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Abstract

A large segment of the population suffers from addiction to alcohol,
smoking, or illicit drugs. Not only do substance abuse and addiction
pose a threat to health, but the consequences of addiction also impose
a social and economic burden on families, communities, and nations.
Genome-wide linkage and association studies have been used for addic-
tion research with varying degrees of success. The most well-established
genetic factors associated with alcohol dependence are in the genes
encoding alcohol dehydrogenase (ADH), which oxidizes alcohol to
acetaldehyde, and aldehyde dehydrogenase (ALDH2), which oxidizes
acetaldehyde to acetate. Recently emerging genetic studies have linked
variants in the genes encoding the α3, α5, and β4 nicotinic acetyl-
choline receptor subunits to smoking risk. However, the influence of
these well-established genetic variants accounts for only a small portion
of the heritability of alcohol and nicotine addiction, and it is likely that
there are both common and rare risk variants yet to be identified. Newly
developed DNA sequencing technologies could potentially advance
the detection of rare variants with a larger impact on addiction risk.
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INTRODUCTION

Substance abuse and addiction pose a world-
wide threat to public health and have a
devastating social and economic impact on in-
dividuals and their families. The World Health
Organization (146) has estimated that there are
2 billion alcohol users, 1.3 billion tobacco users,
and 185 million illicit drug users worldwide.
In the 2010 National Survey on Drug Use
and Health conducted by the Substance Abuse
and Mental Health Services Administration
(SAMHSA) (119), 51.8% of Americans aged
12 or older (131.3 million people) reported
being current drinkers of alcohol, and 23.1%
reported participating in binge drinking (de-
fined as having five or more drinks on the same
occasion on at least 1 day in the 30 days prior to
the survey). The World Health Organization
(145) has also estimated that approximately
20%–30% of esophageal cancer, liver cancer,
cirrhosis of the liver, homicide, epilepsy, and
motor vehicle accidents worldwide result from
the harmful use of alcohol.

In the 2010 SAMHSA survey (119), ap-
proximately 58.3 million Americans aged 12 or
older reported being current cigarette smokers,
and a recent Surgeon General’s report (129)
indicated that one-third of people who have
tried smoking became daily smokers (defined
as those who reported that they have smoked
100 or more cigarettes during their lifetime
and currently smoke every day or some days).
The SAMHSA survey (119) also showed that
59.6% of current smokers aged 12 or older
smoked daily and that this proportion increased
with age—going from 16.5% among those aged
12–17, to 27.8% among those aged 18–25, to
48.9% among those aged 26 or older. The
detrimental effects of tobacco use or exposure to
secondhand smoke include an increased risk of
cancer, chronic lung disease, heart disease, and
stroke. In the United States, cigarette smoking
accounts for 30% of deaths from cancer and
nearly 80% of deaths from chronic obstruc-
tive pulmonary disease (COPD) (22, 95), and
it is also the primary causal factor for early car-
diovascular disease and deaths (22). Globally,

cigarette smoking kills 5.4 million people ev-
ery year and accounts for 10% of adult deaths
(146).

Other psychoactive substances, such as
cannabis, cocaine, and opioids, also cause
significant health and social problems for both
the people who use them and their families.
According to data from the United Nations
Office on Drugs and Crime, 149–271 million
people worldwide aged 15–64 used an illicit
drug in 2009; of these, 15–39 million were clas-
sified as problem users (31). In the SAMHSA
survey (119), an estimated 22.6 million Amer-
icans aged 12 or older reported having used
an illicit drug in 2010 during the month prior
to the survey interview; of these, 2.9 million
abused or were dependent on both alcohol and
illicit drugs, and 4.2 million abused or were de-
pendent on illicit drugs but not alcohol. Major
health consequences of illicit drug use include
accidental and intended injury, drug-induced
psychotic symptoms, and increased risk for
heart, liver, and lung diseases (31). A World
Health Organization report (146) indicated that
in 2004, an estimated 0.7% of the global burden
of disease resulted from cocaine and opioid use.

Drug addiction is a chronic psychiatric
disorder characterized by the persistent, com-
pulsive, and uncontrolled use of a drug despite
harmful consequences. Scientific studies on
addictive behaviors began in the 1930s and
revealed that people with an addiction are not
simply lacking in willpower; instead, they are
unable to control their use of the drug (135).
With advances in our understanding of the
effects of alcohol, nicotine, and illicit drugs on
brain physiology and behavior, it has become
evident that addiction is a psychiatric disease
attributable to biological and environmental
factors (135). The development of addiction
involves several steps: the initiation of sub-
stance use, the transition from experimental
use to regular use, and the actual development
of addiction. Environmental factors such as
peer pressure, parental monitoring, and the ac-
cessibility of a substance play a major role in the
initial decision to drink, smoke, or take illicit
drugs. Beyond the initiation step, the transition
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Figure 1
Interaction of genetic and environmental factors in
the development of substance dependence. The
initiation of substance use is influenced largely by
environmental factors; the use of the addictive
substance is affected largely by genetic factors.

from regular substance use to dependence
differs from person to person and is largely
under genetic control (Figure 1) (74, 133, 135).

