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Alcohol dependence (AD) is a heritable substance addic-

tion with adverse physical and psychological conse-

quences, representing a major health and economic

burden on societies worldwide. Genes thus far impli-

cated via linkage, candidate gene and genome-wide

association studies (GWAS) account for only a small

fraction of its overall risk, with effects varying across

ethnic groups. Here we investigate the genetic architec-

ture of alcoholism and report on the extent to which

common, genome-wide SNPs collectively account for

risk of AD in two US populations, African-Americans

(AAs) and European-Americans (EAs). Analyzing GWAS

data for two independent case–control sample sets, we

compute polymarker scores that are significantly associ-

ated with alcoholism (P = 1.64 × 10–3 and 2.08 × 10–4 for

EAs and AAs, respectively), reflecting the small individ-

ual effects of thousands of variants derived from patterns

of allelic architecture that are population specific. Sim-

ulations show that disease models based on rare and

uncommon causal variants (MAF < 0.05) best fit the

observed distribution of polymarker signals. When scor-

ing bins were annotated for gene location and examined

for constituent biological networks, gene enrichment is

observed for several cellular processes and functions in

both EA and AA populations, transcending their under-

lying allelic differences. Our results reveal key insights

into the complex etiology of AD, raising the possibility of

an important role for rare and uncommon variants, and

identify polygenic mechanisms that encompass a spec-

trum of disease liability, with some, such as chloride

transporters and glycine metabolism genes, displaying

subtle, modifying effects that are likely to escape detec-

tion in most GWAS designs.
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Alcohol dependence (AD) is a complex, highly heritable dis-
order characterized by compulsive, excessive consumption
of alcohol, resulting in physical, psychological and social
impairment (American Psychiatric Association 1994) that con-
stitutes a significant health and economic burden in the USA
(Harwood 2000), with 4–5% of the population affected at any
given time (Li et al. 2007). Family, twin and adoption studies
have consistently shown a substantial genetic contribution to
disease etiology (Goodwin et al. 1974; McGue 1999; Nurn-
berger et al. 2004), with heritability estimates ranging from
50–80% (Heath et al. 1997; Knopik et al. 2004). To date a
number of genes have been implicated in alcoholism sus-
ceptibility via linkage analysis, candidate gene approaches
and genome-wide association studies (GWAS), including the
often replicated GABRA2 (Bierut et al. 2010; Edenberg et al.
2004) and ADH4 (Edenberg et al. 2006; Guindalini et al. 2005;
Luo et al. 2005), among others (Bierut et al. 2012; Chen et al.
2009; Wang et al. 2004; Xuei et al. 2006; Zlojutro et al. 2011).
However, these genetic loci collectively account for only a
small fraction of the risk of AD, with effects varying across
ethnic groups (Gelernter & Kranzler 2009).

This shortfall in explained genetic variance, popularly
referred to as ‘missing heritability’ (Maher 2008; Manolio
et al. 2009), has been widely observed for other complex
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disease phenotypes, leading many to re-evaluate the validity
of the common disease–common variant hypothesis and
suggest a more central role for rare variants, epigenetics
and/or genetic interactions in pathogenesis. New analytical
approaches, however, have begun to bridge the heritability
gap, indicating that much of the additive genetic variance
of complex traits, such as human height (Yang et al.
2010), intelligence (Davies et al. 2011) and schizophrenia
(Lee et al. 2012), are arguably captured by common
GWAS markers.

In this article, we investigate the polygenic architecture
of alcoholism by evaluating the extent to which common,
genome-wide single nucleotide polymorphisms (SNPs)
collectively capture the variation in susceptibility in two
US populations, European-Americans (EAs) and African-
Americans (AAs). To achieve this, we aggregated genotypic
data from case–control samples into sets of quantitative
scores, representing varying thresholds of GWAS P-values
or particular classes of minor allele frequency (MAF), and
tested their association to AD, as well as their fit to simulated
disease models. In addition, we computed empirical, additive
genetic relationships between case–control subjects with
the available GWAS data and estimated from them the total
variance in AD liability that is accounted by common SNPs
via linear mixed models, as proposed by Yang et al. (2010).
Lastly, in an effort to identify some of the specific genetic
mechanisms that underlie the biology of AD, the designated
scoring bins of putative risk alleles were annotated to
gene locations and tested for gene enrichment for various
biological ontologies and signaling pathways in EA and AA
populations using a permuted approach.

