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Integrating GWASs and Human Protein Interaction
Networks Identifies a Gene Subnetwork
Underlying Alcohol Dependence

Shizhong Han,1,2,* Bao-Zhu Yang,1 Henry R. Kranzler,3,4 Xiaoming Liu,5 Hongyu Zhao,6

Lindsay A. Farrer,7 Eric Boerwinkle,5,8 James B. Potash,2 and Joel Gelernter1,9

Despite a significant genetic contribution to alcohol dependence (AD), few AD-risk genes have been identified to date. In the current

study, we aimed to integrate genome-wide association studies (GWASs) and human protein interaction networks to investigate whether

a subnetwork of genes whose protein products interact with one another might collectively contribute to AD. By using two discovery

GWAS data sets of the Study of Addiction: Genetics and Environment (SAGE) and the Collaborative Study on the Genetics of Alcoholism

(COGA), we identified a subnetwork of 39 genes that not only was enriched for genes associated with AD, but also collectively associated

with AD in both European Americans (p < 0.0001) and African Americans (p ¼ 0.0008). We replicated the association of the gene

subnetwork with AD in three independent samples, including two samples of European descent (p ¼ 0.001 and p ¼ 0.006) and one

sample of African descent (p ¼ 0.0069). To evaluate whether the significant associations are likely to be false-positive findings and to

ascertain their specificity, we examined the same gene subnetwork in three other human complex disorders (bipolar disorder, major

depressive disorder, and type 2 diabetes) and found no significant associations. Functional enrichment analysis revealed that the

gene subnetwork was enriched for genes involved in cation transport, synaptic transmission, and transmission of nerve impulses, all

of which are biologically meaningful processes that may underlie the risk for AD. In conclusion, we identified a gene subnetwork

underlying AD that is biologically meaningful and highly reproducible, providing important clues for future research into AD etiology

and treatment.
Introduction

Alcohol dependence (AD) (MIM 103780) is a common

psychiatric disorder that is costly to individuals and to

society in the United States and throughout the world.

Although the etiology of AD is complex, family and twin

studies provide strong evidence for a genetic contribution

to its risk, with the estimated heritability ranging from

40% to 60%.1–4 Linkage and candidate gene association

studies have identified several genes that contribute to

AD.5 In recent years, genome-wide association studies

(GWASs) have become a popular approach to identify

common variants associated with human complex

disorders including AD.6–9 However, most published

GWASs of AD relied on analysis at the SNP level; few find-

ings have been genome-wide significant and replicated in

independent samples. More-sophisticated analyses of

existing GWAS data, rather than SNP-level analysis, has

the potential to enhance the identification of true genetic

signals, advance our understanding of its biological

underpinnings, and contribute to the development of

innovative diagnostic and therapeutic strategies.

Gene-set-based analysis of GWASs has been proposed to

examine groups of functionally related genes, each of
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which has too small an effect to be detected individually,

but which might be detectable when examined

jointly.10,11 Gene-set-based analysis is based on the prem-

ise that genes do not work in isolation; instead, genes

that belong to the same molecular networks and cellular

pathways are often involved in disease susceptibility.12,13

Compared with SNP-level analysis, gene-set-based analysis

can potentially detect joint effects or high-order interac-

tions among genes, increase the reproducibility of signifi-

cant findings, and provide more insights into disease

biology. Pathway-based analysis of GWASs is one of several

methods of gene-set-based analysis, which aims to detect

significantly enriched gene sets from predefined canonical

pathways or functional annotations. As a successful

example of a pathway-based approach in GWASs, Wang

et al. identified a significant pathway for Crohn disease

(MIM 266600)—the Il12/Il23 pathway—that was repli-

cated in three independent samples.14 This pathway

included multiple genes that were not detected in any

single GWAS, but were confirmed as risk genes for Crohn

disease through meta-analysis of several GWASs.15 We

applied similar methods, using GWASs and pathway-based

analysis, to study risk genes for cocaine dependence16 and

opioid dependence (MIM 61004).17
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Although pathway-based analysis of GWASs has success-