GENETIC INFLUENCES
ON THE RISK OF SUBSTANCE
DEPENDENCE

Evidence for a genetic influence on substance
dependence has been provided by many
family, twin, and adoption studies. Family
members of alcohol-dependent individuals
have a higher probability of suffering from
alcohol dependence (54). In a study of families
severely affected by alcohol-abuse disorders,
approximately 50% of brothers and 22%–25%
of sisters of an alcohol-dependent proband
were alcohol dependent (15). Similarly, siblings
of marijuana-dependent, cocaine-dependent,
or habitual-smoking probands were at in-
creased risk (approximately 1.7-fold higher)
of developing marijuana dependence, cocaine
dependence, or habitual smoking compared
with siblings of nondependent individuals (15).
Studies with large twin cohorts have shown that
the risk of alcohol dependence in the co-twin
of an affected monozygotic twin is significantly
higher than the risk in the co-twin of an affected
dizygotic twin pair, which is similar to that of
full siblings of the affected individual (116).

In adoption studies, children of alcoholics
adopted by nonalcoholics who grow up in a
nondrinking environment have a higher risk of
becoming alcoholic than do children of nonal-
coholics adopted by the same parents; children
of alcoholics raised by their alcoholic father
have a similar risk of developing alcohol depen-
dence as their full brothers who were adopted
by nonalcoholics (116). Overall, studies have
shown that the heritability of alcohol-use
disorders ranges from 40% to 60% (116, 131).

Cigarette smoking commonly co-occurs
with alcohol abuse. A meta-analysis of twin
studies showed that both genetic and environ-
mental factors affect smoking and smoking-
related behaviors (83). In women, the initiation
of smoking is influenced largely by genetic fac-
tors; in men, the genetic impact is more signif-
icant on the persistence of smoking than on the
initiation of smoking (83). The heritability of
smoking initiation and nicotine dependence is
estimated to be 50% and 59%, respectively (83).

Studies have also indicated the familial
transmission of illicit-substance-use disorders,
with heritability estimates ranging from 30% to
80% (2, 83, 127). A recent meta-analysis of twin
studies on marijuana use clearly indicated that
vulnerability to both initiation and persistent
use was significantly affected by both genetic
and environmental factors (132). Genetic fac-
tors accounted for 48% and 40% of the total
variance in initiation of marijuana use in men
and women, respectively, and for 51% and 59%
of the total variance in marijuana abuse in men
and women, respectively.

Epidemiological and clinical studies have
shown that many people subsequently use
multiple drugs after their initiation of one drug
(105, 109). Twin studies have demonstrated
the presence of shared environmental factors
that contribute to substance use. The shared
environmental influence has a significant effect
on tobacco initiation, alcohol use, and any drug
use; however, genetic factors have a higher
impact than shared environmental influences
on tobacco use, tobacco problem use, and mar-
ijuana initiation (109). Studies on the etiology
of the comorbidity of multiple substances in
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adolescents have suggested that genetic and
environmental influences are common across
substance classes (74, 109). In family studies
involving adults, findings regarding general
versus substance-specific familial risks have not
been conclusive (15, 91, 128).

IDENTIFICATION OF GENETIC
RISK FACTORS FOR ALCOHOL
DEPENDENCE

Genome-Wide Linkage Studies

One of the earliest genome-wide approaches to
identifying genetic risk factors for alcoholism
employed linkage mapping in large extended
families or in many sibling pairs affected by
alcohol dependence. Studies using this method
identified several chromosomal regions with
LOD (logarithm of the odds, to the base
10) scores suggesting that they contain loci
influencing risk for alcohol dependence. The
Collaborative Study on the Genetics of
Alcoholism (COGA) investigators performed
linkage studies on a large sample from the
general US population using multigenerational
pedigrees densely affected by alcoholism (45,
108). In contrast, investigators at the National
Institute on Alcohol Abuse and Alcoholism
conducted a linkage study on a more ho-
mogeneous population from a southwestern
Native American tribe (88). Both of these
studies provided evidence that loci on human
chromosome 4 increase the risk for alcohol de-
pendence. However, the linkage peak detected
in the COGA study is near the alcohol dehy-
drogenase (ADH) gene cluster, whereas the
linkage signal observed in the Native American
sample is near the GABRB1 gene. The separate
locations of these linkage signals may reflect
differences in the underlying etiology across
distinct populations, a suggestion supported
by the observation of genome-wide significant
linkage of alcohol dependence with markers on
human chromosome 10 in an African American
sample (47). Alternatively, this difference could
reflect the inability of this kind of linkage
study to accurately pinpoint the location of

the gene(s) underlying a signal, or could mean
that one or more of these linkage regions is
associated with a false-positive signal.

Recently, linkage analysis of a community-
based sample of Australian adults detected a
suggestive linkage peak on human chromosome
5p with a LOD score of 2.2 (58). A genome-
wide scan performed with community samples
recruited through the University of California,
San Francisco (UCSF) Family Alcoholism
Study identified several suggestive regions
linked with DSM-IV alcohol dependence (on
human chromosomes 1, 2, 8, 9, 18, and 22)
(50). Unfortunately, there is little consensus
among studies regarding the location of linkage
signals for alcohol dependence. This may be
due to underlying genetic heterogeneity in the
risk for alcohol dependence, with many genetic
loci contributing to risk. This is probably
compounded by the fact that all of these studies
were underpowered to detect genes of small
effect size (110).

