-wide
association studies focused on discovering novel genetic vari-
ants that contribute to complex human diseases [Barrett et al.,
2008; Baum et al., 2008; Bierut et al., 2004, 2010; Capo-
raso et al., 2009; Ferreira et al., 2008; Moskvina et al., 2009;
Schlaepfer et al., 2008b; Sklar et al., 2008; Treutlein et al.,
2009; Wang et al., 2011; Wellcome Trust Case Control Con-
sortium, 2007]. With the increase in genetic findings, con-
verging evidence has revealed that the same genetic variants
could be associated with multiple related-disease outcomes.
For example, recent studies have provided evidence that the
neuronal nicotinic acetylcholine receptor (nAChRs) subunit
genes may play an important role in the common pathophys-
iological pathway of nicotine dependence (ND) and alcohol
dependence (AD) [Clark et al., 2001; John et al., 2003; Riala
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et al., 2004]. Similarly, clinical and epidemiological studies
have suggested a high degree of comorbidity between bipolar
disorder and migraine, which could be partially explained by
a shared genetic component [Bowden et al., 2000; Dilsaver
et al., 2009a, b; Oedegaard et al., 2010a, b]. Despite these
findings, the pathophysiology and etiology of disease comor-
bidity remain largely unknown [Oedegaard et al., 2010a]. It is
of great importance to identify genetic variants and environ-
mental determinants common to disease comorbidity, as well
as those are unique to each condition, as this helps elucidate
the causes of comorbidity, and promotes new diagnostic and
therapeutic strategies for both diseases.

The concept of “comorbidity” was first introduced in the
1970s by Feinstein. It stands for the scenario in which “a
distinct clinical entity” occurred together with a specific dis-
ease under study [de Groot et al., 2003; Feinstein, 1970; Maj,
2005]. Recently, multicomorbidity has been introduced, re-
ferring to a scenario where multiple medical conditions oc-
cur in one person without an emphasis on the presence
of a specific disease [Bayliss et al., 2008; Valderas et al.,
2009]. Both comorbidity and multicomorbidity are used
in the domains of clinical care, epidemiology studies, and
health service policies [Bayliss et al., 2008; Campbell-Scherer,
2010; de Groot et al., 2003; Feinstein, 1970; Gijsen et al.,
2001; Maj, 2005; Valderas et al., 2009]. In the rest of this
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paper, we use comorbidity to refer to both comorbidity and
multicomorbidity.

The relation between comorbid conditions is complex and
presents in various forms. To describe the underlying mech-
anisms leading to disease comorbidity, Neale and Kendler
have proposed 13 theoretical comorbidity models [Neale and
Kendler, 1995; Rhee et al., 2004]. The simplest scenario is that
comorbid conditions are independent of each other and oc-
cur together simply by chance or due to a third distinct disease
[Neale and Kendler, 1995]. Comorbidity can also be the cause
or consequence of one of the comorbid conditions, with pos-
sible reciprocal causality [de Groot et al., 2003; Neale and
Kendler, 1995; Simonoff, 2000]. Another common scenario
is that comorbid conditions share the same or correlated risk
factors, which makes the comorbid conditions more likely to
occur together [Lind et al., 2010; Neale and Kendler, 1995;
Youngstrom et al., 2010]. In certain circumstances, comor-
bidity may also be due to the fact that the comorbid condi-
tions are alternate manifestations of a single liability [Neale
and Kendler, 1995].

