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ABSTRACT: Genome-wide association studies (GWASs) at the gene level are commonly used to understand biological
mechanisms underlying complex diseases. In general, one response or outcome is used to present a disease of interest in such
studies. In this study, we consider a multiple traits association test from the gene level. We propose and examine a class of test
statistics that summarizes the association information between single nucleotide polymorphisms (SNPs) and each of the traits.
Our simulation studies demonstrate the advantage of gene-based multiple traits association tests when multiple traits share
common genes. Using our proposed tests, we reanalyze the dataset from the Study of Addiction: Genetics and Environment
(SAGE). Our result validates previous findings while presenting stronger evidence for consideration of multiple traits.
Genet Epidemiol 37:122–129, 2013. C© 2012 Wiley Periodicals, Inc.
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Introduction

Taking advantage of high-throughput genomic data,
genome-wide association studies (GWASs) have become ef-
ficient tools in linking genetic variants and phenotypes [Bur-
ton et al., 2007; McCarthy et al., 2008]. Most GWASs em-
ploy the case-control design by recruiting a group of cases
(diseased individuals) and a group of controls (healthy in-
dividuals). The single nucleotide polymorphisms (SNPs)
are genotyped for all study participants. The most conve-
nient analysis approach is to test the association between
the disease and every SNP. Because a large number of
SNPs requires a large number of tests, it becomes impera-
tive to carefully control the false discovery rate [Dudbridge
and Gusnanto, 2008]. Typically, a stringent threshold with
P-value < 5 × 10–8 is used as the threshold to declare a
genome-wide significance. Such a small significance level is
at the cost of missing many SNPs that are important to the
disease but do not reach this threshold. Furthermore, due to
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locus heterogeneity, diseases could result from alleles at differ-
ent loci in different populations, making it difficult to repli-
cate results based on a single SNP [Neale and Sham, 2004].
Recently, multiple-locus methods have emerged as powerful
approaches for complementing the traditional single-locus
tests in identifying susceptible loci. Among these multiple-
locus approaches, gene-based methods are one of popular
choices thanks to some appealing features. Because genes
are functional units, gene-based analysis may have a better
chance in revealing functional mechanisms underlying com-
plex traits [Wang et al., 2010]. From the statistical perspective,
the gene-based analysis reduces the number of tests by more
than 10-folds, alleviating the multiple comparisons prob-
lem. In addition, unlike the heterogeneity of a single locus,
the functions of a gene are highly consistent across popula-
tions [Neale and Sham, 2004], enhancing the likelihood of
replication.

Many gene-based association tests have been developed,
and they belong to two broad groups: one based on the raw
data and the other based on summary statistics. The key idea
among gene-based tests is to combine the results of SNP-
based test statistics within a gene. As part of the first group,
the PLINK gene-based test [Purcell et al., 2007] chooses a
subset of SNPs within a gene or pathway below a thresh-
old and then averages the P-values of the remaining SNPs.
Unlike the PLINK gene-based test, Lehne, in 2011 [Lehne
et al., 2011], proposed three different methods that averaged
the test statistics rather than the P-values of the individual
SNPs. Another approach is to use the extreme test statistic,
or the smallest P-value of SNPs within a gene, as the gene
level score [Wang et al., 2007]. Due to the complex linkage
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disequilibrium (LD) structure among SNPs, permutation is
usually required to obtain the P-values from such tests, and
there are efforts to speed up the computation [Li et al., 2011].
It is reported that the raw data based algorithms perform bet-
ter in a comprehensive comparison of seven algorithms for
gene/pathway analysis using the Well Trust Case Control Con-
sortium (WTCCC) Crohn disease (CD) dataset [Gui et al.,
2011].

All of the existing approaches focus on a single trait,
and hence it is important to extend them to the analysis
of multiple correlated traits because comorbidity is a sig-
nificant phenomenon in the genetic study of mental disor-
ders. In this article, we consider multiple trait association
tests at the gene level based on the raw data. Specifically,
we first calculate the signals from individual SNPs. Second,
we summarize the moderate signals within a gene or path-
way. Finally, we use permutation to obtain the gene-based
P-value. If there exists a common genetic predisposition
in multiple traits, these traits will enhance the overall sig-
nal and further increase the power of detecting the associa-
tion. The permutation enables us to consider the LD among
SNPs.

