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Abstract A great promise of publicly sharing genome-

wide association data is the potential to create composite

sets of controls. However, studies often use different

genotyping arrays, and imputation to a common set of SNPs

has shown substantial bias: a problem which has no broadly

applicable solution. Based on the idea that using differing

genotyped SNP sets as inputs creates differential imputation

errors and thus bias in the composite set of controls, we

examined the degree to which each of the following occurs:

(1) imputation based on the union of genotyped SNPs (i.e.,

SNPs available on one or more arrays) results in bias, as

evidenced by spurious associations (type 1 error) between

imputed genotypes and arbitrarily assigned case/control

status; (2) imputation based on the intersection of geno-

typed SNPs (i.e., SNPs available on all arrays) does not

evidence such bias; and (3) imputation quality varies by the

size of the intersection of genotyped SNP sets. Imputations

were conducted in European Americans and African

Americans with reference to HapMap phase II and III data.

Imputation based on the union of genotyped SNPs across

the Illumina 1M and 550v3 arrays showed spurious asso-

ciations for 0.2 % of SNPs: *2,000 false positives per

million SNPs imputed. Biases remained problematic for

very similar arrays (550v1 vs. 550v3) and were substantial

for dissimilar arrays (Illumina 1M vs. Affymetrix 6.0). In all

instances, imputing based on the intersection of genotyped

SNPs (as few as 30 % of the total SNPs genotyped) elimi-

nated such bias while still achieving good imputation

quality.

Introduction

Centralized repositories for genome-wide association study

(GWAS) data, such as the database of Genotypes and

Phenotypes (dbGaP) and the European Genome-phenome

Archive (EGA), were established to encourage data sharing

in an effort to advance medical science while maximizing

use of publicly funded resources. One of the great promises

of publicly sharing GWAS data through these repositories

is the potential to create composite sets of public controls

for new studies. Combining phenotypic and genotypic data

from several studies into a single population control group

and pairing these combined data with cases of the pheno-

type of interest allow for powerful opportunities to identify

new genetic associations. Publicly available controls might

also be used to augment study controls to increase sample

size and boost statistical power (Ho and Lange 2010;
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Mukherjee et al. 2011; Zhuang et al. 2010). These study

designs provide a cost-effective strategy to obtain the large

number of control subjects needed for GWAS analyses,

which may be particularly beneficial for ancestry groups

with fewer available samples (e.g., African Americans)

(Hartz et al. 2011). However, publicly available GWAS

differ in many respects, including use of a wide variety of

high-density genotyping arrays. Thus, one of the sub-

stantial challenges such studies face is creating a common

set of single nucleotide polymorphisms (SNPs) across

studies contributing to composite controls and study cases.

Statistical imputation of untyped SNP genotypes based

on reference haplotype panels can be used to overcome this

challenge. Imputation has been primarily applied to

increase the SNP density for analysis in studies where

cases and controls were recruited together and genotyped

in a uniform fashion on the same array at the same time,

reducing the risk of batch effects that impact SNP genotype

calling. In the case of composite public controls derived

from multiple studies genotyped on different arrays, vari-

ations in genotyping protocols create systematic differ-

ences, which introduce the potential for differential error in

estimated allele probabilities at each of the imputed

markers and artifactual differences in allele frequencies.

These artifacts might manifest in significant statistical bias

in downstream tests of genotype–phenotype association.

Sinnott and Kraft (2012) and Uh et al. (2012) recently

have demonstrated that substantial false positive rates

occur when imputation is used to create a common set of

SNPs for cases and controls genotyped on different arrays

(Affymetrix vs. Illumina), which is analogous to combining

controls from multiple studies as investigated in this study.

Attempts to address this bias by adjusting for array effects

using principal components failed (Sinnott and Kraft

2012). Post-imputation filtering of imputed SNPs required

extreme thresholds on quality measures (R2 and RT
2 C 0.98),

which did not fully remove false positive associations and

left only 30 % of SNPs for analysis, substantially reducing

statistical power for subsequent analyses (Sinnott and Kraft

2012; Uh et al. 2012). Thus, if the promise of using com-

posite controls is to be realized on a large scale, alternative

approaches of stringently limiting imputation-induced bias

need to be developed.

In this study, we used data from GWAS repositories to

estimate the magnitude of imputation-induced bias in a

common set of SNPs among European Americans and

African Americans genotyped on different Illumina and

Affymetrix arrays. We hypothesize that using differing sets

of genotyped SNPs from the different arrays as inputs

creates differential imputation accuracy across samples

resulting in the bias and spurious associations observed by

others (Sinnott and Kraft 2012; Uh et al. 2012). However,

in contrast to these studies which imputed each sample

separately based on their differing sets of genotyped SNPs

and then combined the imputed data for analysis (Sinnott

and Kraft 2012; Uh et al. 2012) or used imputed data for

some samples and genotyped data for other samples (Uh

et al. 2012), we tested an intersection strategy in which we

selected only the SNPs genotyped on all arrays for the

samples to be combined and then imputed up to a common

set of HapMap SNPs for analyses from a common set of

genotyped SNPs. To test this hypothesis and correction

strategy, we examined the degree to which each of the

following occurs: (1) imputation across arrays based on the

union of genotyped SNPs (i.e., SNPs available on one or

more arrays) results in bias as evidenced by spurious

associations (type 1 error) between imputed genotypes and

arbitrarily assigned case/control status; (2) imputation

across arrays based on the intersection of SNPs genotyped

on all arrays does not evidence such bias; and (3) impu-

tation quality varies by the size of the overlap of the

intersection of genotyped SNPs across arrays. Finally, we

examined the conditions under which using public controls

adds sufficiently to a study’s power that the additional

study complexity and administrative work to obtain public

controls is worth the effort, considering the balance of

sample size and imputation accuracy.