A common approach for studying comorbidity is the com-
posite phenotype (COM) approach, in which the “cases” are
defined as individuals with all comorbid conditions, while
the “controls” are defined as individuals with none of the
comorbid conditions [Bierut et al., 2004; Lind et al., 2010;
Oedegaard et al., 2010a]. Though easy to implement, such
an approach does not take individuals with only one of the
comorbid conditions into account. As a consequence of the
reduced sample size, it may lack the power to catch patho-
physiological pathways underlying the disease. In addition,
COM is designed to identify common genetic variants leading
to comorbidity, but not unique genetic variants for each dis-
ease outcome. Another approach to study comorbidity is the
EITHER approach, which defines cases as individuals with
at least one of the comorbid conditions and the controls as
individuals without the comorbid conditions. However, sim-
ilar to COM, EITHER cannot differentiate common genetic
variants from unique genetic variants. Moreover, EITHER is
subject to reduced power if the genetic etiologies of the two
comorbid conditions are independent of each other. To ad-
dress these limitations, we propose a bivariate Mann-Whitney
(BMW) approach for comorbidity study. The proposed ap-
proach utilizes the entire sample and is capable of capturing
shared genetic variants and their possible interactions con-
tributing to disease comorbidity, as well as unique genetic
variants for each disease outcome. In the following sections,
we first lay out the details of the BMW approach, and then
evaluate the performance of the proposed approach with sim-
ulations. Finally, we apply the new approach to a large-scale
dataset from the Study of Addiction: Genetics and Environment
(SAGE) to study the comorbidity between AD and ND.

Method

Consider a comorbidity study of N unrelated individuals
and G genetic markers, where we are interested in identifying
shared and unique disease susceptibility markers contribut-

ing to comorbid conditions. Let Yk (k = 1, 2) be the response
measurement of kth condition and Z = {Z 1, Z 2, . . . , Z G } be
the measurement of G markers, where Yk = 1 and Yk = 0 for
individuals with and without the kth condition, respectively.
Comorbidity stands for the scenario where two conditions
occur in the same person (i.e.,Y1 = Y2 = 1). The BMW ap-
proach first applies a Mann-Whitney based forward selection
algorithm [Lu et al., 2012] to search for genetic variants and
interactions predisposing to each of the two conditions. The
algorithm starts with a null model without any genetic mark-
ers and then gradually selects disease-susceptibility markers
into the model. In step one, it searches all G genetic markers
for the marker most strongly associated with the given condi-
tion. In step two, it searches for the second marker that is most
related to the condition, considering its possible interaction
with the marker selected at step one. The whole process con-
tinues until it reaches a full model. K-fold cross-validation is
then used to choose the most parsimonious model.

By applying Mann-Whitney based forward selection to
each of two conditions, we identify two sets of disease-
susceptibility markers, X 1 = {Z p 1 , Z p 2 , . . . , Z p M }, M ≤ G
and X 2 = {Z q1 , Z q2 , . . . . . . , Z qS }, S ≤ G , for conditions 1
and 2, respectively. Let X C = X 1 ∩ X 2 be the common
set of markers shared by both diseases, X U1 = X 1 ∩ X C

be the subset of markers unique to disease 1, and X U2 =

X 2 ∩ X C be the subset of markers unique to disease 2. We
use X i,C to denote the measurements of shared loci for sub-
ject i, and useX i,U1 and X i,U2 to denote the measurements of
loci unique to disease 1 and loci unique to disease 2 for sub-
ject i, respectively. The likelihood ratio (LR) of individual i
for the shared markers, measuring the risk of shared mak-

ers with the disease, can be defined asL R(X i,C) =
P (X i,C |Y �=0)
P (X i,C |Y=0) ,

where Y = { 1 if Y1 = 1 or Y2 = 1
0 if Y1 = 0 and Y2 = 0 and X C �= Ø. Similarly,

we define the LR of individual i for the unique markers

as L R(X i,Uk ) =
P (X i,Uk |X i,C ,Yk=1)

P (X i,Uk |X i,C ,Y=0) , where X C �= Ø, X Uk �= Ø and

k = 1, 2. In the cases where a null set occurs (i.e., no marker
has been selected), we define
⎧⎨
⎩

L R(X i,Uk ) =
P (X i,Uk |Yk = 1)

P (X i,Uk |Y = 0)
; L R(X i,C) = 1 X C = Ø

L R(X i,Uk ) = 1 X Uk = Ø
.