Materials and methods

Population samples
Routines for aggregating genome-wide SNP counts into composite
scores (Fig. S1) were designed using GWAS data from case–control
subjects representing EA (n = 1274) and AA (n = 285) populations,
as ascertained by the Collaborative Study on the Genetics of
Alcoholism (COGA) (Edenberg et al. 2010), a national consortium
designed to study the genetic predisposition to develop alcoholism
and related phenotypes. Alcoholic probands were recruited from
inpatient and outpatient treatment centers, whereas controls were
selected from Health Maintenance Organizations (HMOs), drivers’
license records, and dental clinics, with the objective of obtaining
representative samples of the communities at each recruitment site
(Reich et al. 1998). All cases were diagnosed for DSM-IV AD at each
clinical assessment if assessed multiple times. To avoid pleiotropic
genetic components that contribute to multiple substance abuse
phenotypes, non-alcoholic controls did not meet diagnostic criteria for
other illicit substance abuse or dependence (although cases could).
Furthermore, controls were required to be 25 years or older and to
have consumed alcohol at some point in their lives to ensure that
their unaffected status was not due to lack of exposure to alcohol.
These procedures were approved by the Institutional Review Boards
of all COGA sites, and all participants gave informed consent.

Developed scoring routines were applied to independent GWAS
data for EA (n = 1,573) and AA (n = 841) case–control subjects from
the Study of Addiction: Genetics and Environment (SAGE) (Bierut
et al. 2010). For this data set, AD cases and non-dependent controls
were selected from three large, complementary studies: COGA,
Family Study of Cocaine Dependence (FSCD) and Collaborative
Genetic Study of Nicotine Dependence (COGEND). All COGA
subjects were excluded to ensure independence between the

Table 1: Descriptive statistics for COGA and SAGE data sets

European-American African-American

COGA
Sample size 1274 457
Cases (controls) 767 (507) 329 (128)
Males (females) 676 (598) 245 (212)
Mean age 41.17 years 39.87 years

SAGE∗

Sample size 1573 841
Cases (controls) 599 (974) 359 (482)
Males (females) 616 (957) 389 (452)
Mean age 35.71 years 39.59 years

COGA, Collaborative Study on Genetics of Alcoholism; SAGE,
Study of Addiction: Genetics and Environment.
∗All COGA subjects were excluded to ensure independence
between the two data sets.

discovery and target samples (although it should be noted that not
all of the cases from the COGA case–control study were a part of
SAGE). Cases (n = 958) were identified as having a lifetime history of
AD using DSM-IV criteria. Control subjects (n = 1456) were required
to report a history of drinking and have no significant AD symptoms or
any other substance dependencies. The Institutional Review Board at
each contributing institution approved the protocols, and all subjects
provided written informed consent for genetic studies.

Genome-wide genotyping
Genotyping was performed by the Center for Inherited Disease
Research (CIDR) at John Hopkins University using the Illumina®

Infinium II assay protocol (Gunderson et al. 2006) for hybridization to
Illumina® HumanHap 1M BeadChips (Illumina, San Diego, CA, USA),
with a blind duplicate reproducibility of 99.97% and 99.98% for
the COGA and SAGE samples, respectively. Details are reported by
Bierut et al. (2010) and Edenberg et al. (2010). Protocols and GWAS
data for the COGA (n = 1 003 800 SNPs) and SAGE (n = 1 040 106
SNPs) samples are available on the National Center for Biotechnology
Information (NCBI) database dbGaP. For each sample set, subjects
were assigned to EA and AA population groups via principal
component (PC) analysis of the genotype data, corresponding to
two major population clusters observable in PC space (Table 1; Figs.
S2 and S3).

Polymarker scoring
COGA has conducted a series of analyses that evaluate the predictive
utility of GWAS data for alcoholism and related phenotypes (Yan et al.
2011). Here, we have expanded the scope of this work by examining
what this information tells us about the disorder’s underlying genetic
architecture. Using a two-stage, risk prediction framework similar
to the one employed by Purcell et al. (2009) to characterize the
polygenic basis of schizophrenia, we aggregated variation across
nominally associated GWAS loci into quantitative scores or ‘genomic
profiles’ and correlated these predictors with observed AD status in
independent target samples from SAGE (Fig. S1).

