Genome-wide association study of comorbid depressive syndrome and alcohol dependence

Alexis C. Edwards^a, Fazil Aliev^{a,h}, Laura J. Bierut^b, Kathleen K. Bucholz^b, Howard Edenberg^c, Victor Hesselbrock^d, John Kramer^e, Samuel Kuperman^e, John I. Nurnberger Jr^c, Marc A. Schuckit^f, Bernice Porjesz^g and Danielle M. Dick^a

Objective Depression and alcohol dependence (AD) are common psychiatric disorders that often co-occur. Both disorders are genetically influenced, with heritability estimates in the range of 35–60%. In addition, evidence from twin studies suggests that AD and depression are genetically correlated. Herein, we report results from a genome-wide association study of a comorbid phenotype, in which cases meet the Diagnostic and Statistical Manual of Mental Disorders-IV symptom threshold for major depressive symptomatology and the Diagnostic and Statistical Manual of Mental Disorders-IV criteria for AD.

Methods Samples (N=467 cases and N=407 controls) were of European-American descent and were genotyped using the Illumina Human 1M BeadChip array.

Results Although no single-nucleotide polymorphism (SNP) meets genome-wide significance criteria, we identified 10 markers with *P* values less than 1×10^{-5} , seven of which are located in known genes, which have not been previously implicated in either disorder. Genes harboring SNPs yielding *P* values less than 1×10^{-3} are functionally enriched for a number of gene ontology categories, notably several related to glutamatergic function. Investigation of expression localization using online resources suggests that these genes are expressed across a variety of tissues, including behaviorally relevant brain regions. Genes that have been previously

Introduction

Alcohol dependence (AD) and major depression (MD) are common psychiatric disorders that often co-occur. Alcohol researchers have frequently delineated different 'types' of AD, with a central distinction being the presence or absence of externalizing disorders, such as antisocial personality disorder, or internalizing disorders, including depression. For example, Cloninger *et al.* (1981) defined type I AD as that which is driven in part by drinking to self-medicate negative affects; Del Boca and Hesselbrock (1996) described four types of dependence, including an 'internalizing' type in which individuals exhibit high anxiety and/or depression. Classes of

All supplementary digital content is available directly from the corresponding author.

0955-8829 © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins

associated with depression, AD, or other addiction-related phenotypes – such as *CDH13*, *CSMD2*, *GRID1*, and *HTR1B* – were implicated by nominally significant SNPs. Finally, the degree of overlap of significant SNPs between a comorbid phenotype and an AD-only phenotype is modest.

Conclusion These results underscore the complex genomic influences on psychiatric phenotypes and suggest that a comorbid phenotype is partially influenced by genetic variants that do not affect AD alone. *Psychiatr Genet* 22:31–41 © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Psychiatric Genetics 2012, 22:31-41

Keywords: comorbidity, depressive syndrome, genetic risk, genetics of alcoholism

^aVirginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, ^bWashington University School of Medicine, St. Louis, Missouri, ^cIndiana University School of Medicine, Indianapolis, Indiana, ^dUniversity of Connecticut, Farmington, Connecticut, ^eUniversity of Iowa, Iowa City, Iowa, ^fUniversity of California, San Diego, California, ^gSUNY Downstate Medical Center, Brooklyn, New York, USA and ^hAnkara University, Ankara, Turkey

Correspondence to Dr Alexis C. Edwards, PhD, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth PO Box 980126, Richmond, VA, 23298-0126, USA

Tel: +1 804 828 8591; fax: +1 804 828 1471;

e-mail: aedwards5@vcu.edu; edwards.alexis@gmail.com

Received 16 November 2010 Revised 6 April 2011 Accepted 22 June 2011

alcohol-dependent individuals who could be broadly described as suffering from mood and/or anxiety disorders have also been defined by others (Lesch *et al.*, 1988; Windle and Scheidt, 2004).

The National Epidemiologic Survey of Alcoholism and Related Conditions, using a representative populationbased sample, found that the lifetime prevalence of major depressive disorders classified under the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV; American Psychiatric Association, 2000) is 13.2%, and the 12-month prevalence is 5.2% (Hasin *et al.*, 2005). The corresponding figures for DSM-IV AD are 12.5 and 3.8% (Hasin *et al.*, 2007). Among individuals with a lifetime diagnosis of major depressive disorder, 21% met criteria for AD (Hasin *et al.*, 2005), which is 1.7-fold that predicted if the disorders were independent. Similarly,

DOI: 10.1097/YPG.0b013e32834acd07

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

individuals with a lifetime AD diagnosis are at an increased risk for MD (odds ratio = 2.2; Hasin et al., 2007). Analyses of the treatment-based Sequenced Treatment Alternatives to Relieve Depression sample (Davis et al., 2006) found that individuals comorbid for MD and a substance use disorder (not limited to alcohol) have an earlier age of onset of depression relative to noncomorbid depressed individuals. Such individuals exhibit more depressive symptoms, have higher levels of functional impairment, and suffer from concurrent anxiety disorders more frequently. Importantly, these individuals also present an increased suicide risk (Davis et al., 2006). Given the significant economic, social, and health consequences associated with both disorders, the optimization of prevention and treatment efforts is crucial. An understanding of the biological underpinnings of the disorders is essential for such efforts.

Multiple genetic variants, the effects of which vary in direction and magnitude, likely influence manifestation of and variation in depression and AD. Furthermore, these genetic variants likely interact with one another (epistasis), may be involved in multiple phenotypes (pleiotropy), and are subject to environmental influences. Typically, genes associated with a particular complex trait are of small effect, individually accounting for only a very low proportion of total variance (Flint, 2003; Plomin and Davis, 2009).

Evidence from twin studies indicates that MD and AD are genetically correlated. Kendler *et al.* (1993) found that, in a population of US women, the genetic correlation between the disorders was approximately 0.4–0.6. A study of adult male twins (Lyons *et al.*, 2006) found that, although a reciprocal causation model (whereby AD increased the risk of MD and *vice versa*) provided the best fit for the data, genetic correlation between these traits could not be ruled out.

A previous investigation from the Collaborative Study on the Genetics of Alcoholism (COGA) identified a region on chromosome 1 that was linked to both AD and depressive syndrome (Nurnberger et al., 2001). More recent studies have identified specific genes that are associated with both depression and AD, including CHRM2 (Wang et al., 2004; Edenberg and Foroud, 2006), SLC6A4 (Dick et al., 2007b; Gokturk et al., 2008), COMT (Sery et al., 2006; Baekken et al., 2008), and DRD2 (Koks et al., 2006; Dick et al., 2007c), although others failed to replicate these associations (e.g. Furlong et al., 1998; Gillespie et al., 2005; Serretti et al., 2006; Cohen-Woods et al., 2009). Furthermore, DRD2, CHRM2, SLC6A4, and MAOA have all been associated with comorbid conditions involving alcohol use and internalizing symptomatology in adolescents (Saraceno et al., 2009). Thus, findings from molecular genetic studies, in conjunction with twin studies on genetic correlation between the phenotypes, represent converging evidence that comorbidity of these traits is genetically influenced. One would expect that genes associated with comorbidity could fall into one of several categories: genes influencing AD irrespective of depressive status, genes influencing depression irrespective of AD status, and genes that specifically influence a comorbid status but not either disorder on its own.

The majority of previous research has relied on candidate genes, particularly those genes involved in neurotransmitter systems known to be involved in the etiology of addiction or depression. In contrast, genome-wide scans do not rely on earlier hypotheses, and therefore they represent a useful method by which to identify novel variants influencing the phenotype of interest. In addition, they can provide further support for previously implicated genetic loci. Recently, Sullivan et al. (2009) reported results from a genome-wide association study (GWAS) on MD. Although no single-nucleotide polymorphism (SNP) met criteria for genome-wide significance $(P < 5 \times 10^{-8})$, four of their most significant markers were in the gene coding for the presynaptic protein piccolo. Muglia et al. (2010) also conducted a GWAS analysis for MD using two separate samples and reported no markers meeting genome-wide significance criteria. However, secondary analyses by this research group suggested that genes previously implicated in mood disorders were significantly (P < 0.0001) associated with depression when the two samples were combined.