Given the LRs for shared and unique markers, a joint LR
for individual i can be defined as,

L RM
i = L R(X i,C)

2∏
k=1

L R(X i,Uk ), (1)

Based on the joint LR, we derived a BMW statistic to as-
sess the joint association of disease-susceptibility markers,
allowing for gene-gene interactions,

UBMW =

NY �=0∑
i=1

NY=0∑
j =1

ψ(L RM
i , L RM

j ), (2)

where NY �=0 and NY=0 are the number of individuals with at
least one of two diseases, and the number of individuals with-
out either of the diseases, respectively. The kernel function ψ
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equals 1 if L RM
i is greater than L RM

j , 0.5 if equal, and 0 if
less. Hypothesis testing can then be conducted to assess the
significance of the joint association,

z =

UBMW –
NY �=0NY=0

2√
SD + SD̄

, (3)

where SD =
∑NY �=0

i=1 (
∑NY=0

j =1 ψ(L RM
i , L RM

j )– UBMW

NY �=0
)2 and SD̄ =

∑NY=0
j =1 (

∑NY �=0

i=1 ψ(L RM
i , L RM

j ) – UBMW

NY=0
)2, derived based on the

result of Lu et al. [DeLong et al., 1988; Lu et al., 2012].
Under the null, Z asymptotically follows a standard normal
distribution.

Simulations

Scenario I

In the first set of simulations, we compared the perfor-
mance of BMW with COM and EITHER under a variety of
comorbidity correlation models. We simply simulated two
comorbid diseases and considered a series of comorbidity
models: a model where two diseases were unrelated; a model
where two diseases shared one SNP; a model where two dis-
eases shared a two-locus interaction; and a model where two
diseases were associated with the exact same disease suscep-
tibility loci. Each comorbid disease was associated with a
two-locus interaction and an independent SNP, where we
assumed the two-locus interaction followed a multiplicative-
interaction model or a threshold-interaction model [Mar-
chini et al., 2005], and the independent SNP was additive.
In the multiplicative-interaction model, the odds increases
multiplicatively with the number of disease-susceptibility al-
leles given both loci have at least one disease-susceptibility
allele. In the threshold model-interaction, we can group two-
locus genotypes into two risk groups: (1) a single high-risk
group for all individuals having at least one of the disease-
susceptibility alleles at each of the two loci, and (2) a com-
mon low-risk group for all other individuals [Marchini et al.,
2005]. For the multiplicative-interaction model, we assume
the odds ratios of the interaction loci and the independent
loci to be 1.45. For the threshold-interaction model, the odds
ratios for two interaction loci and two independent loci were
assumed to be 1.7, 1.7, 1.7, and 1.65, respectively. The de-
tails of model settings were summarized in the Supporting
Information (Table S1). All genetic variants were simulated
under the Hardy-Weinberg Equilibrium assumption with mi-
nor allele frequencies ranging from 0.3 to 0.4. In addition to
disease-susceptibility loci, we also introduced five nondis-
ease SNPs for each disease, and randomly assigned their mi-
nor allele frequencies from a uniform distribution ranging
from 0.1 to 0.5. For each underlying correlation model, 1,000
replicates were simulated, each comprised of 1,000 control
individuals and 1,000 affected individuals with at least one
of the comorbid conditions. We analyzed each replicate by
using the proposed BMW approach, the COM approach,
and the EITHER approach. To be consistent with BMW, the

same Mann-Whitney based forward selection algorithm was
used in COM and EITHER to search for genetic variants
and interactions predisposing to the comorbidity of diseases.
However, unlike BMW, COM, and EITHER consider the dis-
ease outcome as a univariate variable, and thus use a different
test statistic for association test [Lu et al., 2012]. The differ-
ence between COM and EITHER is how they define cases
and controls. COM considers individuals with both comor-
bid conditions as cases, while EITHER treats individuals with
at least one of the comorbid conditions as cases. In a study
where the disease-associated genetic variants and interactions
to be tested are predetermined (e.g., in a replication study),
asymptotic test can be used to assess the significance of the
association. However, in a study where the disease model is
unknown (e.g., in an initial study), selecting the model and
performing the asymptotic test on the same dataset could af-
fect the null distribution, leading to an inflated Type 1 error.
Therefore, a permutation process, where the phenotype was
randomly permuted, was implemented in the simulation to
generate the empirical null distribution. In the permutation
process, we performed 1,000 permutation to form the em-
pirical distribution, and obtained the empirical P-value by
comparing the observed statistic to the empirical null distri-
bution.