For the design of the genome-wide scoring routines, autosomal
GWAS data (n = 1 003 800) were pruned of SNPs in strong linkage
disequilibrium (LD) with other markers (pairwise r2 threshold of
0.25, within a 200-SNP sliding window), ensuring that the scores
computed in our target samples represent the aggregate effect
of a large number of predominantly independent markers. The
retained genotype data for EA (n = 193 979) and AA samples
(n = 332 687) were further trimmed for MAF (≥0.05), call rate
(≥0.98) and deviation from Hardy–Weinberg (HW) equilibrium
(P ≥ 1 × 10–3), leaving 124 291 and 256 549 SNPs in the two
respective population samples available for developing the scoring
routines.
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Genome-wide association tests were conducted with the program
PLINK (Purcell et al. 2007), using the standard measured genotype
method, with covariates age and sex (quantile–quantile plots are
provided in Fig. S4). SNPs were then delineated into bins according
to incremental thresholds of association test P-values, as well as
MAF ranges, from which scores were defined as the total number
of ‘risk’ alleles carried by a given target sample, weighted by the
log odds ratio (OR) for AD as estimated from the COGA data.
Scores were calculated for the SAGE data, limited to SNPs with an
allele frequency >1%, in HW equilibrium (P ≥ 1 × 10–4), and with
a minimum call rate of 98% (n = 948 658). To measure how well
the SAGE target scores predict AD risk, logistic regression analyses
of case–control status were performed to quantify the amount of
variation accounted for by the scores, as determined by Nagelkerke’s
pseudo-R2, representing the difference in R2 estimates for the null
model, with terms for the intercept, age, sex and genotyping rate,
and the alternative model that includes the polymarker scores.

Variance component analysis of AD liability
Using the method proposed by Yang et al. (2010), the amount of
variance in AD risk that is explained simultaneously by genome-wide
SNPs was estimated by treating the effects of SNPs as statistically
random. The model for this analysis is y = � wibi + e, where y
is the phenotypic value, bi is the effect of the ith SNP, wi is a
scaling factor equivalent to (xi – 2pi)/(2pi (1 – pi))1/2 with pi the allele
frequency and xi the genotype indicator of the ith SNP (values of
0, 1 or 2), and e is a random environmental effect (Visscher et al.
2010). In matrix notation this is equivalent to y = g + e, where g = Wb
is a vector of genetic values calculated from the SNP alleles each
individual carries, with var(g) = WW′σ b

2 (WW′ is the matrix of genetic
relationships between individuals). Using the software GCTA (Yang
et al. 2011), we computed the genetic relationship matrix (GRM)
for our LD-pruned genotype data, combining the COGA and SAGE
samples for the EA (n = 2763) and AA (n = 1167) study populations,
with the exclusion of individuals with estimated relatedness greater
than 0.025 (i.e. corresponding to third cousins or closer). The GRMs
were then fitted to the linear models for AD status, parameterized on
an unobserved continuous liability scale via a probit transformation
(Lee et al. 2011), using a restricted maximum likelihood (REML)
approach, with the covariates age and sex. The estimates of AD
variation explained by the GRMs were corrected for ascertainment
bias using population-specific prevalence rates (0.038 and 0.036 for
EAs and AAs, respectively) (Grant et al. 2004).

Simulation of genome-wide scores for different

disease models
Using the program GCTA, case–control phenotypes for six dis-
ease architectures were simulated using real genotype data from the
COGA and SAGE data sets, pruned of SNPs in strong LD, as described
above. The phenotypes were generated from a simple additive
genetic model yj = � i xijbi + ej, where xij is the number of reference
alleles for the ith causal variant of the jth individual, bj is the allelic
effect of the ith causal variant and ej is the residual effect generated
from a normal distribution with mean 0 and variance of (xijbi)(1 – 1/h2).
The six selected disease models differ with regards to the number
of causal loci (100, 1000 or 5000) and their allele frequency profiles
(MAF < 0.05 or ≥0.05). For each of the population samples, a new
AD status was assigned via a disease liability threshold, with the
number of cases matching those in the original phenotype data.
Causal loci were randomly selected from LD-pruned SNPs excluded
from the initial two-stage, genome-wide scoring analysis, which have
not been filtered for MAF and thus include rare variants (Fig. S1), with
100 replicates drawn for each disease model. The heritability of the
disease phenotypes was set at a conservative 0.65, the median of
estimates reported for AD in a pair of published studies (Heath et al.
1997; Knopik et al. 2004). Effect sizes were fixed for each model,
making the variance accounted for by a causal locus proportional to
the total number of loci in a given disease model and its respec-
tive MAF. With the program PLINK and the R statistical package (R
Development Core Team 2011), genome-wide association tests, fol-
lowed by the aforementioned two-stage, scoring routines, delineated

according to MAF class, were conducted on the simulated disease
phenotypes and the corresponding COGA or SAGE genotype data.