Subjects and methods

Study subjects and genotyping arrays

Table 1 lists the sources of European American and Afri-

can American study subjects, who were genotyped on one

of three Illumina arrays (Human1M, HumanHap550 ver-

sion 1, or HumanHap550 version 3) or the Affymetrix 6.0

array. All genotype data from European American study

subjects were obtained from dbGaP. The availability of

African American studies in dbGaP is more limited, so we

utilized both dbGaP and Illumina’s iControl database

(Illumina, Inc., San Diego, CA, USA) to obtain genotype

data on African American control subjects. All subject data

were anonymous and publically available based on which

the RTI International Institutional Review Board granted a

human subjects exemption for this study.

Quality control

Quality control (QC) procedures, mimicking standard

procedures used for GWAS, were conducted in each study

separately using PLINK (Purcell et al. 2007) unless

otherwise stated. Subjects were excluded due to call rate

\95 %, discordance between reported gender and esti-

mated gender based on chromosome X SNP data

(FST \ 0.2 used to indicate female and FST [ 0.8 used to
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indicate male), or excessive homozygosity based on auto-

somal SNP data (FST \ -0.2 or FST [ 0.5). Further, for

subject pairs having identity-by-state estimates greater than

99 % (indicative of sample duplication or monozygotic

twins), we retained the subject with the highest call rate.

Identity-by-descent (IBD) estimates were also generated to

identify subject pairs (or clusters) with cryptic relatedness.

For subjects classified as European American, we identified

relative clusters having IBD [10 % (indicative of third-

degree relation or closer) and retained the single subject

having the highest call rate from each cluster. Since IBD

estimates may be inflated in the presence of population

stratification, we used the KING program (Manichaikul

et al. 2010) to identify clusters among African American

subjects. The KING program was designed specifically to

circumvent the inflation of IBD estimates due to population

stratification (Manichaikul et al. 2010). We used the IBD

threshold of 10 % and the KING kinship coefficient

threshold and retained the single subject having the highest

call rate from each African American relative cluster.

Subjects were further evaluated for population structure

to identify ancestral outliers using HapMap populations of

European Americans (denoted CEU), Africans (denoted

YRI), and Chinese (denoted CHB) for comparison in the

STRUCTURE program (Pritchard et al. 2000). African

American subjects having \60 % African ancestry were

excluded. No European Americans were excluded due to

ancestral misclassification.

Additional subject exclusions were made in dbGaP

studies to remove the original study cases [e.g., alcohol

dependent cases from the Study of Addiction: Genetics and

Environment (SAGE) (Bierut et al. 2010)] (Table 1). No

phenotypic exclusions were made for the iControl subjects,

since no phenotype information is provided in the iControl

database. Following all subject-level QC, genotyped SNPs

were excluded due to minor allele frequency (MAF) \1 %,

call rate\95 %, or Hardy–Weinberg equilibrium P\0.0001.

Numbers of genotyped subjects and polymorphic SNPs before

and after QC are provided in Table 1.

Combining subjects genotyped on Illumina versus

Affymetrix arrays required an additional QC step to remove

SNPs with indeterminate or flipped strand orientation.

Specifically, we removed SNPs with ambiguous alleles

(i.e., SNPs with A/T or G/C alleles), due to problems with

determining strand orientation between the Illumina versus

Affymetrix arrays. Then, we used the flip option in PLINK

to recode SNPs with an opposing strand orientation relative

to the HapMap reference panel. After flipping, we removed

a small number of SNPs with misassignment of allele code

based on discrepant allele frequencies between the two

Table 1 Genotyped study subjects and SNPs used for imputation

Ancestry group Data sourcea (originating study,

if applicable)

Illumina genotyping

array

No. of genotyped

subjectsb
No. of genotyped

SNPs on

chromosome 22

Before

QC

After

QC

Before

QC

After

QC

European

American

dbGaP (SAGE, Bierut et al. 2010) Human1M 1,397 1,360 16,047 13,199

dbGap (PanScan, Amundadottir et al. 2009) HumanHap550

(version 3)

1,897 1,783 8,462 8,042

dbGaP (CGEMS breast cancer GWAS,

Hunter et al. 2007)

HumanHap550

(version 1)

1,142 1,131 8,229 7,916

dbGaP (GAIN GWAS of Schizophrenia,

Manolio et al. 2007)

Affymetrix 6.0 1,378 1,164 9,347 9,302

African American dbGaP (SAGE, Bierut et al. 2010) Human1M 504 431 16,047 14,375

iControl HumanHap550

(version 3)

830 595 8,462 8,101

iControl HumanHap550

(version 1)

1,331 1,046 8,205 7,920

dbGaP (GAIN GWAS of Schizophrenia,

Manolio et al. 2007)

Affymetrix 6.0 949 693 10,752 10,681

CGEMS cancer genetic markers of susceptibility, dbGaP database of genotypes and phenotypes, GAIN genetic association information network,

GWAS genome-wide association study, PanScan pancreatic cancer cohort consortium, QC quality control, SAGE study of addiction: genetics and

environment, SNP single nucleotide polymorphism
a Data from the dbGaP studies were downloaded between June 1, 2011 and June 20, 2011. Data from the iControl database were downloaded on

January 19, 2011
b Subjects classified as cases in the original dbGaP studies were excluded prior to quality controls to avoid the potential for identifying true

genetic differences between disease ? cases and disease - controls. This exclusion was not applicable for the iControl subjects
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arrays. The remaining SNPs were used as the input geno-

types for imputation.