fully identified gene sets associated with complex disor-

ders, these analyses as traditionally performed are

restricted to gene sets defined by prior information that

is often incomplete. In addition, pathway-based analysis

cannot detect genes that work across pathways. Network-

based analysis of GWASs has been proposed as an alternate

approach to pathway-based analysis to search for groups of

functionally related genes within the context of gene

networks. One network-based approach uses information

from a human protein interaction network (HPIN) to

search for a group of genes whose protein products interact

with one another andwhichmay collectively contribute to

disease risk.18 Network-based approaches are more flexible

in defining gene sets, better able to detect genes that work

across pathways, and less biased by prior knowledge than

are pathway-based analysis.

In the current study, we sought to integrate GWASs and

HPINs to identify a gene subnetwork that contributes to

AD risk. Specifically, we aimed to (1) conduct a dense

module search within the HPIN to identify a gene subnet-

work enriched for AD-associated genes by using two GWAS

data sets fromtheStudyofAddiction:Genetics andEnviron-

ment (SAGE) and theCollaborative Studyon theGenetics of

Alcoholism (COGA); (2) assess the association of the gene

subnetwork with AD across five independent case-control

samples; (3) examine the role of the same gene subnetwork

in other human complex disorders; and (4) complete func-

tional enrichment analysis to evaluate whether genes in

the subnetwork share specific functional features.
Subjects and Methods

Study Descriptions
We first used two discovery GWAS data sets, SAGE and COGA, to

identify a gene subnetwork enriched for AD-associated genes. To

replicate significant findings, we tested the gene subnetwork in

three independent case-control samples derived from the GWAS

of Alcohol Use and Alcohol Use Disorder in Australian Twin-

Families (OZ-ALC) and from two GWAS data sets of the Yale Uni-

versity School of Medicine and the University of Pennsylvania

Perelman School of Medicine (Yale-Penn). To evaluate its speci-

ficity, we also examined the same gene subnetwork in three other

human complex disorders: bipolar disorder (BD [MIM 125480]),

major depressive disorder (MDD [MIM 608516]), and type 2

diabetes (T2D [MIM 125853]). The basic information for these

GWAS data sets is summarized in Table S1 available online. In

the current study, AD was defined based on DSM-IV criteria. The

control subjects did not meet the DSM-IV criteria of AD, but

some were dependent on other substances, as we described below

for each GWAS data set. All of the work done in this paper was

approved by local institutional review boards and proper informed

consent was obtained. The following sections provide detailed

information for each GWAS data set used in the current study.
Discovery Cohort: SAGE and COGA
SAGE aims to identify genetic risk factors and the interplay of

genes and environmental factors for addiction, as described previ-
1028 The American Journal of Human Genetics 93, 1027–1034, Dece
ously.7 The current study included 2,332 unrelated European

Americans (EAs) and 1,088 unrelated African Americans (AAs).

In the SAGE data set, controls were defined as subjects without

dependence on any substance, including cannabis, alcohol,

cocaine, opioids, nicotine, and other substances. The COGA sam-

ples for GWAS were drawn from an ongoing, family-based study of

AD that included subjects from seven sites around the United

States.6,19 After excluding the subjects that overlapped with those

in SAGE, 478 independent subjects were retained for COGA.

Because both COGA and SAGE samples were genotyped on the

same ILLUMINA Human 1 M platform, we merged the 478 inde-

pendent subjects from COGA with SAGE, retaining 2,670 EAs

(1,453 AD and 1,217 controls) and 1,150 AAs (708 AD and 442

controls) for further analysis. In the COGA data set, controls are

subjects who have consumed alcohol but do not meet any defini-

tion of AD or alcohol abuse or any DSM-III-R or DSM-IV definition

of abuse or dependence on other drugs (except nicotine).
Replication Cohorts: OZ-ALC and Yale-Penn GWAS
The OZ-ALC sample was drawn from Australian twin-family

samples, which have been used for linkage analysis of smoking-

related traits and alcohol-use disorders.20,21 A family-based

GWAS of alcohol use and AD was constructed from these

families.9 We applied the raw data files from dbGaP that included

6,145 subjects with both phenotype and genotype information,

and most subjects had relatives. To replicate the significant find-

ings in a case-control sample set, we randomly selected 2,228

unrelated subjects (795 AD and 641 controls) from the total

samples for the association analysis. In the OZ-ALC sample, con-

trols were defined as subjects without dependence on alcohol or

nicotine and without depression.