Gene enrichment analysis for biological ontologies
For the final analytical approach, the focus was shifted from the
general, genetic architecture of AD to the detection of specific
polygenic mechanisms giving rise to the disorder, as permuted
gene enrichment analyses were conducted on the bins of potential
risk alleles applied in the scoring calculations described above. For
each population-specific bin, representing one of twenty GWAS
P-value thresholds defined by increments of 0.05, alleles exhibiting
contrasting directions of effect between the discovery and target
samples (accounting for ∼50% of the markers) were assumed
to be predominantly due to chance and removed from analysis
to help control statistical noise. The remaining SNPs were then
assigned to genes based on the UCSC hg18 gene coordinates,
with the boundaries extended ±20 kb to include regions that may
have cis-regulatory functions. The resulting gene lists were tested
for enrichment for genes belonging to various biological ontologies
(n = 507) and receptor signaling pathways (n = 227), as defined in the
ResNet Mammalian v. 7.0 database curated by Ariadne Genomics
(Bethesda, MD). Unlike the ‘GO’ vocabulary from the Gene Ontology
Consortium, the Ariadne ontologies are mostly based on narrowly
defined cellular processes and molecular functions, thus limiting the
redundancies between biological categories. Each ResNet ontology
and pathway was limited to only member genes marked by
genotyped SNPs in the LD-pruned GWAS data from COGA, with
only those retaining two or more genes examined for enrichment
(n = 651 and 639 ontologies/pathways for the AA and EA GWAS
data sets, respectively). Gene enrichment was evaluated via Fisher’s
exact tests using the R package, with permuted lists (n = 1000)
randomly assembled from genes marked by the LD-pruned GWAS
data (totaling 16 740 and 14 777 for AAs and EAs, respectively),
with each gene weighted for its SNP coverage. Empirical P-values
represent the number of times the P-values from permuted Fisher’s
exact tests are smaller than the value from the observed test.

Results

Application of population-matched scoring routines

When target scores derived from associations in the COGA
data set are used to predict case/control status for the
matched population (i.e. EA or AA) in SAGE, the R2 estimates
for both EAs and AAs are modest, but statistically significant
(Fig. 1). Maximum values are observed for association
P-value thresholds set at less than 0.05 (n = 6790 risk
alleles) for EA and 0.30 (n = 76 218 risk alleles) for AA target
samples, accounting for 0.73% (P = 1.64 × 10–3) and 2.14%
(P = 2.08 × 10–4) of the variation in AD status, respectively
(Table S1); although both sets of R2 values begin to plateau
at around the 0.05 or 0.10 thresholds. Given the heritability
estimates of 50–80% for AD liability (Heath et al. 1997;
Knopik et al. 2004), these results fall well short of the total
additive genetic variation believed to underlie the illness.
This discrepancy can be attributed in part to the statistical
noise arising from the inclusion of non-associated markers,
as well as the large number of small, individual estimates
of AD effect, whose standard errors reduce the accuracy of
the aggregate scores in predicting disease outcome despite
their small sizes.

Variance component analysis

To obtain a more accurate estimate of AD variance
explained by genome-wide markers, we conducted variance
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Figure 1: Variance in AD explained by genome-wide scores

for AA and EA subjects. Polymarker scoring routines based
on AD status were designed for thirteen GWAS significance
thresholds (plotted against the x-axis) using COGA data
and applied to SAGE target samples. The y-axis represents
Nagelkerke’s pseudo R2, the amount of variation in AD accounted
by the SAGE scores, computed for routines that are both
population-matched and mismatched across the COGA and
SAGE data sets.

component analysis using the method proposed by the Yang
et al. (2010). Based on this approach, we estimate from
our LD-pruned GWAS data that 37.8% (SE = 10.4%) and
35.1% (SE = 27.8%) of the variation in AD risk is captured
by common SNPs in EAs and AAs, respectively (Table S2).
Although the heritability of AD is not fully recovered in these
results, at least for the larger heritability estimates when one
considers the substantial standard errors, it is reasonable that
any unaccounted, additive genetic variation could be ‘hidden’
from our statistical purview due to causal variants not being
in strong LD with the GWAS markers, with the most probable
candidates being those with small MAFs (Purcell et al. 2009;
Visscher et al. 2012).