Reference haplotype panels

For genotype imputation in European Americans, we used

the CEU reference haplotype panel from merged HapMap

phase II ? III data. For African Americans, we created a

reference haplotype panel by combining HapMap phase II

and III data from YRI, CEU, and ASW subjects. We pre-

viously found this specific reference panel to achieve

optimal imputation quality and accuracy, compared to

other combined panels from HapMap (unpublished data).

Imputation procedure

SNP imputation procedures use haplotype information on

genotyped SNPs in the study population and predict

untyped SNPs based on linkage disequilibrium (LD) pat-

terns between SNPs, as estimated from reference panels of

much denser genotyping, usually from HapMap (Altshuler

et al. 2010) and more recently the 1000 Genomes project

(Durbin et al. 2010). See Marchini and Howie for a review

of this literature (Marchini and Howie 2010).

Genotype imputations reported here were conducted

using MaCH, unless otherwise stated (Li et al. 2010). As

other studies have done, (Shriner et al. 2010; Southam et al.

2011; Howie et al. 2011) we focused on a single chromo-

some (chromosome 22) for efficiently evaluating imputa-

tion performance. Imputation across genotyping arrays

may be conducted separately within each originating study

or with all study subjects combined. Here, we report results

from separate imputation in each of the eight originating

studies of European Americans or African Americans

(Table 1). Similar results were found from imputations

conducted using all study subjects combined (results not

shown).

The first imputation step in MaCH used a subset of 200

randomly selected haplotypes from study subjects to esti-

mate model parameters (crossover and error rates). Geno-

type imputation was then conducted in the full study

populations using the model parameter estimates from the

previous round. R2 values in the MaCH output (which are

the estimated squared correlation between each imputed

genotype and its true underlying genotype) were used to

assess imputation quality.

Statistical analyses

Imputation results were compared across subjects geno-

typed on different arrays by arbitrarily assigning subjects

from one originating study as cases and subjects from the

other originating study as controls. Associations between

SNP genotype dosage (fractional value ranging from 0 to

2.0 that corresponds to the estimated reference allele count)

and the assigned case–control status were tested using a

logistic regression model implemented in PLINK (Purcell

et al. 2007). To eliminate any potential bias from residual

population stratification, we applied EIGENSTRAT (Price

et al. 2006) analysis to each set of study comparisons using

a set of autosomal SNPs, which included only those having

R2 \ 0.2 within a 1,500 window size and omitted known

regions of high LD, as implemented elsewhere (Fellay

et al. 2007). The first ten principal components were

included as covariates in all regression models.

Three data sets were compared for each pair of studies:

(1) genotyped SNPs shared on both arrays; (2) imputed

SNPs based on the union of genotyped SNPs available on

either array; and (3) imputed SNPs based on the intersec-

tion of genotyped SNPs available on both arrays. The first

analysis tested for any potential genotyping bias that might

affect imputation results. The second and third analyses

were designed to test the magnitude of bias resulting from

imputing the same SNPs based on either the union of

genotypes SNPs (which uses the maximal information

available) or the intersection of genotyped SNPs across

arrays (which corresponds to less input information). Sta-

tistically significant SNP associations were identified as

those having P \ 1 9 10-6, based on Bonferroni correc-

tion for the largest number of SNPs in any one of our

analyses (N = 43,035 SNPs). Since case or control status

was arbitrarily assigned, inflated kgc values and significant

associations between SNPs and case status demonstrate

systematic imputation bias as evidenced by false positive

or spurious associations.

Calculating statistical power for using public controls

under cross array imputation scenarios

Adding publically available controls to augment existing

study controls or using such public controls in lieu of study

controls would be an attractive option to substantially

increase sample size and power in the absence of cross

array imputation-induced bias (Ho and Lange 2010).

However, imputation engenders error in the estimated

allele count across imputed SNPs, indicated by average R2,

which reduces effective sample size (Pritchard and

Przeworski 2001; Pasaniuc et al. 2012). We compared the

effects of increasing sample size and potentially poorer

imputation accuracy as the number of samples genotyped

on different arrays increases under two scenarios: (1)

adding public controls to a fixed sample of 2,000 study

cases and 2,000 study controls; and (2) focusing on the

study design stage where we have fixed resources to

ascertain and genotype 4,000 individuals with differing

mixes of study cases, study controls, and public controls.
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Under both scenarios, we began with a baseline model in

which a study has 2,000 cases and 2,000 controls geno-

typed, providing 80 % power to detect an additive SNP

effect size of 1 % variance explained in the phenotype at

genome-wide significance (P B 5 9 10-8). This is equiv-

alent to detecting a minimum odds ratio of 1.545, 1.405,

1.355, and 1.335 for SNPs with MAFs of 10, 20, 30, and

40 %, respectively, with the same sample size. The cal-

culations were made following Zheng et al. (2011) simu-

lation of power by imputation accuracy (average R2) for a

standard 1 degree of freedom test under an additive genetic

model for imputed allele dosage. Modification to sample

size and proportion of controls to cases were made taking

the harmonic mean of the numbers of cases and controls

multiplied by two to produce the overall sample size for a

given scenario. We applied a given level of average R2 to

proportionately reduce sample size to effective sample size

(Pritchard and Przeworski 2001; Pasaniuc et al. 2012) due

to imputation inaccuracy, and then used Elston’s Excellent

Estimator (Tiwari et al. 2011) via the web tool Analytic

Power Calculation (http://gwatestdriver.ssg.uab.edu/) to

estimate power for a given sample scenario (at various a,

b, and sample sizes) and level of imputation accuracy

(average R2).