Genome-Wide Association Studies

Several genome-wide association studies
(GWAS) examining the risk for alcohol
dependence have been completed using a
variety of designs, including case-control series
of male alcoholics recruited from inpatient
treatment facilities (125), individuals selected
from densely affected families with alcohol
dependence (35), a mixed case-control series
drawn from treatment- and community-
based samples (14), subjects ascertained from
community-based sibships, and individu-
als selected for heavier alcohol use (61).
GWAS using quantitative traits derived from
alcohol-consumption and alcohol-dependence
symptomatology have also been examined
in controls from a population-based sam-
ple recruited for schizophrenia (73) and an
Australian population of related individuals
(61). One study identified two correlated
intergenic single-nucleotide polymorphisms
(SNPs) on human chromosome 2q35 that met
genome-wide significance in the combined
analysis of the GWAS and follow-up data sets
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(125). The other studies did not observe any
association that met conventional genome-
wide significance, and the overlap of the top
genetic signals across studies has been limited.

Although the results to date have been some-
what disappointing, they underscore the prior
observations from linkage studies and support
the hypothesis that alcohol dependence is a ge-
netically heterogeneous disorder influenced by
many genes of small effect. The power to de-
tect statistically significant association is also
an important consideration. The sample sizes
(n < 5,000) in GWAS of alcohol dependence to
date are much smaller than those of successful
GWAS of other diseases such as type 2 diabetes
and breast cancer, which used >30,000 subjects
(142).

Candidate Gene Studies

Genetically influenced metabolic factors have
been implicated in the etiology of alcoholism
in a number of ethnic groups. The conversion
of alcohols to the corresponding aldehydes is
catalyzed by ADHs. This is the rate-limiting
step in the elimination of ethanol in humans
and experimental animals (18). Seven ADH-
encoding genes (ADH1A, ADH1B, ADH1C,
ADH4, ADH5, ADH6, and ADH7) are lo-
cated as a cluster on human chromosome
4q22-23 (33). The class 1 enzymes—encoded
by ADH1A, ADH1B, and ADH1C (previously
termed ADH3) in humans—have a high affinity
for ethanol and contribute the most to its con-
version to acetaldehyde, particularly during the
elimination phase. This class of ADH enzymes
includes the most important ADH isoforms for
oxidizing ethanol in humans (33). ADH7 acts
early in the time course of alcohol metabolism
in stomach mucosa that is exposed to high
concentrations of alcohol (42).

The majority of association studies investi-
gating the role of alcohol-metabolizing genes
in risk for alcohol-use disorders have focused
on the well-characterized coding variants
within ADH1B, ADH1C, and ALDH2 and on
the phenotype of alcohol dependence. There
are three different ADH1B alleles (33). The

reference allele is ADH1B∗1, which encodes
the β1 subunit with an arginine at amino-
acid positions 48 (Arg48) and 370 (Arg370).
ADH1B∗2, a common allele in Asians, encodes
the β2 subunit with a histidine at position 48
(His48). The ADH1B∗3 allele, which encodes
the β3 subunit with a cysteine at position
370 (Cys370), is found primarily in people of
African descent. Amino-acid substitutions at
positions 48 (ADH1B∗2) and 370 (ADH1B∗3)
result in 70–80-fold higher enzyme activity
compared with that produced by the ADH1B∗1
allele (33). The rapid conversion of ethanol
to acetaldehyde causes facial flushing and
aversive effects after alcohol consumption
and is protective against alcohol dependence
(Figure 2) (103). A meta-analysis of the
ADH1B∗2 allele in Han Chinese and Japanese
showed that individuals who are homozygous
for this variant (His48/His48) have a five-
fold decrease in risk for alcohol dependence
compared with individuals who are heterozy-
gous for this variant (Arg48/His48) (144). In
Europeans, the risk for developing alcohol
dependence is twofold lower in His48/His48
carriers compared with Arg48/His48 carri-
ers (144). Recently, a case-control study in
populations of European and African ancestry
demonstrated that the ADH1B∗2 (His48) allele
in these populations is associated with a lower
maximum number of drinks in a 24-h period
( p = 3 × 10−13) and has a strong protective
effect on DSM-IV alcohol dependence in both
populations (odds ratio = 0.34, p = 6.6 ×
10−10) (16). The protective effect of ADH1B∗2
was not detectable by a GWAS approach in
studies involving populations of European or
African descent because none of the variants
on these genotyping chips showed high linkage
disequilibrium with this rare variant. These
studies demonstrate that the ADH1B∗2 allele
correlates with reduced alcohol consumption
and risk for alcohol dependence in all popula-
tions, though the allele frequencies vary in peo-
ple of different ethnicity. The ADH1B∗3 allele
also has a protective effect on risk for alcoholism
in African American families and southwest
California Native Americans (36, 136).
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Figure 2
The role of ADH and ALDH2 variants in the alcohol metabolic pathway. Solid arrows indicate direct links; dashed arrows indicate
indirect links. Individuals carrying the ADH1B∗2 allele metabolize alcohol much faster and have higher levels of acetaldehyde than
individuals who do not carry this allele. The rapid conversion of ethanol to acetaldehyde causes facial flushing and aversive effects,
which could make these individuals reduce their intake of alcohol; when they drink less because of these effects, their acetaldehyde
levels drop and could become similar to those of noncarriers who drink more. Larger and smaller text sizes indicate higher and lower
levels, respectively, of the chemical compounds shown in bold.