Application of population-mismatched scoring

routines

Despite having nearly equivalent levels of AD risk variation
captured by common genetic markers, EAs and AAs appear
to have distinctly different allelic architectures. Genome-
wide scores generated from routines that are mismatched
for population (i.e. EA COGA discovery sample and AA
SAGE target sample, or vice versa) do not predict AD
risk (Fig. 1), with R2 values generally less than 0.1% and
βs displaying opposite directions of effect (Table S3). This
stands in sharp contrast to the genome-wide scoring results
reported by Purcell et al. (2009) for a larger sample of
schizophrenia subjects, in which AA cases were found to
carry significantly more European-derived risk alleles than
AA controls (P = 0.008; R2 = 0.4%). Though the aggregate
differences in allele frequencies and LD patterns between
EAs and AAs are expected to lead to attenuated associations,

our findings suggest a larger degree of allelic heterogeneity
may exist between these two populations for the genetic
liability of AD than for schizophrenia and perhaps other
psychiatric disorders.

Scoring delineated by association P-value and MAF

class
To further dissect the allelic architecture of alcoholism in
our two study populations, we re-ran the scoring routines
on non-overlapping bins of risk alleles, based either on
GWAS P-values or classes of MAF. For the target samples,
we observed significant R2 values for scores representing
weakly associated risk alleles, including ones for significance
thresholds as permissive as 0.50 ≤ P < 0.55 (OR: 1.05–1.15;
R2 = 0.30%; P = 0.027) and 0.55 ≤ P < 0.60 (OR: 1.07–1.26;
R2 = 1.42%; P = 0.0012) for EAs and AAs, respectively
(Fig. 2a; Table S4). When broken down by frequency, a
skew in the R2 distribution towards more common markers
is evident (Fig. 2b; Table S5), with a peak at 0.3 ≤ MAF < 0.4
for both population samples (EA: R2 = 0.57%, P = 0.0047;
AA: R2 = 2.13%, P = 0.00013), suggesting an important role
for highly common variants in the liability of AD if one
assumes a robust LD relationship between score alleles and
the unknown causal loci.

Simulation of genome-wide scores
To explore whether or not this is indeed the case, we
simulated a series of disease models and conducted the
same two-stage, genome-wide scoring delineated by MAF
class (Fig. 3). Surprisingly, the strongest R2 signals in both
populations are for simulated diseases arising entirely from
rare and uncommon risk alleles, with modes overlapping the
observed peak at the 0.3 ≤ MAF < 0.4. For AAs the observed
R2 values fall slightly below those generated for the model
based on 100 causal loci (with a maximum of 0.022 variance
explained by any individual variant; goodness of fit R2 = 0.78,
P = 0.046), whereas the best fitting model for EAs is for
1,000 causal loci (maximum variance explained of 0.0037;
R2 = 0.49, P = 0.19). For disease models representing the
other part of the frequency spectrum (i.e. common alleles),
the fit to the observed results is poor for EAs (R2 = 0.07,
P = 0.68 for 5000 causal loci), with the genome-wide scores
explaining substantially less of the variation in the disease
phenotypes. For AAs the signals are more concordant;
however they also are noticeably attenuated relative to those
obtained for rare/uncommon risk alleles, with the model
based on 1,000 causal loci fitting best to the observed R2

values (R2 = 0.79, P = 0.044). In addition to these six models,
we also tested mixed models representing rare and common
causal loci drawn randomly from the MAF spectrum. As one
would expect, the simulated R2 profiles are intermediate to
those reported for the models discussed above (Fig. S5),
with the ones based on 100 and 5000 causal loci fitting best
to the observed results for AAs (R2 = 0.80, P = 0.04) and EAs
(R2 = 0.38, P = 0.27), respectively.

Gene enrichment analysis
To identify potentially causative biological mechanisms
for AD, we examined our scoring bins, ones defined
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Figure 2: Scoring analysis stratified by non-overlapping bins of score risk alleles based on (a) GWAS P -values and (b) minor

allele frequencies. Variance explained was standardized by SNP counts for the respective bins.

by cumulative GWAS P-value thresholds, for discernible
ontological patterns, including those comprised of alleles
with small, statistically non-significant effects on disease risk.
The permuted Fisher’s exact tests show that about 90% of
the examined ontologies exhibit no significant evidence of
gene enrichment (empirical P ≥ 0.05) for any of the twenty
P-value thresholds for either population (Table S6), with
the percentages slightly higher for the signaling pathways.
Of the biological relationships that do show significant
enrichment, approximately half are for single thresholds,
with only a limited number displaying significance across
three or more of the tested levels (n = 15 and 19 for EAs and
AAs). From this latter group, the following four ontologies
show evidence of significant enrichment in both population
samples (in parentheses are the sizes of the ontologies after
being matched against the gene coverage of population-
specific GWAS data, along with the top empirical P-values
observed for the various EA and AA gene lists, respectively):
Maf transcription factors (n = 6 genes; P-values = 0.024 and
0.008); homeotic (Hox) AbdB genes (n = 16 genes; P = 0.026
and 0.008); chloride transport (n = 62 and 66 genes;
P = 0.002 and 0.006); and glycine and serine metabolism
(n = 27 and 33 genes; P = 0.001 and 0.014).