The Yale-Penn GWAS data set included individuals recruited for

genetic studies of cocaine, opioid, and alcohol dependence, as

described previously.16,17,22 Subjects were interviewed with the

Semi-Structured Assessment for Drug Dependence and Alcoholism

(SSADDA) to derive diagnoses for lifetime psychiatric and sub-

stance use disorders based on DSM-IV criteria.23,24 DNA samples

of 5,799 subjects interviewed via the SSADDA were genotyped

on the Illumina HumanOmni1-Quad v1.0 microarray. Because

the genotyped subjects include affected sibling pairs, we randomly

selected 3,008 unrelated AAs (1,641 AD and 1,367 controls) and

1,407 unrelated EAs (1,086 AD and 321 controls) for the associa-

tion analysis. In AAs, controls were defined as subjects without

dependence on any substance, including cannabis, alcohol,

cocaine, opioids, nicotine, and other substances. In EAs, controls

were defined as subjects without dependence on alcohol, though

they could be dependent on other substances, such as cocaine,

opioids, and nicotine.
GWAS Data Sets of Other Human Complex Disorders
The GWAS data set of BD included 1,190 cases from the Bipolar

Genome Study (BiGS) and 401 controls, referred to as the

‘‘TGEN’’ sample, which was described previously.25 The Genetics

of Recurrent Early-onset Depression (GenRED) GWAS included

1,020 MDD cases, with 1,636 controls from the Molecular

Genetics of Schizophrenia (MGS) study. Details of the GenRED

GWAS were described elsewhere.26 Two GWAS data sets of T2D

included 9,325 unrelated EAs (626 T2D cases and 8,699 controls)

and 3,096 unrelated AAs (539 T2D cases and 2,557 controls),

which were derived from the Atherosclerosis Risk in Communities

(ARIC) study.27 T2D was defined as fasting glucose R 126 mg/dl,
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nonfasting glucoseR 200mg/dl, self-reported physician diagnosis

of T2D, or treatment for T2D.
Data Quality Control
Each GWAS data set was cleaned before analysis via PLINK.28

Samples and SNPs were excluded from analysis based on predeter-

mined quality control (QC) metrics, including sample call

rate % 95%, SNP call rate % 95%, minor allele frequency

(MAF) % 0.01 in controls, and p values of Hardy-Weinberg

Equilibrium (HWE) tests % 1 3 10�6 for controls. We used

EIGENSOFT to compute principal components (PC) for samples

in each GWAS data set by using pruned SNPs that were in low

linkage disequilibrium (LD) with one another.29 We removed

outlier subjects from the analysis; these were defined as subjects

whose ancestry was at least three standard deviations from the

mean on one of the two largest PCs.
Statistical Analysis
SNP-Level Association Tests

We used PLINK for the SNP-trait association test, with sex, age, and

the top three PCs as covariates under a log-additive genetic model.

We evaluated the possibility of population stratification or other

systemic biases by using the quantile-quantile (QQ) plots based

on p values of autosomal SNPs.

Identification of Modules Enriched for Genes Associated with AD

By using an R package, dmGWAS,30 we conducted a dense module

search within the HPIN to search for modules that were enriched

with small p value genes. We assigned a SNP to a gene if it was

located within the gene or up to 20 kb immediately upstream or

downstream, assigning a gene-level p value to each gene using

the smallest p value among all SNPs mapped to that gene. A

node-weighted HPIN was then constructed by superposing the

gene-level p values on a HPIN from the Protein Interaction

Network Analysis platform (PINA).31 The PINA was obtained

from the PINA website, and the Bioconductor package

‘‘org.Hs.eg.db’’ annotation resource was used to map uniprot IDs

to human official gene symbols, generating ~57,800 protein inter-

action pairs with human gene symbols. The dmGWAS grows the

module from each node by adding the neighboring nodes that

can generate the maximum increment of a module score Zm.