Johnson *et al.* (2006) and Treutlein *et al.* (2009a) have reported GWAS results for AD. The former reported clusters of nominally significant SNPs, including some located in genes previously associated with addictionrelated traits. Treutlein *et al.* (2009a) used a two-stage approach and identified two intergenic markers reaching genome-wide significance, as well as nominally significant SNPs located within genes previously implicated in AD. In the current study, we describe the results from the first GWAS of comorbid depressive syndrome and AD.

Methods

Sample

Alcohol-dependent probands were ascertained by COGA through alcohol treatment programs and evaluated at multiple centers in the US: Indiana University, State University of New York Health Science Center Brooklyn, University of Connecticut, University of Iowa, University of California-San Diego, Washington University in St. Louis, and Howard University. The Institutional Review Boards of all participating institutions approved the study. After participants provided informed consent, probands and their relatives were administered the Semi-Structured Assessment for the Genetics of Alcoholism (Bucholz *et al.*, 1994), a validated polydiagnostic instrument. Details of ascertainment and assessment have been previously described (Nurnberger *et al.*, 2004). In addition, community probands were recruited at each site using a variety of

methods, including through driver's license records, random mailings to employees and students at a university, and attendees at medical and dental clinics. Again, after providing informed consent, community probands and their family members were administered the Semi-Structured Assessment for the Genetics of Alcoholism.

Case-control sample collection and measures

For the GWAS sample (described in more detail in Edenberg et al., 2010), unrelated alcohol-dependent cases and nonalcohol-dependent controls were selected from the pool of alcohol-dependent and communityascertained families. All cases met DSM-IV criteria for AD at some point during their lives. In situations in which an alcohol-dependent proband had been phenotypically assessed multiple times for his or her lifetime history, he or she had to have met the diagnostic criteria for AD at each assessment to be a GWAS 'case'. Controls were selected from both the community-recruited families and those recruited through an alcohol-dependent individual; however, they could not share a common ancestor with a case. In addition, controls were required to have consumed alcohol but to have never met criteria for any alcohol-related diagnosis (abuse or dependence). In addition, controls should not have met diagnostic criteria for abuse or dependence of cocaine, stimulants, sedatives, opioids, or marijuana. Because AD is so frequently comorbid with other types of substance dependence, cases meeting diagnostic criteria for other types of dependence were not excluded: 49.9% (N = 226) of cases were dependent on marijuana; 40.7% (N = 188) were dependent on cocaine; 30.6% (N = 140) were dependent on stimulants; 20.6% (N = 87) were dependent on sedatives; and 18.8% (N = 85) were dependent on opioids. Because COGA probands were recruited in part from treatment centers, they likely represent relatively severe cases of AD. In addition, the cases used in this study, who also meet criterion A for a major depressive episode, endorsed more AD symptoms than did cases without a history of depression (see Discussion). Thus, the cases included in this analysis likely represent an extreme phenotype.

For the GWAS analysis in this report, we defined as 'cases' those individuals who, in addition to meeting lifetime DSM-IV criteria for AD, also met lifetime DSM-IV symptom threshold for a major depressive episode (at least five of nine symptoms within a 2-week period, one of which had to be sadness or anhedonia). Individuals were excluded if symptoms were due to bereavement, but not if symptoms were experienced under the influence of drugs and/or alcohol. For the sake of simplicity, we will refer to the depression phenotype as 'depressive syndrome' (as in Nurnberger *et al.*, 2001); the reader should note that cases were required to meet criterion A for a major depressive episode (in addition to

being alcohol dependent) but were not required to have experienced these symptoms independent of alcohol or other substances. Thus, they do not necessarily meet full criteria for a major depressive episode (see below for additional details). Controls were excluded if they met our criteria for depressive syndrome. Cases and controls differed significantly by age (t = 7.87, P < 0.001), with controls being older (47.5 ± 0.63) than cases $(41.4 \pm$ 0.48). This was intentional, to ensure that 'unaffected' individuals had passed the period of maximal risk for onset of AD. Cases were more frequently male $(\gamma^2 = 71.16, P < 0.0001)$; this was likely because of the selection of cases on the basis of AD, which is more prevalent in men than in women. However, had selection been based on depressive syndrome primarily and AD secondarily, the sample would likely have had a disproportionate number of women. Cases had completed significantly fewer years of school and had lower current household income (P < 0.0001 in both cases). Cases had been admitted to an inpatient psychiatric ward/chemical dependency treatment facility more frequently than controls (cases: mean = 4.4, range 0–60; controls: mean = 0.02, range 0-3; P < 0.0001).

A principal component-based analysis was performed in PLINK (Purcell et al., 2007) to cluster these samples along with HapMap reference samples to assign the study patients to groups of predominantly European and African ancestry. We conducted analyses on the European-American (EA) subsample (N = 1399) in the interest of reducing genetic and etiological heterogeneity. The somewhat restricted nature of inclusion criteria necessarily limits both case and control sample sizes. Furthermore, exclusion of depressed controls (N = 144) and cases whose depression met bereavement exclusion criteria (N = 26) resulted in a final GWAS sample size of 467 comorbid cases (287 men and 180 women) and 407 unaffected controls (132 men and 275 women). Of the 467 cases, 181 met criteria for an independent depressive episode - one experienced outside the context of drug or alcohol use - whereas 286 reported moderate-to-heavy alcohol or drug use during the time they experienced depressive symptoms.

Genome-wide association analysis

Genotyping was performed by the Center for Inherited Disease Research. DNA was obtained from blood or lymphoblast cell lines. Genotyping was performed using the Illumina Infinium II assay protocol with hybridization to Illumina HumanHap 1M BeadChips (Illumina, San Diego, California, USA). A subset of the data is available through dbGaP (*http://www.ncbi.nlm.nih.gov/sites/entrez?db= gap*; accession number: phs000125.v1.p1). Twenty-seven samples were removed because of poor sample quality. Blind duplicate reproducibility was more than 99.9%. Samples with genotypes for at least 98.0% of the markers were considered for inclusion in analyses and were screened for cryptic relatedness, population stratification, and so on, resulting in the removal of 13 additional samples. SNPs with a call rate of 98.0% or more in the EA sample were included in the analyses. SNPs were excluded if the minor allele frequency was less than 1% in the combined case and control data set; further SNPs were excluded if significant $(P < 10^{-4})$ deviation from Hardy-Weinberg equilibrium was observed. Additional details are provided in Edenberg et al. (2010). The GWAS analysis was conducted in PLINK version 1.05 for all autosomes and the X chromosome, with age and sex included as covariates. An additive model was assumed, and, because of the binary outcome variable, logistic regression was used. Annotations are based on assembly GRCh37/hg19. Gene names were assigned to markers based on RefSeq gene sequences.

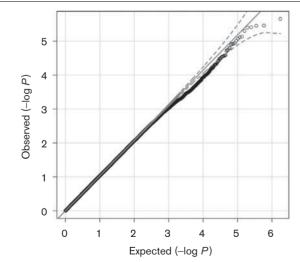
Additional analyses

We used several approaches to determine whether genes implicated by our results (i.e., those harboring markers with $P < 10^{-3}$) had been previously associated with psychiatric phenotypes: this included a manual literature search in PubMed (*http://www.ncbi.nlm.nih.gov/pubmed/*), querying the National Center of Biotechnology Information (NCBI) Gene database (*http://www.ncbi.nlm.nih.gov/ gene*), and querying the NCBI Association Results browser (*http://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.htm*). Information obtained through the Association Results browser is limited to the results of genome-wide screens. Note that the Association Results browser returns records for genes whose associations have been 'pre-computed' at NCBI but for which no publication is available. Those results are cited here as being reported by NCBI.