The reference allele of the ADH1C gene
is ADH1C∗1, with an arginine at position 272
(Arg272) and an isoleucine at position 350
(Ile350). The ADH1C∗2 allele, with a glutamine
at position 272 (Gln272) and a valine at po-
sition 350 (Val350), is common in Europeans
and African Americans. The ADH1C∗3 allele,
with a threonine at position 352 (Thr352), is
found in Native Americans (33). Studies have
shown that ADH1C∗1 also has protective effects
on the risk for alcohol dependence in people of
Asian and African descent (33, 96). However,
some studies showed that the protective effect
of the ADH1C∗1 allele is not an independent ef-
fect owing to the linkage disequilibrium of this
allele with the ADH1B∗2 allele (24, 103).

Another well-known polymorphism is in
the ALDH2 gene, which encodes the aldehyde
dehydrogenase 2 family (mitochondrial). The
ALDH2∗2 allele, which substitutes lysine for
glutamate at position 504 (Lys504), results in
a nearly inactive protein subunit that is unable
to metabolize acetaldehyde (150). This allele is
relatively common in Asians but nearly absent
in people of European or African descent

(69, 102) and is strongly associated with a
reduced risk for alcohol dependence (33).
Polymorphisms in other ADH genes have also
been associated with alcohol dependence (36,
77). Studies have shown that variation in the
ADH genes contributes substantially to varia-
tion in alcohol metabolism and consequently af-
fects the risk for alcohol dependence. Although
the variants ADH1B Arg48His and ADH1C
Arg272Gln/Ile350Val are known to have a ma-
jor effect on enzyme activity in vitro, these vari-
ants account for only a very small amount of the
genetic variance in in vivo metabolism (18, 94).
In vivo studies in Europeans demonstrated that
variants in ADH7 are associated with the early
stages of alcohol metabolism, with additional
effects in ADH1A, ADH1B, and ADH4 (18).
Postabsorptive alcohol metabolism is affected
by variants in the ADH7-ADH1C-ADH1B
gene cluster. Approximately 20% of the total
genetic variance for alcohol metabolism was
attributed to the combined effects of variants
in the ADH gene region (18). Because patterns
of linkage disequilibrium across this genomic
region vary among different ethnic populations
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(36, 104) and the frequencies of functional vari-
ants differ from one population to another, the
effects of functional variants may be population
specific.

Gamma amino butyric acid (GABA) is the
main inhibitory neurotransmitter in the central
nervous system, and its transmission is consid-
ered to mediate the pharmacological effects of
alcohol in the brain. The modulatory actions
of GABA are mediated through two types of
receptors: the ionotropic GABAA receptor and
the metabotropic GABAB receptor (57, 137). A
family study from the COGA group identified
multiple SNPs in GABRA2 (which encodes the
GABAA receptor α2 subunit) associated with
increased risk for alcohol dependence (34).
Several subsequent studies using case-control
samples replicated the association between
GABRA2 and alcohol dependence, though
the nature of the association and the specific
variants associated with alcohol dependence
differ in some samples (27, 40, 43, 80, 118).
Furthermore, one study showed that GABRA2
alleles affect the SRE (self-rating of the effects
of alcohol), suggesting that genetic variations
in GABRA2 might play a role in the risk for
alcohol-use disorders by moderating the SRE
(111). Evidence from a functional MRI study
suggested that a SNP in GABRA2 (rs279871)
associated with alcohol dependence is also
associated with the medial frontal response to
alcohol cues (72).

Adjacent to GABRA2 is the GABRG1 gene,
which encodes the GABAA receptor γ1 sub-
unit. Several studies have reported association
of GABRG1 variants with the risk for alcohol
dependence and drinking behaviors (39, 107).
Haplotype analyses have suggested that mark-
ers in the GABRA2 gene associated with alco-
hol dependence are in linkage disequilibrium
with markers in the GABRG1 gene in many
populations, indicating that the association with
GABRA2 may be driven by variants in GABRG1
(28, 71). Despite multiple studies implicating
SNPs in GABRA2 and GABRG1 in the risk
for alcohol-related behaviors, the specific func-
tional alleles underlying these associations have
yet to be identified.

In summary, candidate gene studies have
successfully detected functional variants in
alcohol metabolism genes such as ADH1B,
ADH1C, and ALDH2 associated with a risk of
developing alcohol dependence in populations
of Asian descent. Although alleles associated
with reduced risk in Asians are rare in popu-
lations of African and European descent, they
also reduce risk for alcohol dependence in these
populations. Several GWAS of alcoholism
have produced no conclusive evidence for spe-
cific genetic risk factors. The heterogeneous
nature of the ascertainment strategies and the
phenotypic measures used across studies could
potentially explain the lack of a replicated
association. Furthermore, the sample sizes in
current alcohol studies are small compared with
those in GWAS of other psychiatric disorders,
limiting the power to detect genetic risk factors.

IDENTIFICATION OF GENETIC
RISK FACTORS FOR NICOTINE
DEPENDENCE

Genome-Wide Linkage Studies

To identify susceptibility loci for nicotine
dependence, more than 20 linkage analyses
across the entire genome have been conducted
using a family-based and/or sib-pair design
(for a review, see 83). Although a number of
genomic regions were identified as significant
or suggestive for harboring susceptibility loci
for nicotine dependence or smoking-related
phenotypes, only four linkage regions have
been replicated in four or more independent
samples; these reside on human chromosomes
9q, 10q, 11p, and 17p (82). Recently a genome-
wide linkage scan suggested that a region on
human chromosome 2q31.1 confers risk for
the development of nicotine dependence with
a broad range of dependence symptoms rather
than a specific aspect of the disorder (51).