Specifically, Zm ¼ P
Zi=

ffiffiffi
k

p
, where k is the number of genes in

the module and Zi is transferred from the p value according to

an inverse normal distribution function. Module growth is

stopped if adding neighborhood nodes does not yield an incre-

ment > Zm 3 0.1.

To determine how likely it is that the investigated (index) mod-

ule could be identified by chance, dmGWAS creates a background

distribution by scoring 100,000 randomly selected modules with

the same number of genes as the index module. The significance

of the index module is calculated as the proportion of those

random selected modules whose Zm are larger than or equal to

that of the identified module. To adjust for module size and

make the modules directly comparable to each other, dmGWAS

also calculates a normalized module score Zn, defined as

Zn ¼ ðZm �meanðZmðpÞÞÞ=sdðZmðpÞÞ, fromwhich ZmðpÞ represents
the distribution of Zm generated by scoring 100,000 randomly

selected modules with the same size as the index module.

By using the two independent samples (AAs and EAs) from the

merged SAGE-COGA data set, we searched for modules enriched

for AD-associated genes by a dual-evaluation strategy. We first

applied a dense module search in the EA sample and selected the
The American Jou
top 5% of ranked modules in the distribution of Zn as candidate

modules for follow up in AAs. We then tested whether the

candidate modules selected in EAs significantly enriched the AD-

associated genes in AAs. The modules that remained significant

after Bonferroni correction in AAs were designated as final candi-

date modules, which were then merged to construct a subnetwork

for further association analysis.

Association Analysis of the Gene Subnetwork

The enrichment of small p value genes in the identified subnet-

work does not necessarily mean that the subnetwork is associated

with AD.We used a permutation-based association test to evaluate

empirically whether the genes in the subnetwork were collectively

associated with AD or the other human complex disorders investi-

gated in the current study.We extracted the subset of data for SNPs

mapped to genes belonging to the subnetwork.We then randomly

reshuffled the phenotypes and genotypes while keeping the

phenotype and genotype correlation structures unchanged. In

each randomly permuted data set, we calculated Zm in exactly

the same way as in the real data set. This process was repeated

10,000 times and 10,000 instances of Zm were obtained to get

the empirical distribution of Zm under the null hypothesis. The

empirical p value for the association of the subnetwork with AD

was estimated by counting the proportion of the Zm that are larger

than or equal to the observed ones in real data across the 10,000

permuted data sets.

Gene Ontology Enrichment Analysis

We submitted the genes in the subnetwork to The Database for

Annotation, Visualization and Integrated Discovery (DAVID) for

gene ontology (GO) term enrichment analysis based on GO level

four annotations.32 Fisher’s exact test was implemented in DAVID

to compute the enrichment p value for each GO term, followed by

Bonferroni correction for multiple testing correction.
Results

SNP-Level Association Test in SAGE-COGA Data Set

We conducted association tests for each autosomal SNP

with AD in the merged SAGE-COGA data sets for the EA

and AA samples separately. The QQ plot of p values of

the association tests indicated minimal evidence of popu-

lation stratification or other systematic bias in the merged

SAGE-COGA data sets (Figure S1). Overall, no single SNPs

were identified that met genome-wide significance (p ¼
5.0 3 10�8), although there were some suggestive associa-

tions. For example, in EAs, the strongest association with

AD was detected for rs10914375 within SERINC2 (MIM

614549) (p¼ 1.93 10�7, OR¼ 1.38, 95% confidence inter-

val [CI] ¼ 1.22–1.55). In AAs, the strongest association was

found for an intergenic variant rs7182484 (p ¼ 3.53 10�7,

OR ¼ 1.62, 95% CI ¼ 1.34–1.94). However, the strongest

signal in EAs was not replicated in AAs and vice versa.