We investigated gene expression in markers with a *P* value less than 10^{-5} using the online database BioGPS (Wu et al., 2009), which includes expression information across 79 tissue types (Su et al., 2004). We also conducted secondary analyses of markers with a P value of less than 10^{-3} to assess whether these markers were enriched for gene ontology categories, using the online database ToppGene (Chen et al., 2009). Of the 938 markers meeting the P value of less than 10^{-3} threshold, 538 are located within 366 known genes; gene ontology information was available for 321 of these through ToppGene. We used a false discovery rate of P value less than 0.05 as the significance criterion and excluded categories that applied to fewer than three genes. We note that this method does not take into account the fact that larger genes are likely to span more markers than small genes and are thus more likely to harbor a marker meeting our *P* value threshold by chance alone.

Finally, we used PLINK to assess linkage disequilibrium (LD) in the 100 genes that contained two or more markers with a P value less than 10^{-3} to investigate whether different markers were likely to represent

independent signals. A threshold of $r^2 < 0.5$ was used as an indication of independent signals within a gene.


Results

Association analysis in the AD-depressive syndrome genome-wide association study case-control sample

The genotyping rate in the EA sample was 99.7%. After applying several quality control steps (see Methods), 876,476 SNPs were analyzed. The sex and age covariates were statistically significant ($P < 10^{-15}$ and 10^{-11} , respectively) for all screened SNPs (sex was not a covariate for SNPs on the X chromosome). None of the SNPs analyzed met criteria for genome-wide significance (5×10^{-8} ; Fig. 1, Supplementary Table 1). Ten SNPs had P values of less than 10^{-5} (Table 1). Seven of these fall within known genes: *OXTR*, *FAF1*, *OPA3*, *WDR7*, *SPATA13*, *EFHA2*, and *FHIT*. The remaining three are located on the X chromosome and are not near any known gene.

OXTR, which encodes the oxytocin receptor, is involved in a variety of biological processes including muscle contraction, regulation of blood pressure, and processes relevant to reproduction, such as lactation. It binds vasopressin as well as oxytocin. FAF1, or Fas (TNFRSF6)associated factor 1, has been implicated in the regulation of apoptosis. Optic atrophy 3 (OPA3) is involved in sensory perception, specifically visual perception. EFhand domain family, member 2 (EFHA2), is involved in calcium binding. FHIT, the fragile histidine triad gene, plays a role in the cell cycle and metabolic processes, as well as in cation and metal binding. WD repeat domain

Fig. 1

Q–Q plot for association analysis of alcohol dependence with comorbid depressive syndrome (λ =1.0363). The solid red line represents the expected –log *P* values; black dots represent the observed –log *P* values; the dashed red lines represent 95% confidence intervals.

Table 1 Information on single-nucleotide polymorphisms with a <i>P</i> value of less than 10 ⁻⁵ from genome-wide association analysis of comorbid depressive syndrome and alcohol dependence in the European-American Collaborative Study on the Genetics of Alcoholism sample									
Chr	Single-nucleotide polymorphism	BP	A1/A2	Minor allelic frequency	Gene	Odds ratio	L95	U95	P value

Chr	Single-nucleotide polymorphism	BP	A1/A2	Minor allelic frequency	Gene	Odds ratio	L95	U95	P value
3	rs237899	8783515	A/G	0.3687	OXTR	1.692	1.361	2.104	2.207e-6
Х	rs5968205	82841146	C/T	0.1549	n/a	0.4544	0.3256	0.634	3.461e-6
Х	rs5922858	82857664	G/T	0.1505	n/a	0.4509	0.322	0.6314	3.525e-6
1	rs3827730	50710426	C/T	0.332	FAF1	1.716	1.364	2.158	3.888e-6
19	rs8111589	50726398	C/T	0.4365	OPA3	1.641	1.329	2.025	3.988e-6
Х	rs5922838	82757851	G/A	0.1555	n/a	0.4615	0.331	0.6433	5.038e-6
13	rs9805786	23556356	G/T	0.4103	SPATA13	1.649	1.325	2.053	7.331e-6
18	rs17750015	52548620	C/T	0.3498	WDR7	0.5955	0.4745	0.7473	7.691e-6
8	rs10090288	16974006	C/A	0.07225	EFHA2	0.3928	0.2603	0.5926	8.439e-6
3	rs1735460	60666645	T/C	0.02538	FHIT	0.1918	0.09224	0.3986	9.728e-6

7 (*WDR7*) has a role in proteolysis and has been associated with multiple sclerosis in another GWAS (Baranzini *et al.*, 2009). No gene ontology information is available for spermatogenesis-associated 13 (*SPATA13*).

Gene expression in 'top hits'

FHIT expression is consistent across most tissues but is highest in CD4 T-cells; modestly increased expression is observed in a variety of other tissues/cells, including CD34 cells, the hypothalamus, and whole brain; expression is also observed in every brain region for which data are available. OXTR is highly expressed in lymphoblasts, although datamining resources (http://www.ncbi.nlm.nih.gov/unigene) also indicate increased expression in the brain, skin, and breast. As with FHIT, OXTR is modestly expressed in all brain regions reported in BioGPS. FAF1 expression is increased in testis tissues, as well as in various blood cells and cancerous cells. WDR7 expression is highest across multiple brain regions, especially in the amygdala, prefrontal cortex, and hypothalamus. SPATA13 exhibits increased expression in various blood cells, although expression is also detected across brain tissues. OPA3 is expressed consistently across brain tissues, although its highest detected expression levels are in cancer cells. No expression information is available for EFHA2.

Gene ontology analysis

We selected SNPs with a P value of less than 10^{-3} (Supplementary Table 2) to assess potential gene ontology enrichment using the online database Topp-Gene (see Methods). One biological process gene ontology category - response to drug - was significantly overrepresented. Eight molecular function categories were enriched. Several of these were very closely related - for example, ionotropic glutamate receptor activity, extracellular-glutamate-gated ion channel activity, glutamate receptor activity, and excitatory extracellular ligandgated ion channel activity - and were each populated by the same five glutamate-related genes: GRIN2A, GRIN2C, GRID1, GRIA1, and GRIA4. Each of these genes encodes a glutamate receptor. In addition, a number of cellular component categories related to neural function were statistically overrepresented. All enriched categories are detailed in Table 2.

Additional secondary analyses

We conducted literature and database searches to determine whether any of the 366 genes spanning markers with a P value less than 10^{-3} have been previously associated with AD, depression, or other potentially relevant phenotypes (particularly those related to addiction or internalizing). We found that over 60 genes had a history of association with phenotypes of interest (Table 3). Some of these have been implicated in phenotypes related to both addiction and internalizing characteristics.

A total of 105 genes contained two or more SNPs with a P value less than 10^{-3} . We evaluated LD among markers within each of these genes to assess whether these were redundant or suggestive of multiple, independent signals. Forty-eight genes met these criteria, including four genes (*FAF1, OPA3, OXTR*, and *SPATA13*) implicated by our most significant markers, as well as *GRIN2A* and *HTR1B*. A full list is provided in Table 4.

To assess whether our results were driven primarily by the AD phenotype, rather than by the comorbid phenotype, we ran a parallel analysis comparing 354 individuals having AD but without depressive syndrome with 407 controls who had neither disorder (the same controls that were used in the primary analysis). We then compared P values from that analysis with those in our original list of SNPs with a P value less than 10^{-3} . Only 52 of the 938 markers reported here met the same criteria in the AD-only analysis; 44.3% (416/938) had a P value of less than 0.05. The direction of the allelic effect was reversed in 12 (of 938) cases, but none of those 12 markers had a P value less than 0.05 in the secondary analysis.