Genome-Wide Association Studies

In contrast to the studies of alcohol depen-
dence, GWAS of smoking behavior have
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reported consistent and compelling genetic
evidence for association. The first GWAS
using a case-control sample reported evidence
that variants within the nicotinic acetylcholine
receptor (nAChR) subunit genes on human
chromosomes 15q (CHRNA5-CHRNA3-
CHRNB4) and 8p (CHRNA6-CHRNB3)
influence risk for nicotine dependence, as
defined by scores on the Fagerström test for
nicotine dependence (17). The chromosome 15
association has been replicated in subsequent
GWAS either directly or indirectly using highly
correlated SNPs (r2 > 0.8), with cigarettes
per day (CPD) as a quantitative variable to
define heavy- and light-smoking individuals
(13, 17, 122, 141). Genome-wide association
meta-analyses for CPD further confirmed that
variants in CHRNA5, CHRNA3, and CHRNB4
are associated with the risk of developing heavy
smoking (87, 123, 124). In addition, the GWAS
reported by Thorgeirsson et al. (123) showed
that variation in the CHRNA6-CHRNB3 gene
cluster on human chromosome 8 is associated
with CPD at a genome-wide significance level.

Genetic variation in nicotine metabolism
also plays an important role in cigarette con-
sumption (93, 115) and nicotine dependence
(8). Conversion of nicotine to cotinine typically
accounts for 70%–80% of nicotine metabolism,
the majority of which is catalyzed by the cy-
tochrome P450 2A6 (CYP2A6) enzyme (67).
Recent GWAS meta-analyses using subjects of
European descent identified SNPs in the region
of CYP2A6 associated with CPD (123, 124).

Candidate Gene Studies

In parallel with these GWAS, several studies
using a candidate gene approach have also
reported the association of SNPs in the
CHRNA5-CHRNA3-CHRNB4 gene cluster
with nicotine dependence and smoking quan-
tity (17, 113, 141). Furthermore, a fine mapping
study (113) observed that the nonsynonymous
SNP rs16969968 in exon 5 of CHRNA5 has
consistent effects on the risk for nicotine
dependence in both European (odds ratio =
1.40, 95% confidence interval = 1.23–1.59)

and African (odds ratio = 2.04, 95% con-
fidence interval = 1.15–3.62) populations,
despite a large difference in allele frequency for
the SNP. A second locus tagged by rs578776 in
the 3′ untranslated region of CHRNA3 that has
low linkage disequilibrium with rs16969968 is
associated with nicotine dependence in Euro-
pean Americans but not in African Americans.
Another linkage disequilibrium bin tagged
by an intronic SNP in CHRNA5, rs588765,
confers a protective effect for nicotine de-
pendence in populations of European descent
(Figure 3) (113, 139). A comprehensive meta-
analysis involving more than 32,000 subjects
confirmed the three unique loci in this gene
cluster that affect smoking quantity (112). In
Asians, a locus tagged by rs578776 overlapped
with a locus tagged by rs588765, and variants in
this distinctive linkage disequilibrium pattern
were reported to influence smoking initiation,
smoking cessation (84), and smoking quantity
(84, 147).

There are at least two distinct biological
mechanisms in the nAChR gene cluster on
chromosome 15 that alter the risk for devel-
oping nicotine dependence. One mechanism
involves the variant rs16969968 (D398N),
which likely alters protein structure and re-
ceptor function. An in vitro functional analysis
demonstrated that the maximal response to
agonist per receptor was twofold higher for
the α4β2α5D398 nAChR variant relative to
the α4β2α5N398 nAChR variant (17). The
second potential mechanism is altered mRNA
expression of CHRNA5 (139, 140). Several
variants located upstream of the coding region
and within intronic regions of CHRNA5 (i.e.,
rs588765) are strongly associated with the vari-
ability in CHRNA5 mRNA expression observed
in the human frontal cortex. Subjects homozy-
gous for the minor allele of rs588765 showed
a 2.9-fold increase in CHRNA5 mRNA ex-
pression compared with subjects homozygous
for the major allele (139, 140). The rs588765
polymorphism and highly correlated variants
are only weakly correlated with the D398N
variant. The N398 variant, which greatly
increases risk for nicotine dependence, occurs
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rs578776

rs588765

CHRNA5CHRNA5CHRNA5
CHRNA3 CHRNA3 

CHRNB4 CHRNB4 
CHRNA3 

CHRNB4 

78,858 kb 78,887 kb 78,914 kb 78,917 kb 78,934 kb78,842 kb

PSMA4

rs16969968

Figure 3
Three distinct loci across the CHRNA5-CHRNA3-CHRNB4 gene cluster on human chromosome 15. Triangles represent single-
nucleotide polymorphisms (SNPs). SNPs in the same color are highly correlated with each other but not with SNPs in other colors.
SNP position is not drawn to scale.

primarily on the background of low mRNA
expression of CHRNA5. The nonrisk variant
D398 occurs on both high- and low-expression
alleles. The risk for nicotine dependence is
significantly lower when D398 occurs on a
background of low CHRNA5 mRNA expres-
sion than when it occurs on a background of
high CHRNA5 mRNA expression (139).