Materials and Methods

Nonparametric Association Test Based on Generalized
Kendall’s Tau

In this section, we will introduce a nonparametric associa-
tion test, which is based on Kendall’s tau [Zhang et al., 2010],
to study multiple traits. This test can deal with any combina-
tion of traits including binary traits, quantitative traits, and

ordinal traits. Suppose that we have n individuals. Let Y(k)
i

and G i denote the kth trait and a genotypic score, respectively.
The test statistic is defined as
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f k(·) can be an identity function for the quantitative and
binary traits or the sign function for the ordinal trait [Zhang
et al., 2006]. According to the results in [Rabinowitz and
Laird, 2000], conditional on the available phenotypes and
under the null hypothesis, Uk follows an normal distribution
asymptotically with mean zero and variance
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i }.

Therefore, the following statistic

Wk = U2
k Var–1

0 (Uk|Yk) ∼ χ2
1. (1)

Multiple-Trait Gene-Based Test

In this section, we introduce the nonparametric association
test for the gene-based analysis. We follow the ideas in Lehne

et al. [2011] that handle a single trait. Suppose that there are
L SNPs in a gene. Let Wk(i) be the Wk in (1) for SNPi. To
assess the gene-based association, we employ the following
three summary statisticsWk(i):

(1) M-MeanStat: the mean of Wk(i) is chosen for the L SNPs
and denoted by Wk. Then, the statistic for multiple traits
is

∑
k Wk.

(2) M-MaxStat: the maximum of Wk(i) is chosen among the
L SNPs and denoted by max Wk. Then, the statistic for
multiple traits is

∑
k max Wk

(3) M-TopQ25Stat: the mean among the largest 25% of the L
Wk(i) calculated and denoted by Wqk. Then, the statistic
for multiple traits is

∑
k Wqk.

Deriving the Empirical P-value for Each Gene

Because the distributions of the test statistics have not been
well characterized, a common practice is to use permutation
to compute an empirical P-value for each gene in the dataset.
We use a subject-based permutation schedule in order to
preserve the correlation structure among traits and the LD
within each gene while eliminating the association across the
traits and genes. Specifically, we consider the multivariate
outcome as one unit of a subject and then randomly per-
mute the multivariate outcome vectors among all subjects.
By permuting the multivariate outcome vectors, we do not
need to permute the genotypes anymore, hence simplifying
the computation; more importantly, this approach protects
the dependence structure among the traits. The test statistics
were calculated for each permuted dataset, giving rise to the
empirical distributions of the test statistics under the null
hypothesis that can be used to obtain the empirical P-value.

There are about 20,000 protein coding genes in the human
genome, so by Bonferroni correction a genome-wide signif-
icance of 0.05 requires the individual P-values at the gene
level to be smaller than 0.05/20, 000 = 2.5 × 10–6. To ensure
that we can accurately approximate the P-values, we may
need to permute the dataset at least 500,000 times. Taking
advantage of the fact that there are usually a small number
of significant genes, we employed a faster algorithm similar
to the adaptive permutation schedule [Purcell et al., 2007]
to prune genes in the permutation procedure. Instead of
performing 500,000 permutations, we carry out the permu-
tation adaptively and in multiple iterations. Let p i be the
P-value threshold and Ti be the total number of permu-
tations at and prior to the i-th iteration. Specifically, we
choose p i = 10–i and Ti = 5/p i = 5 × 10i , i = 1, . . . , 5. The
number of additional permutations at the i-th iteration is ac-
tually Ti – Ti–1, for i > 1. At the end of the five iterations,
we will have performed a total of 500,000 permutations.
This is similar to but simpler than the procedure in Pur-
cell et al. [2007]. Although the total number of required
permutations is the same, we save huge computational time
because we only need to test a small number of genes in the
later iterations.
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Simulation Studies of Type I Error and Statistical Power

In this section, we investigate the power of gene-based
multiple traits association tests. Because our methods test one
gene (or one gene set) at a time, for computational reasons,
in each dataset we simulated only one gene (or one gene
set) that consists of a number of SNPs in LD. For assessing
type I errors, this gene does not affect any of the traits. To
evaluate the power, one SNP within this gene is used to define
the penetrance. To simulate SNPs in LD, we followed the
simulation experiment proposed by Wang and Abbott [2008].