The Type I error and power for each comorbidity model
were summarized in Table 1. The results showed that the
Type I errors from all three approaches were well controlled
at the level of 0.05. We also observed that the power of COM
increased with the increase of shared genetic components. In
an extreme case, when the two comorbid conditions shared
the same genetic loci, the power of COM attained its highest
value, which can be largely explained by the increasing num-
ber of individuals with both comorbid conditions. Neverthe-
less, when the two comorbid conditions were independent
and the simultaneous manifestation of both diseases occurred
only by chance, the power of COM was significantly reduced.
The performance of EITHER also highly depended on the un-
derlying disease models. EITHER attained high power if two
diseases shared the same or similar disease mechanisms, and
had low power if two diseases were independent of each other.
Compared with COM and EITHER, BMW attained higher, or
at least equivalent, power under all models. The performance
of BMW was also less affected by the relationship between
comorbid conditions, remaining almost the same across all
models. While we expect that COM has no power under the
model where two diseases are independent with no shared
loci, the results showed that COM obtained power of 0.530
and 0.561 under the multiplicative-interaction model and
the threshold-interaction model, respectively. As we demon-
strated in a later simulation (Scenario III), the power of COM
can also be partially explained by loci unique to each con-
dition (i.e., if a locus is strongly associated with one of the
comorbid conditions, it could also have an effect on a subset
of individuals with two conditions). However, the drawback
of both COM and EITHER is that, unlike BMW, they can-
not distinguish the shared and unique disease-susceptibility
loci.
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Table 1. Type I error and power of BMW, COM, and EITHER under multiplicative-interaction model and threshold-interaction model

Multiplicative interaction Threshold interaction

Models BMWa COMb EITHERc BMWa COMb EITHERc

Without shared loci
Disease 1: A+B*C Power 0.970 0.530 0.420 0.880 0.561 0.351
Disease 2: D+E*F Type I error 0.040 0.050 0.020 0.041 0.050 0.010

Shared one locus
Disease 1: A+B*C Power 0.930 0.650 0.760 0.931 0.570 0.730
Disease 2: A+D*E Type I error 0.055 0.010 0.043 0.049 0.041 0.041

Shared two loci
Disease 1: A+B*C Power 0.969 0.826 0.967 0.950 0.680 0.900
Disease 2: D+B*C Type I error 0.049 0.050 0.038 0.058 0.060 0.068

Shared all loci
Disease 1: A+B*C Power 0.989 0.929 0.997 0.989 0.809 0.990
Disease 2: A+B*C Type I error 0.055 0.041 0.035 0.054 0.031 0.012

Bold and Italic letters represent the shared loci between two diseases.
a Bivariate Mann-Whitney (BMW) approach.
b Composite phenotype approach, in which cases were defined as individuals with both diseases and the controls were healthy individuals.
c The cases were defined as individuals with at least one of the comorbid diseases, and the controls were healthy individuals.

Scenario II

In this set of simulations, we varied both underlying dis-
ease models and relations between two comorbid condi-
tions, and evaluated their impact on the three approaches.
We started with a simple model with a two-locus interac-
tion and two independent loci, and then considered a more
complex model involving a high-order interaction (i.e., a
three-locus interaction) and a model involving more than
one interaction (i.e., two two-locus interactions). The com-
mon disease-susceptibility loci contributing to both diseases
were assumed to be (1) the interacting loci, (2) the interacting
loci and one independent locus, and (3) two independent loci.
Two types of interaction models, a multiplicative-interaction
model and a threshold-interaction model [Marchini et al.,
2005], were considered in the simulation. The odds ratios
for the multiplicative-interaction model were set within the
range of 1.3 to 1.4, while the odds ratios for the threshold-
interaction model were set between 1.3 and 1.6. The details of
the simulation settings were summarized in the Supporting
Information (Table S2).