Discussion

We present the first report of a genome-wide association analysis of comorbid depressive syndrome and AD. No marker met genome-wide significance criteria, but 10 had P values less than 10^{-5} and 938 had P values less than 10^{-3} . Indeed, given the genomic complexity and phenotypic heterogeneity of AD and depressive syndrome, we might not expect the effect size of any individual marker to be large enough to reach genome-wide significance in a

Category name	False discovery rate <i>P</i> value	Genes in category
Molecular functions		
Ionotropic glutamate receptor activity	0.0000036	GRIN2C, GRIN2A, GRID1, GRIA1, GRIA4
Extracellular-glutamate-gated ion channel activity	0.0000048	GRIN2C, GRIN2A, GRID1, GRIA1, GRIA4
Glutamate receptor activity	0.000052	GRIN2C, GRIN2A, GRID1, GRIA1, GRIA4
Drug transporter activity	0.000302	SLC22A5, ABCB1, ABCB4, SLC46A2
Alkali metal ion binding	0.000366	SLC9A8, SLC22A5, KCNA3, SLC5A11, IMPA2, SCN5A, SLC24A5, KCNT2, KCNS3, KCNS2, SLC17A6
Transmembrane transporter activity	0.000562	SLC9A8, GRIN2C, GRIN2A, NMUR2, SLC22A5, KCNA3, ABCB1, ABCB4, SLC5A11, SLC1A3, SCN5A, SLC14A2, GRID1, TRPC4, SLC46A2, SLC24A5, TOMM20, GRIA4, GRIA1, SLC04A1, KCNT2, KCNS3, KCNS2, UQCRFS1, TAP2, SLC17A6
Excitatory extracellular ligand-gated ion channel activity	0.000558	GRIN2C, GRIN2A, GRID1, GRIA1, GRIA4
Calcium ion binding	0.000329	EFEMP1, CCBE1, CLSTN2, THBS2, FREM1, GALNTL4, GPR98, SNTB1, ITSN1, GALNS, GALNT2, EFHA1, DMD, F9, EYS, CAB39, PCDH19, SPTA1, ASPH, SLC24A5, RAB11FIP4, CDH13, TRPC4, CDH4, CADM3, GRIN2A, GRIN2C
Biological process		
Response to drug	0.000016	SLC22A5, CDKN1A, SMPD1, OXTR, SLC1A3, ABCB4, ABCB1, UQCRFS1, SNX27, DPYD, EMX2, SRP54, SLC46A2, GRIN2A
Cellular components		
Cell junction	0.000000031	ITSN1, GRIN2C, MAGI2, GRIN2A, CTNNA2, ZNF236, EGFLAM, PKP4, LZTS1, GPHN, ABCB1, ABCB4, PDZD2, RHOU, SNTB1, SCN5A, CADM3, VAPA, GRID1, DLGAP1, GRIA4, GRIA1, PARD3B, EVL, SLC17A6, OXTR, DMD
lonotropic glutamate receptor complex	0.0000574	GRIN2C, GRIN2A, GRIA4, GRIA1
Synapse	0.0000025	ITSN1, GRIN2C, MAGI2, GRIN2A, EGFLAM, LZTS1, GPHN, CLSTN2, SNTB1, GRID1, DLGAP1, GRIA4, GRIA1, CAV3, SLC17A6, DMD, SLC1A3, SDC2, EPHA7, EFNA2
Postsynaptic membrane	0.0000725	GRIN2C, GRIN2A, LZTS1, GPHN, CLSTN2, GRID1, DLGAP1, GRIA4, GRIA1, EPHA7
Cell-cell junction	0.0007714	CTNNA2, PKP4, ABCB1, ABCB4, PDZD2, SCN5A, CADM3, VAPA, PARD3B, OXTR
Postsynaptic density	0.001317	GRIN2C, GRIN2A, LZTS1, DLGAP1, GRIA1, GRIA4
Outer membrane-bounded periplasmic Space/periplasmic space	0.000293	GRID1, GRIN2A, GRIN2C
Cell envelope	0.000678	GRID1, GRIN2A, GRIN2C
External encapsulating structure part	0.001056	GRID1, GRIN2A, GRIN2C
External encapsulating structure	0.001286	GRID1, GRIN2A, GRIN2C
Dystrophin-associated glycoprotein complex	0.002158	SNTB1, DMD, CAV3

Table 2 Categories functionally enriched among genes containing markers with a P value of less than 10^{-3} , based on 321 genes for which annotations were available in ToppGene (Chen *et al.*, 2009)

Genes spanning more than one marker meeting our significance criterion were only submitted once. As in the NCBI Gene database (http://www.ncbi.nlm.nih.gov/gene), gene ontologies are divided into three primary categories: molecular functions, biological processes, and cellular components. Genes implicated by markers meeting our significance criterion fall into the categories in Table 2 significantly more frequently than would a random selection of the same number of genes. See Methods for further details.

study of this size; rather, many common variants of small effect likely influence these traits, with each affected individual harboring an overlapping but unique set of risk-conferring alleles (Wellcome Trust Case Control Consortium, 2007; Purcell *et al.*, 2009).

For markers with a P value of less than 10^{-3} , additional analyses were carried out. These genes are functionally enriched for a number of molecular function categories related to glutamate activity, as well as for categories involving transport activity. In addition, a disproportionate number of these genes fall into cellular component categories such as cell junction, postsynaptic membrane, ionotropic glutamate receptor complex, and synapse. Overall, these results suggest that genes associated with the comorbid phenotype are involved in neural processes. Specifically, the glutamatergic system is strongly implicated, which is not surprising given its previous association with depression, AD (for reviews, see Kohnke, 2008; McNally et al., 2008), and alcohol response (Joslyn et al., 2010). Most of the glutamate-related genes implicated in the current study (GRIN2C, GRIN2A, *GRIA1*, and *GRIA4*) have not previously been associated with depression or AD, but *GRID1* was modestly associated with MD in a genome-wide meta-analysis (Muglia *et al.*, 2010). In addition, all but *GRIN2C* have been associated with schizophrenia (Carter, 2007; O'Connor and Hemby, 2007; Treutlein *et al.*, 2009b), and *GRIN2A* has been implicated in heroin addiction among African Americans (Levran *et al.*, 2009).

The results reported here represent some level of replication for other genes as well: *CDH13* and *VGLL4* have been implicated previously in GWAS analyses for AD (Johnson *et al.*, 2006; Treutlein *et al.*, 2009a) and MD (Muglia *et al.*, 2010), respectively. Seven genes implicated in the current report – *CTNNA2*, *ESRRG*, *FBXO21*, *GALNT2*, *GRID1*, *IGSF21*, and *SMARCA2* – were reported previously to be proximal (within 250 kb) and in reasonably high LD ($r^2 \ge 0.5$) with markers associated with MD (Sullivan *et al.*, 2009). *AGTR1*, *CSMD2*, and *NMUR2* were nominally associated with AD (by 'clustered positive SNPs') in a report by Johnson *et al.* (2006).