Studies examining genetic and environmen-
tal risks for nicotine dependence have shown
that there is an interaction between environ-
mental factors and the rs16969968 variant that
has an effect on smoking. The genetic risk
associated with rs16969968 was reduced in
subjects with high levels of parent monitoring
and increased in subjects with low levels of
parent monitoring (23). Interaction between
childhood adversity and rs16969968 is also as-
sociated with the risk for nicotine dependence
in men (149): Among men who experienced
childhood adversity, individuals who carry the
AA risk genotype have the highest risk of de-
veloping nicotine dependence compared with
individuals who carry the GA or GG genotype.

A study that sequenced all genes encoding
nicotinic receptor subunits has demonstrated
that the low-frequency coding variants R37H in
CHRNA3 and T375I and T91I in CHRNB4 de-
crease the risk for nicotine dependence among
regular smokers (55). It further showed that the
minor allele of each polymorphism increases
the cellular response to nicotine (β4T375I p =
0.01, β4T91I p = 0.02, α3R37H p = 0.003),
but the largest effect on in vitro receptor activ-
ity was seen in the presence of both CHRNB4
T91I and CHRNA3 R37H ( p = 2 × 10−6),
two SNPs in strong linkage disequilibrium in
human populations (r2 = 0.89, n = 2,035
European Americans; r2 = 0.59, n = 710
African Americans).

Nicotine is the major substance in to-
bacco responsible for addiction among cigarette
smokers (62). An in vivo study has shown that
approximately 80% of nicotine consumed is
metabolically inactivated to cotinine (12); ap-
proximately 90% of this conversion is medi-
ated by CYP2A6 (92, 99). The next step of
nicotine metabolism, which oxidizes cotinine to
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form trans-3′-hydroxycotinine, is entirely cat-
alyzed by CYP2A6 (98). CYP2A6 is a highly
polymorphic enzyme. Different CYP2A6 al-
leles have different functional consequences,
and the frequency of CYP2A6 alleles varies
among ethnic populations (97). A number of
studies have reported association between re-
duced or absent CYP2A6 enzyme activity and
lower risk of smoking, including decreased
cigarette consumption, smoking intensity, and
withdrawal symptoms; shorter smoking dura-
tion; and increased cessation. However, some
studies have failed to detect any association be-
tween CYP2A6 variation and smoking status
(64). A recent study using quantified measures
of deuterated (D2)-cotinine/(D2-cotinine +
D2-nicotine) following oral administration in
189 European Americans demonstrated that
CYP2A6∗12 is a loss-of-function allele indis-
tinguishable from CYP2A6∗4 and CYP2A6∗2
alleles, and that the CYP2A6∗1B 5′ untrans-
lated region conversion has a negligible impact
on metabolism (19). After controlling for the
CYP2A6 genotype, the authors found modest
associations between increased metabolism and
both gender and current smoking (19).

In summary, genetic studies of nicotine
dependence have successfully identified risk
factors using both GWAS and candidate
gene approaches. The consistent phenotypic
measure—CPD—is easily obtained in large co-
hort studies and has been successfully used
in meta-analyses of the genetics of smoking.
These studies have greatly increased the power
to detect genetic risk factors for nicotine con-
sumption. However, these associated genetic
factors explain only a small percentage of the
variance in nicotine consumption, indicating
that further research to detect other genetic fac-
tors influencing smoking is warranted.

IDENTIFICATION OF GENETIC
RISK FACTORS FOR ILLICIT
DRUG DEPENDENCE

Genome-Wide Linkage Studies

Cannabis is the most widely used illicit drug.
A genome-wide linkage analysis of cannabis

dependence and related phenotypes in indi-
viduals from the UCSF Family Alcoholism
Study identified genome-wide significant link-
age (LOD score of 3 or higher) for cannabis
craving and withdrawal symptoms for regions
on human chromosomes 1, 3, 6, 7, and 9; no
evidence for linkage with cannabis dependence
reached genome-wide significance (38). Loci
on human chromosomes 3 (3q21) and 9 (9q34),
which are close to the regions linked to cannabis
withdrawal in the UCSF study, were also sug-
gested to influence cannabis-dependence symp-
toms in adolescents who participated in a
Colorado Center on Antisocial Drug Depen-
dence study (65). A Native American commu-
nity study detected genome-wide significant
linkage with the severe cannabis use/antisocial
subtype on human chromosomes 16 (LOD
score of 4.4) and 19 (LOD score of 6.4) (37).

For other illicit drugs, significant linkage
peaks have been identified on human chro-
mosomes 9 (a region approximately 40 cM
upstream of the region linked with cannabis
use) and 12 for cocaine dependence (48),
on chromosome 17 at 103.5 cM for a heavy-
opioid-use cluster-defined trait (49), and on 14q
for DSM-IV opioid dependence (79). Genome-
wide linkage analysis of heroin dependence in
Han Chinese reported several linkage regions,
but none reached genome-wide significance
(52). An analysis in families severely affected
by alcohol-use disorders reported significant
linkage on human chromosome 2 (LOD score
of 3.2) with illicit drug dependence (1).

Genome-Wide Association Studies

There have not been many GWAS of illicit-
drug-use disorders. A study using 708 DSM-IV
cannabis-dependent cases and 2,346 cannabis-
exposed nondependent controls from the Study
of Addiction: Genetics and Environment data
set showed a suggestive association between
cannabis dependence and variants in the
ANKFN1 gene on human chromosome 17 (4).
In a sample of 325 methadone-stabilized, for-
merly severe heroin addicts and 250 control in-
dividuals, Nielsen et al. (100) used a pooled
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GWAS approach to find variants associated
with vulnerability to heroin addiction.