Specifically, we generated an underlying multinormal ran-
dom vector,X with the dimension equal to the number of
SNPs in LD. Then, we used two cutoff values, c1 and c2, to con-
vert the values into genotype scores such that P (X d < c1) =

P (AA), P (c1 ≤ X d < c2) = P (Aa), and P (X d > c2) = P (aa),
where X d is the d-th element of X and determines the d-th
SNP genotype. We set the mean and variance of X d to 0 and
1, respectively. Hardy-Weinberg equilibrium was attained by
choosing proper cutoff values, c1 and c2. Specifically, for
minor allele frequency (MAF) 0.1, we chose c1 = 0.878 and
c2 = 2.326; for MAF 0.15, we chose c1 = 0.590 and c2 = 2.005.
It is easy to verify the Hardy-Weinberg equilibrium in these
simulation settings. In addition, we consider two patterns of
MAF: (1) 0.1 for all SNPs and (2) 0.15 for the first half of
SNPs, and 0.1 for second half SNPs.

We considered three different scenarios of LD structure: (1)
The SNPs are in strong LD. Specifically, the correlation coef-
ficients among X 1, . . . X 15 are set to 0.95, and the correlation
coefficients among X 16, . . . , X 30 are set to 0.6. The cross cor-
relation coefficient between X 1, . . . , X 15 and X 16, . . . , X 30 is
set to 0.6. (2) The SNPs are in moderate LD. Specifically, the
correlation coefficients among X 1, . . . , X 15 all equal to 0.6
and the correlation coefficients among X 16, . . . , X 30 are set
to 0.4. The cross correlation coefficient between X 1, . . . , X 15

and X 16, . . . , X 30 is set to 0.4. (3) The SNPs are in linkage
equilibrium (LE). After we defined the correlation matrix of
the latent variable X d , we were able to obtain the SNPs with
the desired LD.

Another variety of our simulation is the number of traits:
two and three. These choices are simple, yet representative.
For the simulation with two traits, the second SNP is the
disease locus for trait 1, and the third SNP for trait 2. For
the simulation with three traits, the second SNP, third SNP,
and fourth SNP are chosen as the disease locus for one of the
three traits, respectively. The trait values are determined by
underlies penetrance function: log it(yj = 1|g j , εj ) = βj g j +

εj with j = 1, 2 or j = 1, 2, 3, εj ∼ N(0, 1). The correlation
between ε1 and ε2 or ε1, ε2 and ε3 is set to 0.2. In addition,
g j denotes as the number of the corresponding minor allele.
For the case with two traits, we fix the effect size of one trait
and then consider the effect size of the other trait from 0
to 1. Specifically, we use three different settings for (β1, β2):
(1, 0), (1, 0.5), and (1, 1), implying that the two traits have
no common genetic variation, moderate common genetic
variation, and strong common variation within this gene,
respectively. Similarly, for the case with three traits, we assume
that the disease gene has strong and moderate effect sizes on

the first and second trait, respectively, and the effect size on
the third trait varies from 0 to 1. The settings for (β1, β2, β3)
are (1, 0.5, 0), (1, 0.5, 0.5), and (1, 0.5, 1).

Furthermore, the number of individuals was set to 500 in
each simulated dataset. The significant threshold was set at
0.01 and we replicated the simulation 1,000 times for the
power analysis and 3,000 times for calculating type I error.

The multiple trait gene-based association tests, namely M-
MeanStat, M-MaxStat, and M-TopQ25Stat, were used in the
simulation. To investigate whether the power and type I error
would be affected by the percentile of the chosen SNPs, we
evaluated the performance for 50% and 75% percentiles,
which are denoted by M-TopQ50Stat and M-TopQ75Stat.
As a comparison, we also analyzed a single trait by using
test statistics: MeanStat, MaxStat, TopQ25Stat, TopQ50Stat,
and TopQ75Stat. To take into account the multiple testing
problem when we test one trait at a time, we employed the
Bonferroni correction for the significance threshold of the
single-trait test.