The Type I errors were well controlled at the level of 0.05
for all three approaches (Table 2). Similar to the result from
simulation I, the performance of COM and EITHER was
highly dependent on underlying disease models. Compared
with COM and EITHER, BMW was robust to a variety of rela-
tions between two comorbid conditions, and attained higher
power under all of simulated disease models, regardless of
the complexity of the disease models and the different types
of interaction models.

Scenario III

One of the unique features of BMW is that it can dis-
tinguish unique loci predisposing each comorbid condition
from common loci contributing to comorbidity. To demon-
strate this feature, a simple disease model was simulated
where each of the two comorbid diseases was associated with
a common two-locus interaction and a unique locus. We var-

ied the ratio of the effect size of the two-locus interaction
to that of the independent loci, and calculated the proba-
bility of misclassifying a unique locus as a shared locus. In
addition, for BMW approach, we also calculated the proba-
bility of misclassifying a shared locus as a unique locus. Both
multiplicative-interaction and threshold-interaction models
were considered in the simulation. As EITHER is unable to
identify common loci contributing to comorbidity, we only
compared the performance between COM and BMW in the
simulation. The details of the model settings and the results
were summarized in Table 3.

As shown in Table 3, when the effect size of risk loci unique
to each disease increases, the COM approach is more likely
to misclassify them as common risk loci. COM considers all
of the selected loci as common loci without differentiating
between unique and shared loci. In contrast to COM, BMW
only considers loci selected for both conditions as shared loci,
while treats the remaining loci as unique loci. Thus, it has the
capacity to differentiate unique and shared loci. As seen in
Table 3, BMW remains a low and stable misclassification rate,
regardless of the effect size of the unique loci. In addition,
we also calculated the rates of misclassifying common loci as
unique loci by BMW, and on average the rates were 11.2% and
12.9% for multiplicative-interaction model and threshold-
interaction model, respectively.

Results

Application to ND and AD

We applied the proposed approach to datasets from SAGE,
investigating genetic variants and interactions contributing
to comorbidity between AD and ND (dbGaP study acces-
sion phs000092.v1.p1). SAGE is one of the largest and most
comprehensive genetic datasets for addiction genetic epi-
demiology research [Bierut et al., 2010]. The participants
of the SAGE were unrelated individuals selected from three
independent studies: the Collaborative Study on the Genetics
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Table 2. Type I error and power of BMW, COM, and EITHER under multiplicative-interaction model and threshold-interaction model

Multiplicative interaction Threshold interaction

Models BMWa COMb EITHERc BMWa COMb EITHERc

Two-locus interaction models
Disease 1: A*B+C+D Power 0.991 0.840 0.990 0.887 0.828 0.828
Disease 2: A*B+C+E Type I error 0.050 0.051 0.051 0.047 0.066 0.039
Disease 1: A*B+C+D Power 0.972 0.649 0.951 0.887 0.588 0.734
Disease 2: A*B+E+F Type I error 0.043 0.049 0.040 0.065 0.048 0.065
Disease 1: A*B+C+D Power 0.928 0.407 0.755 0.820 0.573 0.794
Disease 2: E*F+C+D Type I error 0.052 0.053 0.045 0.040 0.054 0.042

Three-locus interaction models
Disease 1: A*B*C+D+E Power 0.931 0.793 0.905 0.928 0.847 0.880
Disease 2: A*B*C+D+F Type I error 0.053 0.045 0.049 0.050 0.066 0.051
Disease 1: A*B*C+D+E Power 0.900 0.729 0.779 0.901 0.820 0.829
Disease 2: A*B*C+F+G Type I error 0.045 0.045 0.048 0.039 0.053 0.049
Disease 1: A*B*C+D+E Power 0.822 0.359 0.461 0.828 0.486 0.602
Disease 2: F*G*H+D+E Type I error 0.053 0.040 0.046 0.041 0.069 0.041