Discussion

Through the aggregation of genome-wide, genotypic data,
we present molecular evidence for a substantial polygenic
component to the risk of alcoholism. Although accounting

for only a modest amount of variation in AD risk (R2

values less than 3%; Fig. 1), our polymarker scores are
nonetheless significantly associated to AD in both EA and
AA target samples, even for putative risk alleles with GWAS
P-values as lax as 0.55 ≤ P < 0.60 (Fig. 2a), underscoring the
statistical power issues faced by genome-wide studies of
similarly complex, polygenic traits. When populations were
mismatched between the discovery and target samples
for the scoring routines, the resulting scores became
poor predictors of alcoholism, suggesting that the genetic
liabilities stem from patterns of allelic architecture that are
predominantly population-specific, a finding that is consistent
with the various novel genetic associations and linkage
signals reported in ethnic studies (Gelernter & Kranzler 2009).

For a more accurate estimate of the proportion of AD
variation captured by GWAS markers, we conducted variance
component analysis via mixed linear modeling, with allelic
effects treated as statistically random. Using this approach
(Yang et al. 2010), we determined that around one-third
of the phenotypic variation is collectively accounted for by
common SNPs in our EA and AA samples. Thus, if recent
estimates of AD heritability are reliable, this result still leaves
much of the additive genetic variation to be explained,
with a potentially important role for rare causal variants.
One example that is particularly instructive is rs1229984, a
functional variant in ADH1B known to modify the conversion
of alcohol to acetaldehyde, with a low frequency in non-Asian
populations (∼1–3%) and, as a result, is poorly tagged by
genotyped markers in current GWAS arrays. However, when
this coding variant was directly genotyped in the COGA
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Figure 3: Variance explained by genome-wide scoring routines for observed and simulated disease phenotypes according

to MAF class. The variances explained, derived from MAF bins comprised of different score alleles, are presented for six disease
models for each study population. The models represent either 100, 1000 or 5000 causal variants, which were randomly drawn from
SNP data excluded from the original design of the scoring routines, limited to either rare/uncommon markers (<5% MAF) or common
markers (>5% MAF). Each model was replicated 100 times. Disease heritability was set at 0.65, with causal effect sizes fixed for all
loci. Observed R2 results for AD are given as black, dotted lines.

sample, a genome-wide significant association with AD was
revealed, with a strong protective effect (Bierut et al. 2012).

To explore the relative contributions of common versus
rare causal variants to the genetic liability of AD, we simulated
a series of disease models and conducted the same two-
stage, genome-wide scoring for EA and AA samples, with
routines delineated by MAF class. What we find is that the
best fitting models, overall, are those based entirely on rare
causal variants (Fig. 3). Although these simulations examined
only a limited number of possible disease architectures and
therefore do not preclude the possibility of thousands or
tens of thousands of common loci solely contributing to AD
risk, especially for heritabilities larger than the one tested in
our models (65%), it does indicate that polymarker scoring
based on GWAS data for complex phenotypes can detect
the small, collective effects of rare and uncommon genetic
determinants and that there could be as few as one hundred
of them. This contrasts with the conclusion reached by
Purcell et al. (2009) in their models that simulated both
disease status and genotype data, asserting that rare variants
could not alone account for R2 signals generated from
genome-wide, polymarker scoring of psychiatric disorders
such as schizophrenia. This discrepancy between the studies
may stem from design differences, as our simulations are
based on real genotype data, which could have produced
divergent features in the respective LD structures, or perhaps

be a reflection of fundamental differences in the genetic
architectures of these two psychiatric disorders.

The exact contributions of rare and common genetic
variants to the underpinnings of AD remain unknown, but
consistent with both the neutral and selection theories of
genetic variation, our results, principally those for the EA
sample, point to a strong likelihood for a concentration of
weak causal variants from the low end of the MAF spectrum
that can lurk beneath stringent genome-wide significance
boundaries (Heath et al. 2011). Moreover, these findings
support the theoretical possibility of ‘synthetic association’,
a phenomenon described and coined by Dickson et al.
(2010), in which the aggregate risk effects of extended
genomic blocks of rare variants can create genome-wide
significant associations with weakly tagged, common SNP
markers, complicating the interpretation of GWAS results as
it relates to the localization of causal variants. Despite other
simulation studies and empirical evidence that lend support
to this genetic mechanism of association, including the
well-known instance involving the NOD2 locus and Crohn’s
disease (Anderson et al. 2011), several recent articles have
disputed the prevalence of synthetic association for complex
phenotypes, drawing upon the paucity of replicable linkage
signals that should be amenable to similar rare variant
effects (Anderson et al. 2011; Orozco et al. 2010), as
well as the modality of GWAS marker signals towards
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Figure 4: Empirical P -values of four, top-ranking biological ontologies based on permuted (1000×) Fisher’s exact tests of