The Manhattan plot of the genome-wide association test

results in AAs and EAs are shown in Figure S2.

Identification of Subnetwork Enriched for

AD-Associated Genes

With the merged SAGE-COGA data set, we performed

dense module searching within the HPIN to identify

modules enriched for AD-associated genes. A total of
rnal of Human Genetics 93, 1027–1034, December 5, 2013 1029



Figure 1. Gene Subnetwork Constructed with the Top 5%
Modules Generated in EAs and Replicated in AAs of the Merged
SAGE and COGA GWAS Data Sets
The red-white color gradient of a node is proportional to its
p values. The size of a node is proportional to its degree.
8,574 modules were generated in EAs. We selected 429 top-

ranked modules in the 5% upper tail of Zn distribution and

examined them in AAs for enrichment of AD-associated

genes. Of the 429 modules identified in EAs, 7 were also

significant in the enrichment for AD-associated genes after

Bonferroni correction in AAs (pcorrected < 0.05). Table S2

shows the associated genes and statistics for each of the

seven modules. The seven modules, which overlap consid-

erably in their gene content, were then combined to

construct a subnetwork including 39 nonredundant genes.

Figure 1 illustrates the characteristics of the gene subnet-

work. The basic information for each of the 39 genes is

shown in Table S3.
Association Tests between the Gene Subnetwork

and AD

We tested the cumulative evidence for association with AD

for all 39 genes in the subnetwork. We observed significant

associations for the gene subnetwork with AD in both EAs

(p < 0.0001) and AAs (p ¼ 0.0008) in the merged SAGE-

COGA GWAS data set, suggesting that the 39-gene subnet-

work was not only enriched for AD-associated genes, but

also collectively associated with AD. We next asked

whether the 39-gene subnetwork would show evidence

of association with AD in independent samples. When

we examined two European ancestry samples and one

African ancestry sample, we found replication of associa-

tion in all three: a European-ancestry Australian sample

from OZ-ALC GWAS (p ¼ 0.006) and the EA (p ¼ 0.001)

and AA (p ¼ 0.0069) samples collected at Yale and Penn.
Association Tests between the Gene Subnetwork and

Other Human Complex Disorders

We also examined whether the same gene subnetwork is

associated with other human complex disorders in four
1030 The American Journal of Human Genetics 93, 1027–1034, Dece
independent GWAS data sets, including two psychiatric

disorders (BD and MDD) in EAs and one nonpsychiatric

disorder (T2D) in EAs and AAs. We found no significant

evidence for association of this gene subnetwork with BD

(p ¼ 0.53), MDD (p ¼ 0.46), or T2D (EAs, p ¼ 0.41; AAs,

p ¼ 0.25).
GO Enrichment Analysis

This analysis revealed a number of GO terms that remained

significantly enriched even after Bonferroni correction

(Table 1). The enriched GO terms related to neuronal

systems are particularly interesting. These include cation

transport, ion transport, synaptic transmission, and trans-

mission of nerve impulses.
Discussion

In this study, we identified a subnetwork of 39 genes that

not only was enriched for genes associated with AD, but

also collectively associated with AD in AAs and EAs via

the merged SAGE-COGA GWAS data set. We replicated

the association of the gene subnetwork with AD in each

of three independent samples. We did not find any signif-

icant evidence for association of the same gene subnet-

work with three other human complex disorders (BP,

MDD, or T2D). We thus provided evidence that the finding

is both replicable (even across populations) and, at least to

some extent, specific to AD. Functional enrichment anal-

ysis revealed that the gene subnetwork was enriched for

genes involved in neural processes that could underlie AD.

We sought additional evidence to evaluate whether

genes in the subnetwork were previously implicated in

AD. First, we examined whether these genes were reported

as being associated in previous genetic association studies.