Results

Imputation within the Illumina family of arrays

The first assessment of cross array-induced imputation bias

combined study subjects genotyped on 1M from SAGE

(Bierut et al. 2010) with subjects genotyped on 550v3 from

the Cancer Genetic Markers of Susceptibility (CGEMS)

Pancreatic Cancer Cohort Consortium (PanScan) (Amun-

dadottir et al. 2009) for European Americans or iControl

for African Americans. Figure 1 presents the kgc values

and percentages of SNPs with false positive associations

(P \ 1 9 10-6) for each of the three assessments of bias

(genotyped SNPs shared on both arrays, imputation based

on the union of genotyped SNPs across arrays, and impu-

tation based on the intersection of genotyped SNPs across

arrays). Tests of association between arbitrarily assigned

case status and the genotyped SNPs shared on both arrays

showed no statistically significant associations (Fig. 1a, d),

indicating that there was no genotyping bias between these

arrays. However, association tests for SNPs imputed based

on the union of genotyped SNPs available on either array

revealed spurious results as indicated by inflated kgc values

and SNPs having statistically significant P values across

the MAF spectrum (Fig. 1b, e). Overall, 0.20 % of the

imputed SNPs had P \ 1 9 10-6 in both European

Americans (71 false positives of 34,515 imputed SNPs)

and African Americans (87 false positives of 42,963

imputed SNPs). This imputation strategy based on the

union of genotyped SNPs incurred substantial deviation

from expectation, as demonstrated in Figure S1. In con-

trast, conducting imputation based on the intersection of

genotyped SNPs available on both arrays resulted in no

spurious associations (Fig. 1c, f). To be sure that choice of

software did not influence our observed pattern of results,

we ran the Illumina 1M versus 550v3 comparisons in

African Americans using IMPUTE2 and found parallel

results to those obtained using MaCH (Figure S2).

Using the same Illumina 1M versus 550v3 comparisons,

we evaluated whether the imputation-induced bias based

on the union of genotyped SNPs differed according to high

versus low LD patterns. We employed the LD pruning

procedure in PLINK (Purcell et al. 2007) with a 1,500 SNP

sliding window to select SNPs under high LD with other

SNPs (squared correlation coefficient between SNPs

[r2] [ 0.8) and conversely SNPs in linkage equilibrium

(r2 \ 0.2). SNPs were selected according to the LD pat-

terns in the SAGE subjects, separately by ethnic group, and

their SNP association results were taken from the com-

parison to PanScan for European Africans (Fig. 1b) or

iControl for African Americans (Fig. 1d). In the European

Americans, 0.64 % of the 2,984 imputed SNPs in low LD

and 0.18 % of 23,072 imputed SNPs in high LD were false

positives. In African Americans, 0.30 % of the 6,590

imputed SNPs in low LD and 0.18 % of 19,134 imputed

SNPs in high LD were false positives.

Imputation-induced bias arises from the union of geno-

typed SNPs even across similar Illumina arrays (550v1 and

550v3). European American subjects from PanScan were

compared to subjects from the CGEMS breast cancer

GWAS (Hunter et al. 2007), and African American sub-

jects from two subsets of the iControl database were

compared. No spurious SNP associations were found when

testing genotyped SNPs available on both arrays or testing

SNPs imputed based on the intersection of genotyped SNPs

across both arrays (results not shown). Testing SNPs that

were imputed based on the union of genotyped SNPs

available on either array resulted in spurious SNP associ-

ations (Figure S3), albeit the percentages of SNPs showing

bias were predictably smaller given the array similarities

(0.07 % of imputed SNPs with P \ 1 9 10-6 in each

ancestry group).

Imputation across Illumina and Affymetrix arrays

To evaluate the bias induced by imputation across highly

different arrays, we combined SAGE subjects genotyped

on Illumina 1M with subjects genotyped on Affymetrix

6.0 from the Genetic Association Information Network

(GAIN) GWAS of Schizophrenia (Manolio et al. 2007).
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European American and African American subjects from

these studies were analyzed separately. A single false

positive SNP association was observed among the genotype

SNPs shared on both arrays in European Americans

(Fig. 2a), but no false positive SNP associations were

observed in African Americans (Fig. 2d). Compared to the

Fig. 1 Genomic inflation factors (grey lines) (kgc) and percentages of

SNPs having spurious association (black lines) (P \ 1 9 10-6), by

minor allele frequency (MAF), when combining studies genotyped on

different Illumina BeadChip arrays (Human1M or HumanHap550

version 3). a–c European American subjects from SAGE were

compared to PanScan subjects, and d–f African American subjects

from SAGE were compared to iControl subjects. Three different SNP

sets were assessed: a, d genotyped SNPs available on both arrays;