Two two-locus interaction models
Disease 1: A*B+C*D+E Power 0.996 0.876 0.984 0.975 0.964 0.940
Disease 2: A*B+C*D+F Type I error 0.044 0.067 0.067 0.048 0.059 0.048
Disease 1: A*B+C*D+E Power 0.996 0.874 0.985 0.946 0.885 0.927
Disease 2: A*B+F*G +E Type I error 0.054 0.048 0.061 0.050 0.060 0.050
Disease 1: A*B+C*D+E Power 0.907 0.427 0.596 0.885 0.713 0.748
Disease 2: F*G+H*I+E Type I error 0.039 0.064 0.053 0.052 0.043 0.049

Bold and Italic letters represent the shared loci between two diseases.
a Bivariate Mann-Whitney (BMW) approach.
b Composite phenotype approach, in which cases were defined as individuals with both diseases and the controls were defined as individuals free of diseases.
c The cases were defined as individuals with at least one of the comorbid disease, and the controls were defined as individuals without any co-morbid diseases.

Table 3. Misclassification rates of unique loci to common loci and misclassification rates of common loci to unique loci

Multiplicative interaction Threshold interaction

MRU→C
a MRC→U

b MRU→C
a MRC→U

b

Disease model Odds ratio BMWc BMWc COMd BMWc BMWc COMd

Disease 1: A*B+C 1.4;e 1.9;f 1.9g 0.136 0.115 0.749 0.200 0.146 0.903
1.5;g 1.4;e 1.8;f 1.8g 0.131 0.106 0.679 0.205 0.151 0.835

1.4;e 1.7;f 1.7;g 0.138 0.105 0.587 0.215 0.147 0.826
1.4;e 1.6;f 1.6g 0.145 0.089 0.500 0.142 0.116 0.808

1.4;e 1.5f 0.137 0.090 0.414 0.133 0.141 0.713
Disease 2: A*B+D 1.4;e 1.4;f 1.4g 0.125 0.079 0.319 0.108 0.160 0.659

1.4;e 1.3;f 1.3g 0.098 0.075 0.333 0.093 0.158 0.567
1.4;e 1.2;f 1.2g 0.074 0.083 0.256 0.045 0.149 0.494
1.4;e 1.1;f 1.1g 0.030 0.112 0.261 0.024 0.148 0.500

Bold and Italic letters represent the shared loci between two diseases.
a Misclassification rate of common loci to unique loci.
b Misclassification rate of unique loci to common loci.
c Bivariate Mann-Whitney approach.
d Composite phenotype approach, in which cases were defined as individuals with both diseases and the controls were healthy individuals.
e Odds ratio for the common risk loci.
f Odds ratio for the risk locus unique to disease 1.
g Odds ratio for the risk locus unique to disease 2.

of Alcoholism (COGA), the Family Study of Cocaine Depen-
dence (FSCD), and the Collaborative Genetic Study of Nicotine
Dependence (COGEND). The SAGE included standardized
diagnostic assessments of DSM-IV ND and AD, for which
an ample number of ND cases (n = 1,848), AD cases (n =

1,938), and controls (n = 1,590) exist (Table S3). SAGE geno-
typing is based on the Illumina Human 1M DNA Analysis
BeadChip.

Based on the existing literature, we identified 152 SNPs and
32 SNPs that had been reported for potential association with
ND and AD, respectively. The SNPs included in the study were
those having prior association evidence with ND and AD,

or those allocated in the region where significant haplotype
blocks have been reported. The detailed information of these
SNPs was listed in the Supporting Information (Table S4).
Among these SNPs, genotypes for 127 SNPs were available
in the SAGE dataset, and the remaining SNPs were imputed
using IMPUTE2 software (IMPUTE2 version 2.2.2) [Howie
et al., 2009, 2011]. Depending on whether a SNP can be
imputed using HapMap reference panels, the founders of
CEU and YRI from HapMap phase III or from the 1000
Genome Project, were used as the reference panels to impute
genotypes of the Caucasian and African American subjects,
respectively.
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Table 4. Summary of models identified in the Caucasian and African American samples

P-values

Model Sample used COGA FSCD COGEND Selected SNPs Allele Chromosome Position Gene Disease