We found that two genes (NCAM1 [MIM 116930], FYN

[MIM 137025]) were reported to be associated with AD in

candidate gene association studies,33–37 although there

was also a negative report for the gene FYN.37 Two other

genes, AKAP9 (MIM 604001) and KCNMA1(MIM

600150), were also reported in an independent GWAS on

alcohol-consuming subjects.38 In addition, GRID2 (MIM

602368) was recently identified as a shared susceptibility

gene for substance use, stress response, obesity, and hemo-

dynamic traits.39 Second, we examined the database

Ethanol-Related Gene Resource (ERGR)40 and found 12

genes in the subnetwork (PRKCE [MIM 176975], KCNMA1,

PTK2 [MIM 600758], DOCK1 [MIM 601403], SDC2 [MIM

142460], GRID2, NRD1 [MIM 602651], NCAM1, STXBP1

[MIM 602926], PRKCA [MIM 176960], RPS6KA2 [MIM

601685], and KCND2 [MIM 605410]) that showed changed

expression levels from alcohol-related microarray gene

expression studies in human, rat, or mouse models. Third,

with the same ERGR database, we examined whether the

subnetwork genes mapped to regions detected in human

linkage studies of AD or alcohol-related behavior quantita-

tive trait loci studies in mouse. This analysis revealed seven
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Table 1. GO Enrichment Analysis of Subnetwork Genes

GO Term Overlapping Genesa pb padj
c

GO:0006812~cation transport KCNMA1, KCND2, CLCA1, FYN, KCNE1, KCNIP1, KCNQ1, SCN5A,
KCNMB1, KCNIP4, PRKCB

1.11 3 10�6 5.06 3 10�4

GO:0006811~ion transport KCNMA1, KCND2, CLCA1, FYN, KCNE1, GRID2, KCNIP1, KCNQ1,
SCN5A, KCNMB1, KCNIP4, PRKCB

2.82 3 10�6 0.0013

GO:0007268~synaptic transmission PRKCA, KCNMA1, PTK2, KCND2, GRID2, AKAP9, KCNIP1, KCNMB1 1.10 3 10�5 0.005

GO:0044057~regulation of system process PRKCA, KCNMA1, AVPR1B, CTNND2, KCNE1, STXBP1, KCNQ1, SCN5A 1.40 3 10�5 0.0063

GO:0006796~phosphate metabolic process PRKCA, PTK2, RPS6KA2, FYN, TGFA, RAF1, AKAP9, PRKG1, PRKCE,
CDC25A, PRKCB, GUCY2D

2.70 3 10�5 0.012

GO:0019226~transmission of nerve impulse PRKCA, KCNMA1, PTK2, KCND2, GRID2, AKAP9, KCNIP1, KCNMB1 3.11 3 10�5 0.014

GO:0006873~cellular ion homeostasis PRKCA, KCNMA1, KCND2, AVPR1B, KCNE1, GRID2, KCNQ1, PRKCB 4.75 3 10�5 0.021

GO:0008016~regulation of heart contraction PRKCA, AVPR1B, KCNE1, KCNQ1, SCN5A 4.92 3 10�5 0.022

aSubnetwork genes included in the GO term.
bFisher exact test p value.
cBonferroni correction adjusted p value.
genes (PTK2, RGS2 [MIM 600861], NCAM1, STXBP1,

SCN5A [MIM 600163], SORBS1 [MIM 605264], and

CDC25A [MIM 116947]) with linkage evidence for AD or

alcohol-related behavior.

It is notable that 7 genes of the 39 identified encode

potassium channels or their interacting proteins. Potas-

sium channel genes are particularly attractive, because

potassium channels are regulated by alcohol and are key

elements of behavioral tolerance to alcohol in both inverte-

brates and mammals.41 Moreover, in an independent

GWAS, two potassium channel genes, KCNMA1 and

KCNQ5 (MIM 607357), were reported to be associated

withAD,which further supports the potential role of potas-

sium channel genes in AD.38 In our GWAS of opioid depen-

dence, potassium channel genes were also very prominent

among the key findings.17 Because potassium channels

have been major therapeutic targets for drug discovery,42

further research on these channels may contribute to the

development of new drugs for AD treatment.