Gene	Alcohol dependence	Depression	Other relevant psychiatric phenotypes
AGTR1	Johnson et al. (2006)		
ALPK2		Shyn <i>et al.</i> (2011)	
C6orf204			Smoking cessation ^a (Rose <i>et al.</i> , 2010)
CCBE1			Smoking cessation (Uhl et al., 2008)
CDH4		Rietschel et al. (2010)	
CDH13	Johnson <i>et al.</i> (2006); Treutlein <i>et al.</i> (2009a)	Muglia <i>et al.</i> (2010)	Smoking cessation (Uhl et al., 2008); ADHD (Lesch et al., 2008); schizophrenia (NCBI, 2011)
CDKAL1	el al. (2003a)	Shyn <i>et al.</i> (2011)	
CLSTN2			Smoking cessation (Uhl et al., 2008)
CREB5			Smoking cessation (Uhl et al., 2008); ADHD (Lesch et al., 2008)
CSMD2	Johnson <i>et al.</i> (2006)	Shyn <i>et al.</i> (2011)	Shioking cessalion (oni et al., 2000), ADTID (Lesch et al., 2000)
CTNNA2		Sullivan <i>et al.</i> (2009)	Smoking cessation (Uhl et al., 2008); ADHD (Lesch et al., 2008)
DMD		Shyn <i>et al.</i> (2011)	Bipolar disorder (NCBI, 2011)
EGFLAM			
		Shyn <i>et al.</i> (2011)	Conduct disorder (Disk et al. 0011)
EMX2			Conduct disorder (Dick <i>et al.</i> , 2011)
EPHA7		Shyn <i>et al.</i> (2011)	Smoking cessation (Rose et al., 2010)
ESRRG		Sullivan <i>et al.</i> (2009)	
EVL			Smoking cessation (Rose <i>et al.</i> , 2010)
FAF1			Smoking cessation (Rose et al., 2010)
FGF9		NCBI (2011)	
FBXO21		Sullivan <i>et al.</i> (2009)	
GALNT2		Sullivan <i>et al.</i> (2009)	
GPC6			Neuroticism (Calboli et al., 2010); ADHD (Lesch et al., 2008)
GRIA1			Schizophrenia (Carter, 2007)
GRIA4			Schizophrenia (Carter, 2007; O'Connor and Hemby, 2007)
GRID1 GRIN2A		Muglia <i>et al.</i> (2010); Sullivan <i>et al.</i> (2009)	Bipolar disorder & schizophrenia (Carter, 2007; Treutlein <i>et al.</i> , 2009b) Smoking cessation (Uhl <i>et al.</i> , 2008); bipolar disorder & schizophrenia (Carter,
	$\Omega_{\rm MR} = t = 1 (0000)$		2007)
HTR1B	Sun <i>et al.</i> (2002)	(Lopez-Figueroa <i>et al.</i> , 2004); substance abuse disorder with depression (Huang <i>et al.</i> , 2003)	Depressed/anxious vs. antisocial subtypes of alcohol dependence (Lee et al., 2009); heroin addiction (Proudnikov et al., 2006); anorexia nervosa (Kiezebrink et al., 2010; Pinheiro et al., 2010); suicidal ideation in MD (Wang et al., 2009)
IGSF21		Sullivan et al. (2009)	
IMMP2L			Cognitive performance (Need et al., 2009)
KCNA3		Shyn et al. (2011)	Panic disorder (Otowa et al., 2009)
KCNT2		Shyn et al. (2011)	
LRFN5		Rietschel et al. (2010)	
MACROD2			Autism (Anney et al., 2010); schizophrenia (NCBI, 2011)
MBOAT1			ADHD (Lasky-Su et al., 2008)
MPHOSPH6			Cognitive performance (Need et al., 2009)
NDNL2			ADHD (Lasky-Su <i>et al.</i> , 2008)
NKAIN2			Neuroticism (Calboli <i>et al.</i> , 2010)
NMUR2	Johnson <i>et al.</i> (2006)		
OXTR	Johnson et al. (2000)		Symptoms of depression (Thompson et al., 2011); depressive temperament
OXIN			(Kawamura <i>et al.</i> , 2010)
PELI1		Schol-Gelok et al. (2010)	
PITRM			ADHD (Anney et al., 2008)
PTPRD			Smoking cessation (Uhl <i>et al.</i> , 2008)
RAB11FIP4			ADHD (NCBI, 2011)
RANBP3L			ADHD (NCBI, 2011)
RGNEF			Smoking cessation (Rose <i>et al.</i> , 2010)
RLBP1L1			Smoking cessation (Rose <i>et al.</i> , 2010)
SEMA5A			smoking cessation (Uhl <i>et al.</i> , 2008)
SEMA6A			Smoking cessation (Rose et al., 2010)
SMARCA2		Sullivan <i>et al.</i> (2009)	
SORCS2		Rietschel et al. (2010)	
SOX5			Smoking cessation (Uhl <i>et al.</i> , 2008)
TRAF3			Schizophrenia (Potkin <i>et al.</i> , 2009)
TSHZ2			Smoking cessation (Rose <i>et al.</i> , 2010)
UQCRFS1			Schizophrenia (NCBI, 2011)
VGLL4	Treutlein et al. (2009a)		Bipolar disorder (NCBI, 2011)
			Smoking cessation (Rose et al., 2010)
WDR7			5
WDR7 ZNF285A	Bierut <i>et al</i> . (2010)		
WDR7	Bierut <i>et al</i> . (2010)		ADHD (NCBI, 2011)

Table 3 Genes harboring markers with a *P* value of less than 0.001 in the current study, that have been previously associated with alcohol dependence, depression, or other relevant psychiatric phenotypes (see Methods for details)

ADHD, attention-deficit hyperactivity disorder.

^aRose *et al.* (2010) used a genetic risk score, based on previously implicated genes, to predict smoking cessation success. Reference to that study for a particular gene in this table only means that the gene was included in the risk score.

Table 4 Genes spanning multiple, potentially independent ($r^2 < 0.5$) single-nucleotide polymorphisms at a *P* value of less than 10^{-3}

ASPH	ENOX1	LOC389386	NSMCE2	SCN5A
BANF2	EPC1	LOC389970	OPA3*	SMPD1
BTG1	EPHA7	LOC391048	OSBPL5	SNX30
C6orf204	FAF1*	LOC392180	OXTR*	SPATA13*
CARD11	GALNT2	LOC401646	PITRM1	TSHZ2
CDKAL1	GRIN2A	LOC644192	POU3F4	TUSC3
CREB5	GPR101	LOC646388	PRDM5	VAPA
DIAPH2	HTR1B	LOC730134	PRKAR1B	ZNF236
EFEMP1	ITSN1	LOC730239	RANBP3L	
EGFLAM	LAPTM4B	MAGI1	RGNEF	

*Genes implicated by our most significant ($P < 10^{-5}$) markers.

Muglia et al. (2010) reported that the protein tyrosine phosphatase receptor PTPRN was significantly associated with MD: in the current report, two other protein tyrosine phosphatase receptors, PTPRD and PTPRS, were found to be significantly associated with the comorbid phenotype. In addition, nine genes identified in the current study have been associated with smoking cessation success (Uhl et al., 2008): CDH13, CTNNA2, CLSTN2, SEMA5A, PTPRD, CREB5, SOX5, GRIN2A, and CCBE1. Perhaps, these genes are generally associated with addiction-related traits. These results are summarized in Table 3, which also includes the results of a systematic search of the NCBI Gene database and the NCBI Association Results browser of genes harboring a marker with a P value less than 10^{-3} to determine whether they have been previously associated with phenotypes related to substance use problems or internalizing symptoms.

Two markers in the *HTR1B* gene, which encodes a serotonin receptor, had a *P* value of less than 10^{-3} . Lee *et al.* (2009) reported that allele frequency at a different marker in this gene, rs130058, differed significantly between individuals categorized as having an anxious/ depressed alcoholism subtype versus an antisocial subtype of alcoholism. The SNP was not associated with the alcoholism phenotype *per se* (in cases vs. controls) in that study, although it was observed in another study (Sun *et al.*, 2002). This marker was not genotyped in the current sample, and the SNPs most proximal to rs130058 are not in high LD with the markers implicated in the current study ($r^2 = 0-0.01$). LD is also low ($r^2 = 0.13$) between the markers reported here, suggesting the detection of independent signals within *HTR1B*.

Analysis of gene expression localization revealed that genes spanning markers with a P value of less than 10^{-5} are expressed across many different tissues, and in some cases expression does not appear to be increased in any particular tissue. The same was true of the broader list of genes with a P value of less than 10^{-3} (data not shown). We hypothesized that genes relevant to depressive syndrome and AD would be expressed preferentially in

the brain or in tissues relevant to the stress response, and indeed that was the case for many, although not all, of these genes.