b, e imputed SNPs based on the union of genotyped SNPs available

on either array; and c, f imputed SNPs based on the intersection of

genotyped SNPs available on both arrays. The number of SNPs with

MAF [1 % and the overall kgc are shown in each plot

514 Hum Genet (2013) 132:509–522
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analyses across the Illumina family of arrays, substantially

more false positive associations were observed when using

imputed SNPs based on the union of SNPs available on the

Illumina or Affymetrix array (Fig. 2b, e): 184 (0.53 %) false

positives of 34,503 imputed SNPs in European Americans

and 271 (0.63 %) false positives of 43,035 imputed SNPs in

African Americans. The deviations from expectation were

substantial (Figure S4). Our strategy of using the intersection

Fig. 2 Genomic inflation factors (grey lines) (kgc) and percentages of

SNPs having spurious association (black lines) (P \ 1 9 10-6), by

minor allele frequency (MAF), when combining studies genotyped on

either the Illumina Human1M or Affymetrix 6.0 array. a–c European

American and d–f African American subjects from SAGE (genotyped

on Illumina 1M) were compared to subjects from the GAIN GWAS of

Schizophrenia (genotyped on Affymetrix 6.0). Three different SNP

sets were assessed: a, d genotyped SNPs available on both arrays;

b, e imputed SNPs based on the union of genotyped SNPs available

on either array; and c, f imputed SNPs based on the intersection of

genotyped SNPs available on both arrays. The number of SNPs with

MAF [1 % and the overall kgc are shown in each plot

Hum Genet (2013) 132:509–522 515
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of SNPs as the basis for imputation was able to eliminate

these biases, even when combining these highly different

arrays (Fig. 2c, f).

Assessing the biased SNPs

Our investigation into the nature of the bias observed under

the union-of-SNPs imputation strategy showed minimal

overlap in the SNPs with spurious association between the

two ancestry groups. Additionally, making post-imputation

SNP exclusions for R2 \ 0.3 removed some, but not all of

the spurious SNP associations (Figure S5). After the R2

exclusion, the remaining SNPs with spurious association

tended to have MAF \10 % (especially in European

Americans) and/or large discrepancies in R2 between the

two studies (especially in African Americans).

Assessing the impact of the intersection strategy

on SNP imputation quality

The unbiased intersection strategy for imputation across

arrays uses fewer genotyped SNPs as the basis for

imputation compared to the union strategy. We took two

strategies to investigate the impact of using smaller

numbers of SNPs in the intersection-based strategy on

SNP imputation quality. First we evaluated the imputation

quality of SNPs for which we had genotype data but were

removed from the intersection set for imputation because

they were not present in all arrays. This allowed us to

compare the true genotypes to the genotypes imputed

using the intersection strategy. In European Americans

from SAGE, 40 % of the SNPs genotyped on the 1M

array were not genotyped on the 550v3 and thus were

masked for the intersection-based imputation strategy. For

these SNPs, the ‘‘best call’’ imputed genotypes (Shriner

et al. 2010) were highly concordant with their directly

typed genotype (97.1 % concordance rate), and 99.6 % of

the masked genotyped SNPs were imputed at R2 [ 0.3

(standard threshold for evaluating imputation quality, Li

et al. 2010). A comparable analysis of the masked gen-

otyped SNPs in SAGE African Americans resulted in a

94.7 % concordance rate and 97.1 % of the SNPs having

R2 [ 0.3.

Second, we evaluated the effect of varying input geno-

typed SNP set sizes on overall imputation quality for the

intersection-based strategy using the European American

and African American control subjects from SAGE.

Figure 3 compares the average R2 by MAF for imputed

SNPs, resulting from a range of input genotyped SNP sets

available from Illumina 1M and its intersections with one

or more other arrays. The imputation procedures were

iteratively repeated following the removal of 1M SNPs not

available on various Illumina arrays (HumanOmni1-Quad,

Human660W, 550v1, and HumanHap 300-Duo version 2)

or Affymetrix 6.0.

As the bench mark, imputation with SNPs available on

the 1M array resulted in the highest quality (average

R2 = 0.91 in European Americans and average R2 = 0.89

in African Americans). As the number of different arrays

increased and the number of genotyped SNPs in the

intersecting set decreased, the resulting quality of imputed

SNPs also decreased. However, decreases in quality were

not as rapid as might be expected. In European Americans

(Fig. 3a), imputation quality remained reasonable for input

genotyped SNP sets derived from the intersection of up to

four Illumina arrays even though only 30 % of the original

1M SNPs were used in the imputation: average R2 = 0.79

across the MAF spectrum and several higher MAF bins

having average R2 C 0.9. Imputation quality was further

reduced with the inclusion of an older Illumina array

(HumanHap300-Duo version 2): average R2 \ 0.9 for each

MAF bin and average R2 = 0.71 across the MAF spec-

trum. Imputation quality resulting from the intersection of

the Illumina 1M and Affymetrix 6.0 arrays was comparable

to the imputation quality resulting from the smallest input

genotyped SNP set (that is, the largest number of arrays

combined among the Illumina arrays), with average

R2 = 0.73 across the MAF spectrum. In African Ameri-

cans (Fig. 3b), poorer imputation quality was observed for

all input genotyped SNP sets, as expected, but the relative

patterns were similar to those observed in European

Americans. The lowest imputation quality in African

Americans resulted from the intersection of all five Illu-

mina arrays, with average R2 = 0.56 across the MAF

spectrum.