1 Caucasian 8.23 × 10–03 1.06× 10–03 0.409 rs16969968 A/G 15 78882925 CHRNA5 AD, ND
2 African American 3.51× 10–07 0.443 0.821 rs2964911 C/T 5 163724281 LARP4 AD, ND

rs1782134 C/T 14 41715568 AD
rs10889635 A/G 1 67075575 SGIP1 ND

Table 5. Odds ratio for rs16969968 associated with comorbidity
in the Caucasian samples

Odds ratios

COGA FSCD COGEND

Alcohol dependencea 0.676 0.560 1.148
(0.511, 0.894)b (0.398, 0.788) (0.873, 1.508)

Nicotine dependencea 0.697 0.623 1.122
(0.518, 0.938) (0.438, 0.885) (0.880, 1.430)

Comorbiditya 0.678 0.610 1.202
(0.501, 0.919) (0.421, 0.883) (0.891, 1.621)

a GG is the reference group.
b 95% confidence interval.

We initiated a bivariate analysis of comorbid conditions
among 184 known AD and ND SNPs by applying BMW to
each of the African American and the Caucasian samples in
the COGA dataset. The initial findings identified from COGA
were then validated in the FSCD and COGEND datasets. In
the Caucasian sample, rs16969968 (CHRNA5) was identified
to be associated with both AD and ND, with P-values of
8.23 × 10–03 and 1.06 × 10–03 in COGA and FSCD, respec-
tively. However, the findings cannot be replicated in the Cau-
casian sample from the COGEND dataset (P-value = 0.409).
The lack of association between the identified SNP and the
comorbidity in COGEND may partially due to the fact that
nondependent smoking individuals were recruited as con-
trols in COGEND. The effects of the genetic variants leading
to comorbidity may thus be attenuated compared with the
studies where nonsmoking individuals serve as controls. The
lack of replication could also be due to the complexity of the
trait. For instance, the ND cases were defined by DSM-IV,
which was an arguably poor diagnosis criterion compared
with the Fagerstrom dependence criteria. Further analysis
using logistic regression was conducted to explore the associ-
ation between rs16969968 and the two comorbid conditions
in the Caucasian samples. Based on the logistic regression
analysis, we found Caucasian individuals carrying GG geno-
type of rs16969968 had increased risk of having both AD and
ND in COGA and FSCD, whereas the risk associated with
three genotypes remained the same for the Caucasian sample
in COGEND (Table 5).

In the African American sample, BMW identified a three-
locus joint association model, reached an uncorrected P-
value of 3.51×10–07 in COGA (Table 4). However, the finding
was not replicated in the remaining two datasets (i.e., P-values
in FSCD and COGEND were 0.443 and 0.821, respectively).
The lack of association of the identified model in the African
American subjects may partially due to the relatively small

number of the African American in the dataset (Table S3).
With a moderate number of candidate SNPs and a small
sample size, the model identified in the African American
sample could be just a chance finding.

Similar to the analyses using BMW, we conducted stratified
analyses by applying COM and EITHER to each of the Cau-
casian and the African American samples. In the Caucasian
samples, both COM and EITHER identified the same risk
SNP, rs16969968, as the one selected by BWM. In Caucasian
samples from COGA, the selected model reached P-values
of 0.012 and 8.23 × 10–03 for COM and EITHER, respec-
tively. Similar to the findings of BMW, the association was
replicated in FSCD with P-values of 8.66 × 10–03 and 1.056
× 10–03 for COM and EITEHR, respectively. In the African
American sample, the COM approach identified only one
risk SNP, rs2964911, which is among the shared loci identi-
fied by BMW. The SNPs identified by the EITHER approach
were the same as those selected by BMW. The P-values of the
models selected by COM and EITHER in the COGA African
American sample attained 9.26 × 10–03 and 3.28 × 10–04,
respectively. However, similar to BMW, the models cannot
be replicated in the other datasets.