Our analysis of LD in the 105 genes containing multiple significant markers suggests that in nearly half (N = 48) of these we can detect multiple independent signals. Included among these are genes implicated by four of our seven most significant markers, as well as possible candidate genes such as *GRIN2A* and *HTR1B*. These genes should be prioritized for replication attempts in future studies.

The fact that so few (< 6.0%) of the markers associated with the comorbid phenotype at a P value of less than 10^{-3} met the same criteria in the analysis of alcoholdependent-only individuals is intriguing. However, 45.0% (391/868) of our significant SNPs met much less stringent criteria (P < 0.05) in the alcohol-dependentonly analysis. P values were significantly correlated across the analyses (P = 0.0016, F = 10.0, adjusted $r^2 = 0.010$), suggesting not only that the comorbid phenotype and AD alone are highly correlated but also that the former is also influenced by many genetic variants that are not independently associated with AD on its own. Thus, many of the variants reported here might be specific to susceptibility for only the comorbid phenotype, whereas others predispose to AD or depressive syndrome in the absence of the other. This finding is consistent with previous reports. Many genes have been found to be associated with AD or depression but not with both [for reviews, see Levinson (2006); Gelernter et al. (2009)], and some genes – notably those related to monoaminergic neurotransmitters - have been associated with both [for a review, see Saraceno et al. (2009)]. Our results are indicative of an additional layer of complexity - the existence of genetic variants predisposing specifically to comorbidity but which are not associated with either disorder on its own. We also explored the possibility that the comorbid cases simply represent a more severe subset of the alcohol-dependent cases. Among the full COGA GWAS sample, 66% of the total alcohol-dependent cases met criteria for an illicit drug dependence [a phenotype known to capture a more severe subset of cases in COGA (Dick et al., 2007a)], compared with 67% of the comorbid cases. However, the comorbid cases did endorse significantly more AD symptoms compared with cases with AD-only in the full EA sample (mean symptom count = 5.8 and 5.3, respectively; P < 0.01); additional analyses indicate that the male portion of the sample drove this difference. Thus, it is possible that some of our results are attributable to a slightly more severe level of AD. We also note that, because the controls used for the AD + /MD – analysis are the same as those used in the primary analysis, these results should not be considered unbiased, as a portion of the overlap between results could be attributable to idiosyncrasies of the control sample.

We recognize a number of limitations to the current study. First, our analyses were limited to EAs and might not be generalizable to other populations. Replication in other samples is essential. Second, our gene ontology analysis might not be entirely unbiased, as they do not adjust for gene size (Wang et al., 2010): relatively large genes (including many of those expressed in the brain) span more markers than small genes and are thus more likely to harbor markers meeting our significance criterion by chance alone. Third, our 'cases' include individuals who do not meet full DSM-IV criteria for an independent major depressive episode, in that many experienced depressive symptoms under the influence of alcohol or drugs (85 women and 201 men of the total 467 cases). It is unclear how such a distinction might influence our results. Previous work suggests that substance-induced and substance-independent depressions might be etiologically distinct (Schuckit et al., 2007); in addition, although the comorbid phenotype might have a heritable component (Nurnberger et al., 2002), the genetics underlying this phenotype could be distinct from those underlying a comorbid phenotype of AD and independent depression. In this case, the lack of distinction between independent and induced depression in the current study could be problematic. Unfortunately, our sample sizes are not large enough to conduct meaningful analyses on depressive symptoms that occur only within or only outside the context of alcohol or drug use. Furthermore, the mixed nature of the depressive episodes, and the fact that a number of cases met diagnostic criteria for abuse or dependence on other substances, reflects the nature of these disorders; they often appear in conjunction with other psychiatric problems, particularly in a clinical setting. To this end, we also recognize the possibility that the genes implicated in the current report are actually indexing risk to behavioral disinhibition rather than comorbid AD and depressive syndrome per se; the high prevalence of illicit substance use disorders among cases suggests that these individuals' various substancerelated and mood-related problems could have developed through high levels of disinhibition, which is manifesting in various ways. Again, because of sample size limitations, we are unable to address this directly.

In summary, we report results from the first GWAS of a comorbid depressive syndrome/AD phenotype. Although we did not identify markers meeting genome-wide significance criteria, nominally significant markers implicate genes that have been previously implicated in AD, depression, and other psychiatric disorders. Multiple genes involved in glutamate function are associated with case/control status in our sample, as are other genes involved in neural processes. These results suggest that the comorbid phenotype is influenced by genetic variants that are somewhat distinct from those influencing AD on its own. We feel that these results provide an important step toward understanding the genetic influences on comorbidity between depressive syndrome and AD, and more generally toward our understanding of the biological etiology of these disorders.

Acknowledgements

The COGA, Principal Investigators B. Porjesz, V. Hesselbrock, H. Edenberg, L. Bierut, includes ten different centers: University of Connecticut (V. Hesselbrock); Indiana University (H.J. Edenberg, J. Nurnberger Jr., T. Foroud); University of Iowa (S. Kuperman, J. Kramer); SUNY Downstate (B. Porjesz); Washington University in St. Louis (L. Bierut, A. Goate, J. Rice, K. Bucholz); University of California at San Diego (M. Schuckit); Rutgers University (J. Tischfield); Southwest Foundation (L. Almasy), Howard University (R. Taylor) and Virginia Commonwealth University (D. Dick). Other COGA collaborators contributing to the GWAS data set include: L. Bauer (University of Connecticut); D. Koller, S. O'Connor, L. Wetherill, X. Xuei (Indiana University); Grace Chan (University of Iowa); N. Manz, M. Rangaswamy (SUNY Downstate); A. Hinrichs, J. Rohrbaugh, J-C Wang (Washington University in St. Louis); A. Brooks (Rutgers University); and F. Aliev (Virginia Commonwealth University). A. Parsian and M. Reilly are the National Institute on Alcohol Abuse and Alcoholism (NIAAA) Staff Collaborators. We continue to be inspired by our memories of Henri Begleiter and Theodore Reich, founding PI and Co-PI of COGA, and also owe a debt of gratitude to other past organizers of COGA, including Ting-Kai Li, currently a consultant with COGA, P. Michael Conneally, Raymond Crowe, and Wendy Reich, for their critical contributions. This national collaborative study is supported by National Institutes of Health Grant U10AA008401 from the NIAAA and the National Institute on Drug Abuse. A.C.E. received funding from the National Institute of Mental Health (MH020030).

Conflicts of interest

Dr. Laura Bierut is listed as an inventor on a patent, 'Markers of Addiction' (US 20070258898), covering the use of certain SNPs in determining the diagnosis, prognosis, and treatment of addiction. Dr. Bierut acted as a consultant for Pfizer, Inc. in 2008.

References

- American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders DSM-IV-TR. 4th ed. (Text Revision) Washington DC: American Psychiatric Publishing, Inc.
- Anney R, Klei L, Pinto D, Regan R, Conroy J, Magalhaes TR, et al. (2010). A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet 19:4072–4082.
- Anney RJ, Lasky-Su J, O'Dushlaine C, Kenny E, Neale BM, Mulligan A, et al. (2008). Conduct disorder and ADHD: evaluation of conduct problems as a categorical and quantitative trait in the international multicentre ADHD genetics study. Am J Med Genet B Neuropsychiatr Genet 147B: 1369–1378.
- Baekken PM, Skorpen F, Stordal E, Zwart JA, Hagen K (2008). Depression and anxiety in relation to catechol-O-methyltransferase Val158Met genotype in the general population: the Nord-Trondelag Health Study (HUNT). BMC Psychiatry 8:48.