Candidate Gene Studies

Genes involved in dopamine neurotransmis-
sion are biologically plausible candidates for
association with cocaine dependence because
dopamine pathways play a major role in drug
reward (70, 78). Genetic association analysis
of dopamine receptors and transporter genes
found both positive and negative associations
(76). These discrepancies may be due to small
sample size as well as the complex nature of the
phenotype.

OPRM1, which codes for the G protein–
coupled mu opioid receptor, is the primary site
of action of most opioids. A nonsynonymous
SNP in exon 1 of OPRM1, A118G, is the
most commonly studied variant for opioid
dependence, but its association is controver-
sial. Several studies have reported a positive
association between variants in OPRM1 and
opiate (including heroin) dependence (11, 20,
81, 120), whereas other studies did not detect
an association (101, 138). A study using sensory
neurons isolated from a humanized mouse
model showed that the A118G missense variant
of OPRM1 modulates the morphine and fen-
tanyl pharmacological profile (89). Morphine
is approximately fivefold less potent and 26%
less efficacious in neurons with the 118GG
genotype than it is in neurons with the 118AA
genotype. However, there is no difference in
the potency and efficacy of the agonist fentanyl
in neurons with different genotypes.

Two well-characterized cannabinoid re-
ceptors associated with the endocannabinoid
signaling system, CB1 (CNR1) and CB2
(CNR2), have been reported to be associated
with vulnerability to psychiatric disorders,
including substance abuse (130). Studies using
CNR1-knockout mice have reported that
the mice display alterations in reward- and
drug-seeking behaviors in response to psychos-
timulants, including alcohol (25, 106), nicotine
(32, 44), cocaine, and amphetamine (90).
The most-studied genetic variant in CNR1 is

the (AAT)n trinucleotide short-tandem repeat,
which was reported to be associated with intra-
venous administration of drugs of abuse (26).
However, other studies have not confirmed this
finding (10, 29, 85). Several other variants in
CNR1 have been reported to be associated with
cannabis dependence (3), cannabis-dependence
symptoms (66), cocaine dependence (152), and
other substance dependences (63, 114, 151).

Interestingly, the rs16969968 nonsynony-
mous variant in the α5 nAChR subunit is also
associated with cocaine dependence, but the
minor allele reduces the risk for cocaine de-
pendence, which is the opposite of the effect
reported for nicotine dependence (53).

SEQUENCING APPROACHES TO
IDENTIFY VARIANTS THAT
COULD EXPLAIN THE MISSING
HERITABILITY FOR SUBSTANCE
DEPENDENCE

One drawback of the GWAS method is its
reliance on linkage disequilibrium. This means
that this approach is good for identifying vari-
ants that are common in the general population
(>1%) but misses rare variants with larger
effects on risk that have low linkage disequi-
librium with common variants detected with
standard genotyping chips. As a way to uncover
the missing heritability factors that influence
the risk for psychiatric diseases, including
addiction, next-generation DNA sequencing
combined with the results of association and
perhaps linkage studies holds the promise of
identifying a larger set of susceptibility loci
(9, 46). In contrast to GWAS, the sequencing
of targeted genomic regions identified from
GWAS or linkage analysis, or whole-exome
or whole-genome sequencing, improves the
ability to discover novel causative or highly
penetrant mutations for human diseases.

Rare variants have been shown to be risk
factors for some complex disorders, but their
role in psychiatric disorders and especially
addiction-related phenotypes is largely unex-
plored (75). A few studies have shown as-
sociations between rare variants in nicotinic
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receptor genes and nicotine dependence (55,
143, 148).

Several variants in the alcohol metabolism
genes (i.e., ADH1B) and nicotine metabolism
genes (i.e., CYP2A6) have low frequencies
(1%–5% minor allele frequency) and generally
reduce risk for dependence, suggesting that
human populations might be genetically
predisposed to develop addiction, with rare
variant alleles leading to reduced risk. This
is supported in the nicotine literature, in
which most people who smoke develop some
symptoms of dependence, whereas only a small
proportion smoke without developing any
symptoms of dependence. It could be that as a
result of some unknown evolutionary selection
pressure, most people are predisposed to
addiction when exposed to substances.

IMPLICATIONS OF RECENT
FINDINGS ON HEALTH
BEYOND ADDICTION

Nicotinic Receptors and Lung
Cancer and Chronic Obstructive
Pulmonary Disease

GWAS approaches have revealed that several
SNPs within the CHRNA5-CHRNA3-
CHRNB4 gene cluster are significantly
associated with the risk of lung cancer and
COPD (5, 68, 117, 122). The most strongly as-
sociated SNPs are the same as those that show
association with nicotine dependence and CPD
in other studies (13, 112, 122, 124). It is unclear
whether the association of this locus with lung
cancer is a direct biological effect on lung
cancer susceptibility or is mediated through
effects on increased risk of smoking. Although
SNPs at this locus are only weakly associated
with lung cancer risk in those who have never
smoked, they are associated with risk for other
smoking-associated cancers and diseases (86,
126). This implies that this locus predisposes
individuals to increased tobacco consumption,
leading to increased risk for cancer. How-
ever, some studies have suggested a direct
link between CHRNA5-CHRNA3-CHRNB4

variants and lung cancer: The risk of lung
cancer that can be attributed to the CHRNA5-
CHRNA3-CHRNB4 variants is higher than can
be explained by the variants’ effect on smoking
quantity (122), and the genetic risk for lung can-
cer and COPD remains after the risk associated
with smoking has been statistically accounted
for using CPD and the duration of smoking
(86). Other studies, however, have shown that
the amount of nicotine absorbed by smokers
is not fully accounted for by CPD owing to
differences in how individuals smoke (56, 60).