Discussion

Comorbidity among complex human diseases is believed
to be caused by interplay between multiple genetic vari-
ants and environmental determinants. Identifying genetic
and environmental risk predictors contributing to comor-
bidity will promote a better understanding of disease etiol-
ogy, and may eventually lead to new diagnostic and ther-
apeutic strategies [de Groot et al., 2003; Feinstein, 1970;
Maj 2005]. The yield from the discovery process can be
enhanced by adopting novel statistical approaches. A mul-
tivariate joint association approach allowing for gene-gene
interactions can facilitate the detection of genetic variants
and gene-gene interactions contributing to comorbid con-
ditions. For this purpose, we developed a BMW approach
for the identification of genetic variants contributing to co-
morbid conditions, with the consideration of high-order
interactions. Similar to other Mann-Whitney based meth-
ods [Lu et al., 2012], it is a nonparametric approach, which
does not assume a model of inheritance, and is free of the
issues of an increasing number of parameters. BMW adopts a
forward selection algorithm, which substantially reduces the
searching space of interaction combinations and allows for
high-order interactions. These features make BMW more ap-
pealing for a comorbidity study of complex diseases with the
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consideration of possible interactions. Though the approach
is illustrated with two disease outcomes, it can also be easily
extended to multiple disease outcomes.

Through simulations, we have shown that BMW attained
higher power than both COM and EITHER under a vari-
ety of disease models, and was more robust under different
correlation models between comorbid conditions. We con-
sider this important, as our knowledge of disease comorbidity
is limited, and the underlying correlation among comorbid
diseases could vary from case to case. While the COM only
identifies risk variants predisposing to both diseases and the
EITHER cannot differentiate the shared loci from the unique
loci, BMW allows for the identification of genetic risk vari-
ants common to comorbid conditions, as well as those unique
to each comorbid condition. Compared with COM, BMW
makes use of the entire sample, which potentially increases
the power to identify genetic variants associated with comor-
bid conditions, especially when the comorbidity rate is low or
when there are few comorbidity individuals in the data. In an
extreme case, where each dataset is designed to study one of
the comorbid conditions and the information regarding the
other disease statuses is not measured, COM is not applica-
ble, as there is no affect individual according to its definition.
Nevertheless, we can still use BMW in such case, as it selects
risk loci for each disease and then builds an overall test to
assess the association.

Twin studies have suggested a substantial genetic correla-
tion between ND and AD [True et al., 1999]. Although the
comorbidity of ND and AD is well documented, genetic vari-
ants and gene-gene interactions contributing to the comor-
bidity are still largely unknown[Schlaepfer et al., 2008b]. In
our analysis, we identified a CHRNA5 SNP associated with
both AD and ND in the Caucasians sample of the COGA
dataset, and then confirmed the finding in the FSCD dataset.
Further analysis suggested Caucasian individuals carrying
GG genotype of rs16969968 had increased risk of having
both AD and ND. The identified SNP, rs16969968, which has
been reported to be associated with ND [Berrettini et al.,
2008; Saccone et al., 2007; Stevens et al., 2008; Thorgeirsson
et al., 2008], is located within CHRNA5, a subunit gene of
nAChRs [Berrettini et al., 2008; Bierut et al., 2007; Caporaso
et al., 2009; Ehringer et al., 2007; Grucza et al., 2008; Schuckit
et al., 2008; Spitz et al., 2008; Stevens et al., 2008; Thorgeirs-
son et al., 2008; Zeiger et al., 2008]. Although rs16969968
(CHRNA5) itself has not been reported to be associated with
AD, the SNP rs1051730, which is in high-linkage disequi-
librium with rs16969968 (CHRNA5; European: r2 = 0.902,
Japanese/Chinese: r2 = 1.000) [Ware et al., 2011], had been re-
ported to be associated with AD [Wang et al., 2009]. Previous
evidence from pharmacological, epidemiological, and neu-
rochemical studies have suggested that subunits of nAChRs
may be a common action site for AD and ND [Aistrup et al.,
1999; Butt et al., 2004; Hoft et al., 2009; Larsson and En-
gel, 2004; Schlaepfer et al., 2008a; Wang et al., 2009]. This
finding further confirmed the important role of nAChRs in
the common biology pathway of ND and AD. Although the
association rs16969968 (CHRNA5) reached a statistically sig-
nificant level and can be replicated in another independent

dataset, follow-up studies would be needed to further repli-
cate and study the role of CHRNA5 in the comorbidity of ND
and AD.
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