We performed additional analyses of the gene subnet-

work with AD. First, because the gene subnetwork was

selected on the basis of protein interactions that might

include nonlinear interactions, we tested the gene subnet-

work via the SNP-set (Sequence) Kernel Association Test

(SKAT), which employs a statistical framework that

accounts for both linear and nonlinear interactions.43 We

observed significant associations of the gene subnetwork

with AD in the SAGE-COGA EA (p ¼ 0.00069), OZ-ALC

(p ¼ 0.048), and Yale-Penn AA (p ¼ 0.007) samples, rein-

forcing the genetic associations detected by the smallest

p value method. We did not identify significant associa-

tions in the SAGE-COGA AA (p ¼ 0.12) and Yale-Penn EA

(p ¼ 0.18) samples. We suspect that the nonsignificant

results in the SAGE-COGA AA and Yale-Penn EA samples

were attributable to the lower statistical power of SKAT in

these two samples given their smaller sample sizes and

the greater statistical noise that may exist because SKAT

tested all SNPs within the gene subnetwork. Second, given
The American Jou
the heterogeneous nature of the DSM-IVAD diagnosis, we

attempted to investigate whether the gene subnetwork was

associated more specifically with some related clinical sub-

phenotypes, such as the presence of alcohol tolerance or

withdrawal symptoms. Our analysis did not reveal any

stronger associations for these two subgroups than for

the AD diagnosis (Table S4). Third, analysis of data strati-

fied by sex did not yield greater statistical associations for

either males or females, suggesting no sex-specific effects

for the gene subnetwork (Table S5).

Our results highlight several advantages of network-

based analysis of GWASs over conventional analytical

strategies to uncover susceptibility genes for AD. First,

network-based analysis may identify genes that could be

missed by traditional univariate analytical approaches.

None of the 39 genes in the subnetwork reached genome-

wide significance (p¼ 53 10�8) individually and therefore

were unlikely to attract attention in SNP-based GWASs.

Table S6 shows the univariate SNP analysis results with

nominal significance for the 39 gene set in the SAGE-

COGA EA sample. Only six genes (NRD1, CDC25A,

KCNIP1, NCAM1, SGCG [MIM 608896], and GUCY2D

[MIM 600179]) contained SNPs with a significance

level %1 3 10�4 in the discovery EAs from the SAGE-

COGA data set. We identified these 39 genes in the context

of aHPIN, suggesting that although each could bemodestly

associated with AD, they may collectively be detectable in

AD susceptibility. Second, network-based analysismay pro-

vide more insight into disease biology. Functional enrich-

ment analysis of the genes in the subnetwork revealed a

number of functional annotations that are consistent

with our prior understanding of the neurobiology of AD.

Thus, identification of possible risk genes on the basis of

their inclusion in the subnetwork may provide important

clues to future research into the etiology of AD and poten-

tial targets for its treatment. Third, the significant associa-

tion between the subnetwork and AD was consistently

replicated in three independent data sets, providing
rnal of Human Genetics 93, 1027–1034, December 5, 2013 1031



convergent validity for the findings and suggesting poten-

tially higher reproducibility for this kind of system-level

analysis. Fourth, there was no evidence of association

between the subnetwork and other complex human dis-

eases, providing divergent validation for the findings.

Our current study alsohas some limitations. For example,

in the subnetwork construction stage, we arbitrarily

selected modules that were ranked in the top 5% for EAs

and further remained significant after Bonferroni correc-

tion in AAs via the SAGE-COGA data set. Hence, it is likely

that somemodules that contribute to AD susceptibility but

did not meet our module selection criteria could have been

missed. In addition, we used the smallest p valuemethod to

assign the gene-level p values. Under these circumstances,

it is likely that the association signals for genes with mul-

tiple independent risk variants were not well captured.

In conclusion, through the integrated analysis of GWAS

and HPIN, we identified a subnetwork implicated in AD

that is biologically meaningful and highly reproducible.

The genes included in the subnetwork may provide future

targets for research into the etiology and treatment of AD.
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