Potential benefits and costs of using public controls

The success in eliminating the bias of imputing SNPs

across arrays by using the intersection approach must be

balanced with practical considerations of using public

controls genotyped on multiple arrays. Two scenarios are

most relevant. The first is to consider adding public con-

trols to an existing sample, which increases sample size but

necessitates SNP imputation to generate a common set of

SNPs for analysis and engenders imputation error that

reduces effective sample size. To examine the balance of

these two effects on statistical power, we examined a

simplified scenario in which a study has 2,000 cases and

2,000 controls genotyped, providing 80 % power to detect

an effect size of 1 % variance explained at genome-wide

significance (P B 5 9 10-8). Figure 4 presents the power

estimates by level of imputation accuracy (average R2) for

differing numbers of public controls added to the baseline

design. Compared to the baseline model (blue diamond),

adding 500 public controls (pink curve) does not improve
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and may worsen power: showing equivalent power to the

baseline model when R2 = 0.9 but steadily declining as

imputation accuracy declines. Adding increasing numbers

of public controls results in a marginal to substantial

improvement in power. For example, adding 2,000 public

controls (2,000 cases: 4,000 controls—green line) increases

power to between 86 and 93 % when R2 is between 0.8 and

0.9.

The second scenario to consider for use of public con-

trols is in making decisions about GWAS design: given a

budget sufficient to ascertain and genotype 4,000 individ-

uals is the most advantageous power achieved by following

this baseline study design (2,000 cases and 2,000 controls)

or by reducing the number of study controls ascertained

and genotyped, relying on public controls instead? Figure 5

presents power by imputation accuracy for the baseline

study design (blue diamond and blue dashed line) and

several alternatives. To a much greater extent than adding

public controls to an existing study (Fig. 4), redirecting

resources to increase cases and relying on public controls

appears to substantially increase power of a study (Fig. 5).

Choosing a study design that targets 3,000 cases, 1,000

study controls, and 2,000 public controls increases power

to between 85 and 97 % for average R2 of 0.7–0.9. Pushing

this approach further to targeting 4,000 cases and using all

public controls makes a more substantial improvement in

power [e.g., obtaining 4,000 cases and 8,000 public con-

trols generates greater than 95 % power for average R2 of

0.5 or greater (purple line)].

Discussion

In this study, we used GWAS data from public repositories

to generate common sets of SNPs and to estimate the

magnitude of imputation-induced bias among European

Fig. 3 Average R2 values in SAGE control subjects (genotyped on

Illumina’s Human1M) to indicate overall quality across all imputed

SNPs, when imputation was based on all genotyped SNPs or the

intersection of genotyped SNPs with Affymetrix 6.0 or varying

Illumina arrays (Human1M, HumanOmni1-Quad, Human660W,

HumanHap550 version 1, and HumanHap300-Duo version 2 Bead-

Chip). Results are shown across minor allele frequency (MAF)

intervals of 1 % for all imputed SNPs with MAF [1 % on

chromosome 22: a *34,000 SNPs in European Americans and

b *43,000 SNPs in African Americans

Fig. 4 Expected statistical

power by level of imputation

accuracy (average R2) for

differing numbers of public

controls added to the baseline

design of 2,000 cases and 2,000

controls (blue diamond and blue
dashed line). Power was

estimated for detection of a SNP

effect size of 1 % explained

variance in the phenotype. The

baseline model provided 81 %

power to detect this effect size

at a genome-wide significance

of P = 5 9 10-8
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Americans and African Americans genotyped on different

Illumina and Affymetrix arrays. Imputation based on the

union of genotyped SNPs available on either the Illumina

1M or 550v3 array showed spurious associations for

*0.2 % of SNPs in both European Americans and African

Americans, translating to *2,000 false positives per one

million imputed SNPs. SNPs in low LD regions were more

prone to imputation-induced bias, as compared to SNPs in

high LD. False positives remained problematic for even

very similar arrays (i.e., Illumina 550v1 vs. 550v3), albeit

to a lesser extent with 0.07 % of imputed SNPs having

spurious association in each ethnic group. False positives

were substantial for imputation across array families

(Illumina and Affymetrix), amounting to 0.53 and 0.63 %

of imputed SNPs (5,000–6,000 false positives per one

million imputed SNPs) in European Americans and African

Americans, respectively. These results are consistent with

Sinnott and Kraft, who estimated an average false positive

rate (based on the genome-wide significance threshold of

P \ 5 9 10-8) of 0.4 % among 2,347,809 imputed SNPs

based on a study sample composed of healthy control

groups of European descent who were genotyped on

Affymetrix 6.0 (subjects arbitrarily designed as cases) or

Illumina 550v1 (subjects arbitrarily designated as controls)

(Sinnott and Kraft 2012). They observed false positive

rates as high as 1.3 % when imputing SNPs genotyped

from Illumina but not Affymetrix. Similarly, Uh et al.

(2012) reported a genomic control inflation factor well

above 1.0 (kgc = 1.16), indicative of many false positive

associations when imputing across Affymetrix and Illu-

mina arrays. In the current study, there was no evidence of

false positive associations among the genotyped SNPs for

any pair-wise set of arrays, strongly suggesting that the

observed bias among the imputed SNPs is due to the

imputation process rather than differences in genotyping

quality. Moreover, it is clear from these studies that the

degree of bias in a common set of SNPs imputed based on

the union of genotyped SNPs from different arrays is too

great to permit reliable analyses if left uncorrected.