Study of Addiction: Genetics and Environment (Sage) Data

We used the data from Study of Addiction: Genetics
and Environment (SAGE) [Bierut et al., 2008, 2010; Har-
tel et al., 2006; Luo et al., 2008; Reich et al., 1998] that
we obtained from the database of Genotype and Pheno-
type (dbGap). The SAGE dataset is a large case-control study
that aims to detect susceptible genetic variant for addiction.
The original dataset included 4,121 individuals with various
well-defined addiction outcomes including six categories of
substance dependence data: alcohol, cocaine, marijuana,
nicotine, opiates, and other dependence on other drugs. Life-
time dependence on the six substances was diagnosed by Di-
agnostic and Statistical Manual of Mental Disorders Manual,
Fourth Edition (DSM-IV). The genomic-wide SNP data were
collected by using the ILLUMINA Human 1 M platform, and
were cleaned by setting quality control thresholds for MAF
(>5%) and call rate (>90%). In addition, we deleted 60 dupli-
cate genotype samples and nine individuals whose ethnicities
were neither African-origin nor European-origin. As a result,
there were 3,627 unrelated participants with 830,696 auto-
somal SNPs for our final analysis. To avoid population strat-
ification, the samples were stratified into four sub-samples:
1,393 white women, 1,131 white men, 568 black women,
and 535 black men. In a previous genome-wise association
study of the same data [Chen et al., 2011], the PKNOX2 gene
was reported to be significantly associated with substance de-
pendence in European-origin women. This finding has been
subsequently and independently confirmed in other studies.
Because those reports focused on SNP-based association, we
reanalyzed the same region of PKNOX2 in European-origin
women at the gene level. SNPs were considered to be mapped
to a gene if their physical locations are within 20 kilobases(kb)
5′ upstream and 20 kilobases(kb) 3′ downstream of the cod-
ing regions for the gene [Menashe et al., 2012]. Meanwhile,
we would include additional SNPs to the gene if they are in
strong LD (r2 > 0.9) with the initially mapped SNPs within
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Table I. Type I error at the nominal significance levels of 0.01

Number of traits MAF pattern LD structure MeanStat M-MeanStat MaxStat M-MaxStat TopQ25Stat M-TopQ25Stat

2 1 Strong 0.0097 0.0087 0.0117 0.0093 0.0093 0.0093
1 Moderate 0.0090 0.0110 0.0093 0.0107 0.0090 0.0090
1 LE 0.0100 0.0100 0.0090 0.0093 0.0103 0.0083
2 Strong 0.0100 0.0100 0.0113 0.0107 0.0097 0.0097
2 Moderate 0.0093 0.0087 0.0100 0.0080 0.0093 0.0073
2 LE 0.0107 0.0107 0.0117 0.0107 0.0100 0.0107

3 1 Strong 0.0117 0.0100 0.0110 0.0107 0.0113 0.0087
1 Moderate 0.0103 0.0080 0.0107 0.0080 0.0103 0.0090
1 LE 0.0097 0.0077 0.0093 0.0103 0.0087 0.0087
2 Strong 0.0113 0.0083 0.0123 0.0117 0.0107 0.0087
2 Moderate 0.0107 0.0113 0.0083 0.0083 0.0103 0.0103
2 LE 0.0083 0.0060 0.0103 0.0090 0.0073 0.0097

the gene [Christoforou et al., 2012]. In the end, we included
131 SNPs in the PKNOX2 gene. MeanStat, MaxStat, and
TopQ25Stat statistics were used to test the association for the
six individual addiction traits, and M-MeanStat, M-MaxStat,
and M-TopQ25Stat statistics for the joint analysis of the six
addiction traits.

Results

Simulation Studies of Type I Error and Statistical Power

Table I reports the type I error rates when the nominal
significance levels were set at 0.01. All of the type I error rates
are very close to the nominal values. Figures 1 and 2 present
the power of two traits and three traits, respectively, when the
significance level was set 0.01. In our simulation, the power of
M-TopQ50Stat and M-TopQ75Stat is always between that of
M-TopQ25Stat and M-MeanStat. Hence, we only presented
the results from M-TopQ25Stat and M-MeanStat only.

Figure 1 demonstrates the advantage of gene-based multi-
ple traits association tests when multiple traits share a com-
mon genetic component. First of all, we can observe that
when there is no common genetic variation between two
traits, the power of single trait tests is slightly better than the
power of multiple traits tests. If there exists a moderate com-
mon genetic variation between the two traits, multiple trait
tests gain higher power than single trait tests. The advantage
of the multiple traits tests becomes more obvious when the
two traits have a strong common genetic variation.

In addition, the LD structures impact the performance of
methods in the following two situations. (1) When the dis-
ease locus is in a strong LD block of other observed SNPs,
the power of statistic M-TopQ25Stat is comparable to M-
MeanStat, while M-TopQ25Stat performs slightly better than
M-MeanStat in nearly all settings. M-MaxStat is the least
powerful among the three multiple trait tests. This observa-
tion is consistent with Gui et al. [2011] that compared seven
algorithms in pathway analysis and found that Plink-Average
method was superior to Plink-Max method. (2) When the
disease locus is in moderate LD with other observed SNPs,
the M-MaxStat performed better than the other two meth-
ods. The advantages of M-MaxStat became more obvious
when the disease locus was located in a LE block.