- Baranzini SE, Wang J, Gibson RA, Galwey N, Naegelin Y, Barkhof F, et al. (2009). Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet 18:767–778.
- Bierut LJ, Agrawal A, Bucholz KK, Doheny KF, Laurie C, Pugh E, et al. (2010). A genome-wide association study of alcohol dependence. Proc Natl Acad Sci USA 107:5082–5087.
- Bucholz KK, Cadoret R, Cloninger CR, Dinwiddie SH, Hesselbrock VM, Nurnberger JI Jr., et al. (1994). A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. J Stud Alcohol 55:149–158.
- Calboli FC, Tozzi F, Galwey NW, Antoniades A, Mooser V, Preisig M, et al. (2010). A genome-wide association study of neuroticism in a population-based sample. *PLoS One* **5**:e11504.
- Carter CJ (2007). eIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia? *Schizophr Bull* **33**:1343–1353.
- Chen J, Bardes EE, Aronow BJ, Jegga AG (2009). ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. *Nucleic Acids Res* **37**:W305–W311.
- Cloninger CR, Bohman M, Sigvardsson S (1981). Inheritance of alcohol abuse: cross-fostering analysis of adopted men. Arch Gen Psychiatry **38**:861–868.
- Cohen-Woods S, Gaysina D, Craddock N, Farmer A, Gray J, Gunasinghe C, et al. (2009). Depression Case Control (DeCC) Study fails to support involvement of the muscarinic acetylcholine receptor M2 (*CHRM2*) gene in recurrent major depressive disorder. *Hum Mol Genet* 18:1504–1509.
- Davis LL, Frazier E, Husain MM, Warden D, Trivedi M, Fava M, et al. (2006). Substance use disorder comorbidity in major depressive disorder: a confirmatory analysis of the STAR*D cohort. Am J Addict 15:278–285.
- Del Boca FK, Hesselbrock V (1996). Gender and alcoholic subtypes. Alcohol Health Res World 20:56–62.
- Dick DM, Agrawal A, Wang JC, Hinrichs A, Bertelsen S, Bucholz KK, et al. (2007a). Alcohol dependence with comorbid drug dependence: genetic and phenotypic associations suggest a more severe form of the disorder with stronger genetic contribution to risk. Addiction 102:1131–1139.
- Dick DM, Plunkett J, Hamlin D, Nurnberger J Jr., Kuperman S, Schuckit M, et al. (2007b). Association analyses of the serotonin transporter gene with lifetime depression and alcohol dependence in the Collaborative Study on the Genetics of Alcoholism (COGA) sample. *Psychiatr Genet* **17**:35–38.
- Dick DM, Wang JC, Plunkett J, Aliev F, Hinrichs A, Bertelsen S, et al. (2007c). Family-based association analyses of alcohol dependence phenotypes across DRD2 and neighboring gene ANKK1. Alcohol Clin Exp Res 31:1645–1653.
- Dick DM, Aliev F, Krueger RF, Edwards A, Agrawal A, Lynskey M, et al. (2011). Genome-wide association study of conduct disorder symptomatology. *Mol Psychiatry* 16:800–808.
- Edenberg HJ, Foroud T (2006). The genetics of alcoholism: identifying specific genes through family studies. *Addict Biol* **11**:386–396.
- Edenberg HJ, Koller DL, Xuei X, Wetherill L, McClintick JN, Almasy L, *et al.* (2010). Genome-wide association study of alcohol dependence implicates a region on chromosome 11. *Alcohol Clin Exp Res* **34**:840–852.
- Flint J (2003). Analysis of quantitative trait loci that influence animal behavior. *J Neurobiol* **54**:46-77.
- Furlong RA, Coleman TA, Ho L, Rubinsztein JS, Walsh C, Paykel ES, et al. (1998). No association of a functional polymorphism in the dopamine D2 receptor promoter region with bipolar or unipolar affective disorders. Am J Med Genet 81:385–387.
- Gelernter J, Kranzler HR, Panhuysen C, Weiss RD, Brady K, Poling J, et al. (2009). Dense genomewide linkage scan for alcohol dependence in African Americans: significant linkage on chromosome 10. *Biol Psychiatry* **65**: 111–115.
- Gillespie NA, Whitfield JB, Williams B, Heath AC, Martin NG (2005). The relationship between stressful life events, the serotonin transporter (5-HTTLPR) genotype and major depression. *Psychol Med* 35:101–111.
- Gokturk C, Schultze S, Nilsson KW, von Knorring L, Oreland L, Hallman J (2008). Serotonin transporter (5-HTTLPR) and monoamine oxidase (MAOA) promoter polymorphisms in women with severe alcoholism. *Arch Womens Ment Health* 11:347–355.
- Hasin DS, Goodwin RD, Stinson FS, Grant BF (2005). Epidemiology of major depressive disorder: results from the National Epidemiologic Survey on Alcoholism and Related Conditions. Arch Gen Psychiatry 62:1097–1106.
- Hasin DS, Stinson FS, Ogburn E, Grant BF (2007). Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch Gen Psychiatry 64:830–842.
- Huang YY, Oquendo MA, Friedman JM, Greenhill LL, Brodsky B, Malone KM, et al. (2003). Substance abuse disorder and major depression are associated

with the human 5-HT1B receptor gene (HTR1B) G861C polymorphism. *Neuropsychopharmacology* **28**:163–169.

- Johnson C, Drgon T, Liu QR, Walther D, Edenberg H, Rice J, et al. (2006). Pooled association genome scanning for alcohol dependence using 104,268 SNPs: validation and use to identify alcoholism vulnerability loci in unrelated individuals from the collaborative study on the genetics of alcoholism. Am J Med Genet B Neuropsychiatri Genet 141B:844–853.
- Joslyn G, Ravindranathan A, Brush G, Schuckit M, White RL (2010). Human variation in alcohol response is influenced by variation in neuronal signaling genes. *Alcohol Clin Exp Res* **34**:800–812.
- Kawamura Y, Liu X, Akiyama T, Shimada T, Otowa T, Sakai Y, et al. (2010). The association between oxytocin receptor gene (OXTR) polymorphisms and affective temperaments, as measured by TEMPS-A. J Affect Disord 127:31–37.
- Kendler KS, Heath AC, Neale MC, Kessler RC, Eaves LJ (1993). Alcoholism and major depression in women: a twin study of the causes of comorbidity. Arch Gen Psychiatry 50:690–698.
- Kiezebrink K, Mann ET, Bujac SR, Stubbins MJ, Campbell DA, Blundell JE (2010). Evidence of complex involvement of serotonergic genes with restrictive and binge purge subtypes of anorexia nervosa. World J Biol Psychiatry 11:824–833.
- Kohnke MD (2008). Approach to the genetics of alcoholism: a review based on pathophysiology. *Biochem Pharmacol* **75**:160–177.
- Koks S, Nikopensius T, Koido K, Maron E, Altmae S, Heinaste E, et al. (2006). Analysis of SNP profiles in patients with major depressive disorder. Int J Neuropsychopharmacol 9:167–174.
- Lasky-Su J, Neale BM, Franke B, Anney RJ, Zhou K, Maller JB, et al. (2008). Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B Neuropsychiatr Genet 147B: 1345–1354.
- Lee SY, Lin WW, Huang SY, Kuo PH, Wang CL, Wu PL, *et al.* (2009). The relationship between serotonin receptor 1B polymorphisms A-161T and alcohol dependence. *Alcohol Clin Exp Res* **33**:1589–1595.
- Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Roser C, Nguyen TT, et al. (2008). Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm 115:1573–1585.
- Lesch OM, Dietzel M, Musalek M, Walter H, Zeiler K (1988). The course of alcoholism: long-term prognosis in different types. *Forensic Sci Int* 36:121–138.
- Levinson DF (2006). The genetics of depression: a review. *Biol Psychiatry* **60**:84-92.
- Levran O, Londono D, O'Hara K, Randesi M, Rotrosen J, Casadonte P, et al. (2009). Heroin addiction in African Americans: a hypothesis-driven association study. *Genes Brain Behav* 8:531–540.
- Lopez-Figueroa AL, Norton CS, Lopez-Figueroa MO, Armellini-Dodel D, Burke S, Akil H, et al. (2004). Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. *Biol Psychiatry* 55:225–233.
- Lyons MJ, Schultz M, Neale M, Brady K, Eisen S, Toomey R, et al. (2006). Specificity of familial vulnerability for alcoholism versus major depression in men. J Nerv Ment Dis 194:809–817.
- McNally L, Bhagwagar Z, Hannestad J (2008). Inflammation, glutamate, and glia in depression: a literature review. CNS Spectr 13:501–510.
- Muglia P, Tozzi F, Galwey NW, Francks C, Upmanyu R, Kong XQ, et al. (2010). Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. *Mol Psychiatry* 15:589–601.
- NCBI (2011). NCBI Association Results browser [Online]. Available: http://www. ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.htm.
- Need AC, Attix DK, McEvoy JM, Cirulli ET, Linney KL, Hunt P, et al. (2009). A genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB. Hum Mol Genet 18:4650–4661.
- Nurnberger JI Jr., Foroud T, Flury L, Su J, Meyer ET, Hu K, et al. (2001). Evidence for a locus on chromosome 1 that influences vulnerability to alcoholism and affective disorder. Am J Psychiatry 158:718–724.
- Nurnberger JI Jr., Foroud T, Flury L, Meyer ET, Wiegand R (2002). Is there a genetic relationship between alcoholism and depression? *Alcohol Res Health* **26**:233–240.
- Nurnberger JI Jr., Wiegand R, Bucholz K, O'Connor S, Meyer ET, Reich T, et al. (2004). A family study of alcohol dependence: coaggregation of multiple disorders in relatives of alcohol-dependent probands. Arch Gen Psychiatry 61:1246–1256.
- O'Connor JA, Hemby SE (2007). Elevated GRIA1 mRNA expression in layer II/III and V pyramidal cells of the DLPFC in schizophrenia. *Schizophr Res* **97**:277–288.