gene enrichment in EA and AA samples. Allele bins, delineated by genome-wide association P-values at cumulative increments of
0.05, were annotated for gene location using UCSC hg18 coordinates.

higher frequencies (Wray et al. 2011) and the observance of
trans-ethnic associations (Waters et al. 2010). Although our
findings indicate the plausibility of recapitulating rare variant
effects through polymarker scores derived from common
GWAS markers (e.g. 0.3 ≤ MAF < 0.4), this should not be
interpreted as support of a rare variant-only model for the
genetic architecture of alcoholism, as mixed models also
exhibit robust fits (Fig. S5). The simulations conducted
here represent only a cursory exploration of potential
disease models, and thus does not discount other neutral
evolutionary models for common genetic variation, especially
given the positive relationship between risk allele frequency
and disease variance explained (Visscher et al. 2012).

Lastly, this study delved beyond the allelic architecture of
alcoholism, searching for wider biological patterns among
alleles of varying association strengths by means of
permuted gene enrichment analysis. Of the ontologies
and signaling pathways that show significant enrichment

in our data set, four are particularly compelling, as they
represent broad signals (i.e. significance across three or
more GWAS P-value thresholds) and are shared by both EAs
and AAs: (1) Maf transcription factors, which regulate cell
differentiation and potentially brain segmentation (Cordes
& Barsh 1994; Sadl et al. 2003); (2) Hox AbdB genes, a
family of transcription factors involved in embryogenesis
and axial patterning; (3) chloride transport, which plays a
crucial role in synaptic inhibition through the activity of GABA
and glycine neurotransmitters; and (4) glycine and serine
metabolism, for which glycine is an important inhibitory
neurotransmitter. When their empirical P-values from the
enrichment analyses are plotted, they reveal remarkably
similar trends between the two populations (Fig. 4), with
overlapping peaks, significant correlations (r ranging from
0.73 to 0.44), and non-significant Kolmogorov–Smirnov (K–S)
distances between the P-value distributions. All of this,
as well as substantial sharing between annotated gene
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lists at peak enrichment thresholds (Table S7), suggest
commonalities in the genetic mechanisms responsible for
AD liability that transcend population differences in the
underlying allelic architectures. For Maf transcription factors
and AbdB genes, the strongest signals for enrichment
occur at small GWAS P-values (<0.10), indicating large
to modest effects on AD risk by genes belonging to
these particular groups, whereas chloride transport (which
includes GABA receptors that have been often implicated
in AD) and glycine/serine metabolism reveal peaks at
markedly higher thresholds (<0.60), pointing to more subtle
effects that are likely to escape detection in most single
marker association tests. These enrichment differences may
represent molecular signatures of a hierarchical etiology,
in which the effects of the Maf and AbdB transcription
factors on developmental and pathophysiological pathways
related to AD are more proximate to the disease endpoint
than chloride transport and glycine-related neurochemical
systems (Gaiano & Fishell 2002; Pandey 2004; Yamauchi
2005; Lee & Messing 2008; Aguirre et al. 2010; Moonat
et al. 2010; Kaun et al. 2011).

From the other ontologies and pathways tested for enrich-
ment in this study, some also exhibit similar trends in their
empirical P-value distributions between the two study popu-
lations, of which several appear to be potentially meaningful
to AD and neuronal function, including NOTCH → EP300
signaling (Aguirre et al. 2010; Gaiano & Fishell 2002; Kaun
et al. 2011), organic anion transport (Moonat et al. 2010)
and calcium-dependent protein kinases (Lee & Messing
2008; Yamauchi 2005) (Fig. S6; Table S8). However it should
be noted that many of the significant enrichment signals
are indeed population-specific (Figs. S7 and S8), hinting
that some important differences in the genetic etiology of
alcoholism may exist between EAs and AAs.