The α5 nAChR subunit is expressed in lung
tissue, and a 30-fold upregulation of CHRNA5
mRNA expression is seen in lung cancer tis-
sue compared with normal lung tissue (41). In
addition, tobacco smoke and nicotine can both
mediate the stepwise overexpression of nAChR
subtypes, which leads to increased Ca2+ per-
meability in exposed cells (6). Thus, a switch in
the nAChR composition (involving the α3 and
α5 subunits, among others) could change re-
ceptor function, leading to pathologic effects in
nicotine-exposed cells. SNPs in the CHRNA5-
CHRNA3-CHRNB4 gene cluster could there-
fore contribute to an increased risk of nicotine
dependence and to lung cancer independently
and on two levels: (a) by increasing the num-
ber of cigarettes smoked and the likelihood of
nicotine dependence, and (b) by inserting them-
selves into the pathophysiological cascade that
leads to lung cancer (134).

ADH and ALDH2 Genes
and Esophageal Cancer

Variants in ADH1B and ALDH2 that influence
alcohol consumption and alcohol depen-
dence also play a role in the risk for upper
aero-digestive tract (UADT) cancer. The
protein encoded by the ADH1B∗2 allele, which
is associated with reduced risk for alcohol
dependence, has increased enzyme activity.
The protein encoded by the ALDH2∗2 allele, a
protective allele for alcohol dependence, has al-
most zero enzyme activity (33). Individuals who
carry these two alleles have much higher levels
of acetaldehyde (a carcinogen) compared with

252 Wang · Kapoor · Goate

A
nn

u.
 R

ev
. G

en
om

. H
um

an
 G

en
et

. 2
01

2.
13

:2
41

-2
61

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 S
ta

te
 U

ni
ve

rs
ity

 o
f 

N
ew

 Y
or

k 
- 

B
ro

ok
ly

n 
on

 0
1/

30
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



GG13CH11-Goate ARI 25 July 2012 13:56

noncarriers if they consume alcohol (Figure 2).
Studies have shown that, owing to the accumu-
lation of acetaldehyde in the blood, individuals
who have the alcohol flushing response are at
higher risk for esophageal cancer (21).

GWAS have also identified a significant
association between esophageal squamous
cell cancer and SNPs on human chromo-
somes 4q21-23 and 12q24, which include the
functional variants rs1229984 in ADH1B and
rs671 in ALDH2, respectively (30). Tanaka
et al. (121) demonstrated that the interaction
of ADH1B and/or ALDH2 risk alleles with
smoking and alcohol consumption significantly
increases the risk for the development of
esophageal squamous cell carcinoma. Studies
have also shown that the combination of
alcohol consumption with the inactive het-
erozygous ALDH2 genotype (ALDH2∗1/∗2)
and less-active homozygous ADH1B genotype
(ADH1B∗1/∗1) increases the risk of UADT

squamous cell carcinoma in central European
(59) and Japanese (7) populations. The effect
of ALDH2∗1/∗2 results from the high level
of acetaldehyde; the effect of ADH1B∗1/∗1
is due to heavy drinking that leads to longer
exposure of the UADT to salivary ethanol
and acetaldehyde. These studies point to
significant gene-environment interactions that
potentially lead toward complex pathophysio-
logical pathways for the development of such
diseases.

CONCLUSION

Genomic approaches are beginning to provide
clues to the underlying genetic etiology of ad-
diction, and have demonstrated that exposure
to these substances in combination with genetic
vulnerability to addiction plays an important
role in the risk for common cancers previously
associated with substance use.

SUMMARY POINTS

1. Genetic studies have identified functional alleles in alcohol metabolism genes (ADH,
which encodes alcohol dehydrogenase, and ALDH2, which encodes aldehyde dehy-
drogenase) that influence the risk for alcohol dependence. The interaction of genetic
(polymorphisms of ADH and ALDH2 genes) and environmental (heavy drinking) factors
is associated with risk for UADT cancers.

2. Recent GWAS have successfully identified variants in the α3, α5, and β4 subunits of
nAChR associated with risk of nicotine dependence. However, GWAS on alcoholism
have not provided conclusive evidence for specific genetic factors for this type of addic-
tion. It is likely that CPD, a common phenotype used in nicotine-dependence GWAS, is
a more consistent measurement than other quantitative measures of other substance-use
disorders. Harmonized phenotypic measures provide a convenient method for combin-
ing small cohorts into a large sample with more than 10,000 subjects, increasing the
power to detect statistically significant association.

3. Although the GWAS approach has been successfully used to investigate the genetic
influence on smoking, the association of CHRNA5-CHRNA3-CHRNB4 with nicotine
dependence explains only a small part of this addiction’s heritability. A significant fraction
of the genetic variance remains unexplained despite the use of very large sample sizes.
This missing heritability may be explained by rare variants with large effect. More robust
DNA sequencing approaches can potentially identify this missing heritability.

4. The roles of alcohol metabolism genes in esophageal cancer and nicotinic receptors in
lung cancer indicate significant gene-environment interaction in cancer vulnerability.
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