- Otowa T, Yoshida E, Sugaya N, Yasuda S, Nishimura Y, Inoue K, et al. (2009). Genome-wide association study of panic disorder in the Japanese population. J Hum Genet 54:122–126.
- Pinheiro AP, Bulik CM, Thornton LM, Sullivan PF, Root TL, Bloss CS, et al. (2010). Association study of 182 candidate genes in anorexia nervosa. Am J Med Genet B Neuropsychiatr Genet 153B:1070–1080.
- Plomin R, Davis OS (2009). The future of genetics in psychology and psychiatry: microarrays, genome-wide association, and non-coding RNA. J Child Psychol Psychiatry 50:63–71.
- Potkin SG, Turner JA, Guffanti G, Lakatos A, Fallon JH, Nguyen DD, et al. (2009). A genome-wide association study of schizophrenia using brain activation as a guantitative phenotype. Schizophr Bull 35:96–108.
- Proudnikov D, LaForge KS, Hofflich H, Levenstien M, Gordon D, Barral S, et al. (2006). Association analysis of polymorphisms in serotonin 1B receptor (*HTR1B*) gene with heroin addiction: a comparison of molecular and statistically estimated haplotypes. *Pharmacogenet Genomics* 16:25–36.
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. (2007). PLINK: a tool set for whole-genome association and populationbased linkage analyses. Am J Hum Genet 81:559–575.
- Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. *Nature* 460:748–752.
- Rietschel M, Mattheisen M, Frank J, Treutlein J, Degenhardt F, Breuer R, et al. (2010). Genome-wide association-, replication-, and neuroimaging study implicates HOMER1 in the etiology of major depression. *Biol Psychiatry* 68:578–585.
- Rose JE, Behm FM, Drgon T, Johnson C, Uhl GR (2010). Personalized smoking cessation: interactions between nicotine dose, dependence and quitsuccess genotype score. *Mol Med* 16:247–253.
- Saraceno L, Munaf ÛM, Heron J, Craddock N, Van den Bree Marianne (2009). Genetic and non-genetic influences on the development of co-occurring alcohol problem use and internalizing symptomatology in adolescence: a review. Addiction 104:1100–1121.
- Schol-Gelok S, Janssens AC, Tiemeier H, Liu F, Lopez-Leon S, Zorkoltseva IV, et al. (2010). A genome-wide screen for depression in two independent Dutch populations. *Biol Psychiatry* 68:187–196.
- Schuckit MA, Smith TL, Danko GP, Pierson J, Trim R, Nurnberger JI, et al. (2007). A comparison of factors associated with substance-induced versus independent depressions. J Stud Alcohol Drugs 68:805–812.
- Serretti A, Rotondo A, Lorenzi C, Smeraldi E, Cassano GB (2006). Catechol-O-methyltransferase gene variants in mood disorders in the Italian population. *Psychiatr Genet* 16:181–182.
- Sery O, Didden W, Mikes V, Pitelova R, Znojil V, Zvolsky P (2006). The association between high-activity COMT allele and alcoholism. *Neuro Endocrinol Lett* 27:231–235.

- Shyn SI, Shi J, Kraft JB, Potash JB, Knowles JA, Weissman MM, et al. (2011). Novel loci for major depression identified by genome-wide association study of sequenced treatment alternatives to relieve depression and meta-analysis of three studies. *Mol Psychiatry* 16:202–215.
- Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, et al. (2004). A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067.
- Sullivan PF, de Geus EJ, Willemsen G, James MR, Smit JH, Zandbelt T, et al. (2009). Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. *Mol Psychiatry* 14:359–375.
- Sun HF, Chang YT, Fann CS, Chang CJ, Chen YH, Hsu YP, et al. (2002). Association study of novel human serotonin 5-HT(1B) polymorphisms with alcohol dependence in Taiwanese Han. *Biol Psychiatry* 51:896–901.
- Thompson RJ, Parker KJ, Hallmayer JF, Waugh CE, Gotlib IH (2011). Oxytocin receptor gene polymorphism (rs2254298) interacts with familial risk for psychopathology to predict symptoms of depression and anxiety in adolescent girls. *Psychoneuroendocrinology* 36:144–147.
- Treutlein J, Cichon S, Ridinger M, Wodarz N, Soyka M, Zill P, et al. (2009a). Genome-wide association study of alcohol dependence. Arch Gen Psychiatry 66:773–784.
- Treutlein J, Muhleisen TW, Frank J, Mattheisen M, Herms S, Ludwig KU, et al. (2009b). Dissection of phenotype reveals possible association between schizophrenia and glutamate receptor delta 1 (GRID1) gene promoter. Schizophr Res 111:123–130.
- Uhl GR, Drgon T, Johnson C, Li CY, Contoreggi C, Hess J, et al. (2008). Molecular genetics of addiction and related heritable phenotypes: genomewide association approaches identify "connectivity constellation" and drug target genes with pleiotropic effects. Ann N Y Acad Sci 1141:318–381.
- Wang JC, Hinrichs AL, Stock H, Budde J, Allen R, Bertelsen S, et al. (2004). Evidence of common and specific genetic effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and major depressive syndrome. Hum Mol Genet 13:1903–1911.
- Wang S, Zhang K, Xu Y, Sun N, Shen Y, Xu Q (2009). An association study of the serotonin transporter and receptor genes with the suicidal ideation of major depression in a Chinese Han population. *Psychiatry Res* **170**:204–207.
- Wang K, Li M, Hakonarson H (2010). Analysing biological pathways in genomewide association studies. *Nat Rev Genet* 11:843–854.
- Wellcome Trust Case Control Consortium (2007). Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. *Nature* **447**:661–678.
- Windle M, Scheidt DM (2004). Alcoholic subtypes: are two sufficient? *Addiction* **99**:1508–1519.
- Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, et al. (2009). BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10:R130.