In conclusion, we report that a significant proportion
of variance in AD risk can be explained by common
SNPs of small effect in an aggregate manner, with allelic
architectures that are specific to EA and AA populations.
Although these findings would appear to support the widely
held common disease–common variant hypothesis, our
simulation models show that the modest effects of rare and
uncommon susceptibility loci can be captured in genome-
wide association signals for complex disease phenotypes,
at least in aggregate. How big of a role rare variation
actually has, if any, in the genetic liability of alcoholism is
unknown, however there is growing evidence that it can have
important effects on psychiatric disorders, including results
from studies of copy number variants (CNVs) (Sanders et al.
2011; Stone et al. 2008), as well as early findings from
exome sequencing efforts that reveal an abundance of rare
genetic variation, much of which is functional (Keinan &
Clark 2012; Kiezun et al. 2012; Tennessen et al. 2012). In
addition, our GWAS data sets have implicated a number of
biologically relevant pathways and mechanisms in both study
populations, including various transcription factors known
to affect brain development, as well as genes involved in
inhibitory neurotransmission. The latter plays a key role in
the brain’s reward system and has been previously linked to
externalizing psychopathologies (e.g. antisocial personality
disorder, childhood conduct disorder) that share a genetic

predisposition with substance abuse disorders (Dick et al.
2006), thus providing compelling targets for future research
on alcoholism, as well as population-specific pathways.
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Figure S1: Flowchart of the two-stage, genome-wide
scoring approach.

Figure S2: Plot of first and second PC scores estimated
from COGA genome-wide genotype data. Assignment of
samples to AA and EA populations is based on their
respective placement or lack thereof within the two major
population clusters observable in the PC plot.

Figure S3: Plot of first and second PC scores estimated
from SAGE genome-wide genotype data. Assignment of
samples to AA and EA populations is based on their
respective placement or lack thereof within the two major
population clusters observable in the PC plot.

Figure S4: Quantile–quantile plots of genome-wide
association results for AD in the COGA and SAGE datasets
(covariates age and sex). The negative logarithmic P-values
(y axes) of each tested SNP are plotted against the
expected negative logarithmic P-values (x axes) under the
null distribution for no association. The genomic control
lambda values (λGC) are listed for each plot.

Figure S5: Variance explained by genome-wide scoring
routines for observed and simulated disease phenotypes
according to MAF class. The variances explained, derived
from MAF bins comprised of different score alleles, are
presented for nine disease models for each study population.
The models represent either 100, 1000 or 5000 causal vari-
ants, which were randomly drawn from SNP data excluded
from the original design of scoring routines, representing
either rare/uncommon markers (<5% MAF), common
markers (>5% MAF), or spanning the entire MAF spectrum.
Each model was replicated 100 times. Disease heritability
was set at 0.65, with causal effect sizes fixed for all loci.
Observed R2 results for AD are given as black, dotted lines.

Figure S6: Five biological ontologies and signaling path-
ways that exhibit concordant empirical P-value distributions
for permuted (1000×) Fisher’s exact tests of gene enrich-
ment in EA and AA samples. Allele bins, delineated by
genome-wide association P-values at cumulative increments
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of 0.05, were annotated for gene location using UCSC hg18
coordinates.

Figure S7: Seven biological ontologies and signaling
pathways that exhibit significant empirical P-values (<0.01)
for permuted (1000×) Fisher’s exact tests of gene
enrichment in AA samples. Allele bins, delineated by
genome-wide association P-values at cumulative increments
of 0.05, were annotated for gene location using UCSC hg18
coordinates.

Figure S8: Six biological ontologies and signaling pathways
that exhibit significant empirical P-values (<0.01) for
permuted (1000×) Fisher’s exact tests of gene enrichment
in EA samples. Allele bins, delineated by genome-wide
association P-values at cumulative increments of 0.05, were
annotated for gene location using UCSC hg18 coordinates.

Table S1: Logistic regression results for population-
matched GWAS scores as predictors of AD in SAGE target
samples

Table S2: Estimation of variance in AD liability explained
from pairwise genetic correlations by REML

Table S3: Logistic regression results for population-
mismatched genome-wide scores as predictors of AD in
SAGE target samples

Table S4: Logistic regression results for population-
matched genome-wide scores of non-overlapping P-value
bins as predictors of AD in SAGE target samples

Table S5: Logistic regression results for population-
matched genome-wide scores of five MAF bins as predictors
of AD in SAGE target samples

Table S6: Results from permuted gene enrichment
analysis of annotated bins drawn from different GWAS P-
value thresholds

Table S7: Shared genes from ontologies exhibiting
significant evidence of gene enrichment for both AA and
EA annotated bins

Table S8: Shared genes from ontologies presented in Fig.
4 for both AA and EA annotated bins
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