In both the current study and the Sinnott and Kraft

(Sinnott and Kraft 2012) study, SNPs with R2 [ 0.3 but

exhibiting bias were predominantly SNPs with lower MAF

(B10 %). It is also the case that both studies used HapMap

reference panels for imputation. Since 1000 Genomes

panels are enriched for lower MAF SNPs, one would

expect that imputation based on 1000 Genomes panels

would generate greater rates of bias than observed in these

studies. Thus, as the field moves forward to take advantage

of these more comprehensive reference panels for impu-

tation, correction of this cross array imputation bias will be

even more important.

To ameliorate the observed bias, Sinnott and Kraft

(2012) tested three methods of correction: (1) use of

principal components as covariates in logistic regression

analyses; (2) restricting analyses to imputed SNPs with

high accuracy, up to R2 = 0.99; and (3) genotyping a

subset of controls on the array used for cases to screen out

problematic SNPs. Only genotyping a subset of controls

provided a level of correction that would avoid a large

number of false positive associations (Sinnott and Kraft

2012). However, this correction method is not applicable

for use in studies without access to original study DNA or

where budgets would not allow for additional genotyping;

both are important limitations when using publicly avail-

able genotype data. Uh et al. (2012) proposed a strategy

of post-imputation filtering using their RT
2 statistic

(RT
2 C 0.98), which was analogous to Sinnott and Kraft’s

filtering on R2 = 0.99 but for a sibling pair plus control

Fig. 5 Expected statistical power by imputation accuracy (average

R2) for the baseline study design (2,000 cases and 2,000 controls: blue
diamond and blue dashed line) and several alternatives focusing study

recruitment and genotyping on increasing numbers of cases and

relying on public controls under the constraint of maximal recruit-

ment and genotyping of 4,000 individuals. The baseline model

provided 81 % power to detect this effect size at a genome-wide

significance of P = 5 9 10-8
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design. Both post-imputation filtering strategies substan-

tially reduced the observed bias in the SNPs meeting their

filter requirements, but unacceptable error rates remained

(500 false positives for every 1 million imputed SNPs)

(Sinnott and Kraft 2012). Moreover, correction strategies

based on such highly stringent quality control metrics (i.e.,

R2 or RT
2) require the exclusion of a large number of

imputed SNPs from analyses and possibly lead to reduced

statistical power and an inability to identify truly associated

SNPs, especially in regions with little LD (Uh et al. 2012;

Beecham et al. 2010). Applying these stringent exclusions

will be particularly problematic for African-derived popu-

lations, who have shorter regions of LD across the genome.

In contrast, the strategy proposed in this study, which

imputes based on the intersection of SNPs genotyped on all

arrays represented in the combined sample, showed no

evidence of bias. We are not aware of any other method

that eliminates the imputation-induced bias without some

study samples being simultaneously genotyped on all the

arrays being used for imputation. Estimating from more

information is generally expected to provide better statis-

tical estimates than estimating from less. For this reason,

imputation using the union of SNPs available across the

genotyping arrays in the studies to be combined could be

expected to produce the best imputation results. However,

it is known that differing haplotype information quality

generates differences in imputation accuracy (Almeida

et al. 2011). Extending this observation to different arrays

across which there are differing amounts of genetic infor-

mation (i.e., numbers of SNPs) or differing types of genetic

information (i.e., differing SNP selection strategies used

for Illumina and Affymetrix), one would expect differing

imputation accuracy results from the different arrays.

Combining imputation across arrays with differing inputs

seems likely to generate systematically differential impu-

tation error among individuals contributing to the com-

posite data set and thus the observed biases, including

greater bias among SNPs with lower MAF, for which

genetic information on which to base prediction of imputed

SNPs is less.

The limiting factor of our intersection-of-SNPs strategy

for imputing to a common set of SNPs from different

arrays is the degree of overlap in genotyped SNPs present

across the arrays to be combined. Using the R2 statistic as a

measure of imputation quality, this study demonstrated

decreasing imputation quality as the number of overlapping

genotyped SNPs decreased. However, this effect did not

appear to be as dramatic as might be expected. For

example, the overlap between the Illumina 1M and 550v3

arrays on chr.22 was *7,900 SNPs out of the *14,000

SNPs on the 1M array (56 % of the original number of

SNPs), but the reduction in average imputation quality

without any filtering was modest (R2 = 0.91 vs. 0.88 in

European American and R2 = 0.89 vs. 0.83 in African

American). The intersection strategy remained viable even

when including several arrays; imputation based on

*4,000 overlapping genotyped SNPs across the Illumina

1M, Omni1-Quad, 660W, and 550v3 (*30 % of the

*14,000 on the 1M array for chr.22) showed an average

R2 = 0.79 across the MAF spectrum for European Amer-

icans and R2 = 0.68 for African Americans. Because of the

differing SNP selection strategies, the overlap between the

Illumina 1M and Affymetrix 6.0 was low (*3,200 SNPs),

resulting in somewhat poorer imputation quality:

R2 = 0.73 in European Americans and R2 = 0.61 in

African Americans. A related consideration may be the

number and character of SNPs being imputed. In this

study’s examples, the number of genotyped SNPs changes

as one adds arrays to the intersection, but the number of

imputed SNPs remains the same. In parallel, it may be that

keeping the number of genotyped SNPs the same but

increasing the number of imputed SNPs will reduce

imputation accuracy as the genotyped SNPs will likely

have weaker correlations with the larger set of imputed

SNPs and their characteristics change. We have observed

this in another study testing differences in imputation

performance among African Americans by reference pan-

els and imputation software (Hancock et al. 2012). In that

study, the same genotyped SNPs were used for imputation

with both HapMap and 1000G reference panels, but the

average R2 was reduced somewhat for 1000G due to the

greater prevalence of low MAF SNPs in the 1000G panels.