These findings can be partially explained as follows. When
the disease locus is in a strong LD block of the observed
SNPs, the average test statistic such as the M-TopQ25Stat
or M-MeanStat can borrow information from the other loci
within the LD block of disease locus; however, the extreme
test statistic: M-MaxStat neglects the information among the
LD block. When the disease locus and other SNPs are in weak
LD, the noise in the loci masks the genetic effect in the average
test statistic, and hence reduces its power. The M-MaxStat is
less affected by the LD because only the strongest signal is
included. That is why M-MaxStat performs better than M-
MeanStat and M-TopQ25Stat in the cases with moderate LD
or LE.

Lastly, the power of our proposed methods depends on
the minor allele patterns and LD structures. Specifically, the
power increases as the MAF of the disease locus increases or
when the LD of the observed SNPs with the disease locus
increases.

Figure 2 reveals similar patterns to Figure 1. Even when the
third trait is independent of the gene, the power of multiple
traits tests is still higher than the single-trait tests. The advan-
tage becomes more obvious as the effect size of the disease
gene on the third trait increases.

Application to Gwas

Table II presents the matrix consisting of the pairwise odds
ratio between the six traits. The odds ratio between any pair
of substance dependence is consistently much higher than
1, indicating strong comorbidity among the six substance
dependence. Table III displays the results of various asso-
ciation tests between PKNOX2 gene and the six substance
addictions. The P-values are calculated from 500,000 per-
mutations. Except for the MaxStat method, the P-values ob-
tained by multiple trait gene-based association tests are con-
sistently smaller than the values obtained when analyzing
each trait individually, which suggested that the proposed
multiple-trait gene-based tests are more powerful than the
single trait gene-based tests, even before we adjusted for the
trait-based multiple comparisons. For the MaxStat method in
Table III, the P-value (4.00 × 10–04) of the multiple traits tests
is slightly larger than the smallest P-value of single-trait tests
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Figure 1. The power of the six gene-based association tests at the significance level 0.01 for the simulations with two traits. The solid lines
represent the power of the single trait gene-based association test when the Bonferroni adjustment is used. The dashed lines represent the
power of the multiple trait gene-based tests.

(3.80 × 10–04, alcohol dependence). However, if we ap-
ply the Bonferroni correction for single-trait test, the P-
value for multiple traits will be smaller than the single trait
test. Among the multiple-trait tests, TopQ25Stat consistently
yielded smaller P-values than the other two methods, as what
we observed in the simulation study.

To further evaluate our methods, we also considered a com-
monly used gene-based association test for a single-trait based
association. It uses an extended Simes procedure (GATES)
to summarize the P-values of the SNPs within a gene [Li
et al., 2011]. Table III also presents the results from GATES
and reveals, interestingly, that TopQ25Stat and GATES yields
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Figure 2. The power of the six gene-based association tests at the significance level of 0.01 for the simulations with three traits. The solid
lines represent the power of the single trait gene-based association test when the Bonferroni adjustment is used. The dashed lines represent
the power of the multiple trait gene-based tests.

comparable results, although four of the six P-values from
TopQ25Stat are smaller than those from GATES. Thus, our
data analysis suggests that TopQ25Stat is a reliable test for
single-trait-based associations.

Although the P-values of the multiple-trait gene-based
association test did not reach the conservative significance
level of 2.5 × 10–6, the P-value from the M-TopQStat is
6 × 10–6.

Discussion

Comorbidity is an important issue in mental and behav-
ioral research, and to study comorbidity we need to consider
relevant traits simultaneously. In this article, we proposed
a novel approach for conducting multiple-trait association
test at gene level. Borrowing the strength of the nonparamet-
ric association test based on generalized Kendall’s tau, the
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Table II. The odds ratios of six substance addictions

Alcohol Cocaine Marijuana Nicotine Opiates Others

Alcohol – 38.2 35.6 7.2 167.3 45.7
Cocaine 38.2 – 30.1 8.2 30.2 40.1
Marijuana 35.6 30.1 – 12.4 12.1 21.0
Nicotine 7.2 8.2 12.4 – 8.4 7.1
Opiates 167.3 30.2 12.1 8.4 – 47.9
Others 45.7 40.1 21.0 7.1 47.9 –

Table III. P-values from testing the association of PKNOX2 gene with the six substance addictions, both individually and jointly

Alcohol Cocaine Marijuana Nicotine Opiates Others Combined

MeanStat 3.40 × 10–04 8.70 × 10–03 4.90 × 10–03 2.20 × 10–01 1.30 × 10–02 9.40 × 10–04 8.00 × 10–05

MaxStat 3.80 × 10–04 6.50 × 10–03 4.80 × 10–03 6.10 × 10–02 2.20 × 10–01 9.10 × 10–03 4.00 × 10–04

TopQ25Stat 1.40 × 10–04 1.90 × 10–03 1.90 × 10–03 1.60 × 10–01 9.70 × 10–03 1.80 × 10–04 6.00 × 10–06

GATE 1.80 × 10–04 2.40 × 10–03 8.70 × 10–04 8.10 × 10–02 1.10 × 10–01 9.80 × 10–04 –

proposed multiple-trait gene-based test is applicable for any
combinations of binary traits, continuous traits, and/or ordi-
nal traits. It is useful to note that the proposed multiple-trait
gene-based tests are nonparametric-based tests. Although we
used the Kendall’s tau test, our idea can be generalized for
other multiple-trait based tests.

We investigated the properties of our proposed multi-
ple traits gene-based methods through extensive simulation
experiments. First, compared with the single-trait gene-based
methods, multiple-traits gene-based methods performed
better when there is a common genetic variation between
traits. As expected, if the common genetic variation between
traits is weak, multiple-traits gene-based methods have no
advantage. Second, the performance of our proposed meth-
ods depend on the LD structures. This is reasonable because
the observed SNPs need to be in LD with the disease locus
for us to detect any association. The power improves as the
LD gets stronger. When the disease locus is in strong LD
of the observed SNPs, the average test statistics are better
than extreme-based methods (M-MaxStat). However, if the
disease locus is in weak LD of the observed SNPs, extreme
test statistics are more powerful. Overall, the performance of
M-TopQ25Stat is better than M-MeanStat. Thirdly, a higher
MAF leads to a higher power.

Although our proposed test statistics do not include the
comorbidity in their formation, the comorbidity among
the traits is not neglected in the hypothesis testing. When
the P-value is computed through the permutation, the vec-
tor of the traits is permuted together and hence the co-
morbidity is kept intact. In other words, the comorbidity
is taken into account in the distribution of a test statistic
under the null hypothesis. The efficiency of the test varies ac-
cording to the data and genetic models; our simulation sug-
gested that different tests are more powerful under different
settings.

It is useful to note that estimating correlation is challenging
and involves a great deal of uncertainty. Although it is a natu-
ral to incorporate the correlation in a test, the performance is
not uniformly improved due to the extra level of uncertainty.
One could consider log-linear models to accommodate mul-

tiple discrete traits [Christensen et al., 1997], but they cannot
accommodate continuous covariates and become too com-
plicated as the number of the traits or covariates increases.
Principal component analysis (PCA) [Jolliffe et al., 2003] is
also often used for dimension reduction. PCA may produce
a combination of the traits representing the great variation
of the traits, but the direction of the maximum variation is
not unnecessary related to the genetic effect. For example,
we can theoretically construct examples in which the leading
PCA is totally irrelevant to a risk factor (such as gene) of
interest [Bair et al., 2006]. Furthermore, for binary or ordi-
nal traits, the definition of their linear combination may be
meaningless and at least difficult to interpret.

Our data analysis suggests several advantages of the
multiple-trait gene-based tests. First, the computation al-
gorithm is a relatively straightforward extension of the al-
gorithms from the single-trait tests. Second, although the
permutation procedure is computationally intensive, it is
flexible in accommodating complicated LD structure among
SNPs and various sizes of the gene or gene set as well as
unknown dependence among the traits. Third, the multiple-
trait gene-based tests can be incorporated into gene set en-
richment studies, which would improve the understanding
of molecular mechanisms between traits. Lastly, but impor-
tantly, when there exist common genetic variants among
the traits, the multiple-trait gene-based tests are more pow-
erful than the single-trait based test. However, when this
assumption is violated, we do not expect the multiple-
trait gene-based tests to have this advantage [Yu et al.,
2010].
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