The counter point is that the coverage for 1000G was much

better. Thus, investigators must balance imputation accu-

racy and coverage in choosing which approach to take.

Filtering SNPs based on imputation quality metrics (e.g.,

R2 \ 0.3) prior to GWAS analysis is not recommended

because of the potential to miss true associations (Beecham

et al. 2010). Instead, substantiating imputed SNP associa-

tions requires quality assessment and replication testing in

independent studies, both of which will be even more

important for data imputed across arrays.

As a precursor to the aforementioned imputation-based

strategies, Mukherjee et al. (2011) investigated combining

control samples for only those SNPs genotyped on all

arrays to be combined. They showed that combining pub-

lically available data sets based on only the SNPs shared

across arrays is a non-biased technique that can substan-

tially improve statistical power as the control:case ratio

increases as long as ancestry stratification and MAF vari-

ation across control data sets are properly accounted for

(Mukherjee et al. 2011). However, this approach substan-

tially limits coverage of the genome which is likely to

reduce statistical power through limited opportunities to

test variants at or associated with causal loci (Spencer et al.

2009).
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The success in eliminating the bias of imputing SNPs

across arrays by using the intersection approach brought to

the fore practical considerations of when use of public

controls genotyped on multiple arrays is worthwhile. Thus,

in a final set of analyses, we examined the effects of

increasing sample size and reducing imputation accuracy

on statistical power when using public controls under two

simplified scenarios. First, adding public controls to an

existing genotyped sample of cases and controls mean-

ingfully increased power with the addition of as little as

one-third of the original control sample if imputation

accuracy remained moderate to good (average R2 C 0.7).

Second, designing a GWAS to rely on public controls to

supplement or replace study controls showed even more

marked increases in statistical power by focusing fixed

resources on increasing the number of cases genotyped as

well as boosting the size of the control group.

These power scenarios suggest there are many cases in

which using public controls in GWAS would substantially

improve power and justify the additional effort to obtain

and use public controls. However, they do not take into

account additional issues with use of public controls

including differences in phenotype measurement, as well as

potential systematic genetic and environmental differences

between the public controls and study participants. Use of

public controls requires either phenotype harmonization

across contributing samples or, alternatively, use of popu-

lation controls where the phenotype is not measured but is

rare enough in the population that misclassification of true

cases as controls is unlikely. Similarly, careful attention to

population stratification across contributing public control

datasets or between case and control datasets is also nec-

essary to ensure that systematic biases are not introduced

into the analyses of the combined datasets. For example,

ascertaining African American study participants from one

part of the United States and obtaining African American

public controls ascertained from another location could

introduce systematic differences and spurious findings due

to differing types/levels of admixture or differences in

environmental risks. Thus, the potential benefit of using

public controls in terms of improving statistical power due

to increased sample size must be weighed in each particular

circumstance against the increased complexity of analyses

and the potential loss of power due to poor imputation or

other systematic problems arising from differently recrui-

ted cases and controls.

Imputation of untyped SNPs has become an important

tool for discovery of new genotype–phenotype associa-

tions, generally improving density of coverage and statis-

tical power (Spencer et al. 2009). Extending SNP

imputation tools to the context of generating a common set

of SNPs for analysis of samples genotyped on different

arrays has proved challenging, with substantial biases

observed here and in prior studies (Sinnott and Kraft 2012;

Uh et al. 2012). However, the promise of accurately con-

ducting this type of imputation is to substantially extend

the benefit of publicly sharing GWAS data through

repositories like dbGaP. Combining the original pheno-

typic and genotypic data from several studies into a single

population control group and pairing these combined data

with cases of the phenotype of interest allow for powerful

opportunities to identify new genetic associations. A

composite set of public controls can also be used to aug-

ment study controls to increase sample size and boost

statistical power (Ho and Lange 2010). These study designs

extend the scientific and societal benefits from the financial

and time investments made by the original studies’ funding

agencies and investigators, providing a cost-effective

strategy to obtain the large number of control subjects

needed for GWAS analyses. This strategy may be partic-

ularly beneficial for ancestry groups with few available

samples (e.g., African Americans) (Hartz et al. 2011).

Thus, continued examination and development of methods

to produce valid SNP imputation across historic and new

genotyping arrays is well worth the investment. Use of the

intersecting SNP strategy described in this study appears to

be a cost-effective and valid approach to cross array

imputation, avoiding previously observed biases and gen-

erating reasonable imputation quality across arrays with

30 % or more overlap in genotyped SNPs.

Web resources

dbGaP, http://www.ncbi.nlm.nih.gov/projects/gap/

EGA, https://www.ebi.ac.uk/ega/

EIGENSTRAT, http://genepath.med.harvard.edu/*reich/

Software.htm

KING, http://people.virginia.edu/*wc9c/KING/Download.

htm

PLINK, http://pngu.mgh.harvard.edu/*purcell/plink/
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