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Recent meta-analyses of European ancestry subjects show strong evidence for association between smoking quantity and
multiple genetic variants on chromosome 15q25. This meta-analysis extends the examination of association between distinct
genes in the CHRNA5-CHRNA3-CHRNB4 region and smoking quantity to Asian and African American populations to confirm
and refine specific reported associations. Association results for a dichotomized cigarettes smoked per day phenotype in 27
datasets (European ancestry (N = 14,786), Asian (N = 6,889), and African American (N = 10,912) for a total of 32,587 smokers)
were meta-analyzed by population and results were compared across all three populations. We demonstrate association
between smoking quantity and markers in the chromosome 15q25 region across all three populations, and narrow the region
of association. Of the variants tested, only rs16969968 is associated with smoking (P < 0.01) in each of these three populations
(odds ratio [OR] = 1.33, 95% CI = 1.25–1.42, P = 1.1 × 10−17 in meta-analysis across all population samples). Additional
variants displayed a consistent signal in both European ancestry and Asian datasets, but not in African Americans. The
observed consistent association of rs16969968 with heavy smoking across multiple populations, combined with its known
biological significance, suggests rs16969968 is most likely a functional variant that alters risk for heavy smoking. We interpret
additional association results that differ across populations as providing evidence for additional functional variants, but we
are unable to further localize the source of this association. Using the cross-population study paradigm provides valuable
insights to narrow regions of interest and inform future biological experiments. Genet. Epidemiol. 36:340–351, 2012. C© 2012
Wiley Periodicals, Inc.
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INTRODUCTION
Recent genetic meta-analyses, including tens of thou-

sands of subjects of European ancestry, show strong evi-
dence of association between smoking quantity (cigarettes
smoked per day; CPD) and multiple genetic markers on
chromosome 15q25 [Liu et al., 2010; Saccone et al., 2010;
TAG, 2010; Thorgeirsson et al., 2010]. Those studies syn-
thesized evidence across many independent datasets to
highlight specific variants in the region of the CHRNA5-
CHRNA3-CHRNB4 gene cluster associated with smoking
behavior in European ancestry subjects. It is important to
determine the biological mechanisms underlying these as-
sociations; however, the high linkage disequilibrium (LD) in
this region among individuals of European ancestry makes
it difficult to differentiate potentially causal variants from
the many correlated variants. Because the genetic architec-
ture of chromosome 15q25 varies across populations, com-
paring associations across diverse populations with differ-
ing genetic architecture can help refine the region of as-
sociation and point to variants more likely to have func-
tional relevance [Rotimi and Jorde 2010; Saccone et al., 2008;
Zaitlen et al., 2010].

The most robust genetic finding on chromosome 15q25
in subjects of European ancestry is the region tagged by
rs16969968, rs1051730, and other correlated variants. This
finding has been replicated for smoking-related traits in
multiple distinct datasets [Baker et al., 2009; Berrettini
et al., 2008; Keskitalo et al., 2009; Saccone et al., 2007,
2009; Sherva et al., 2008; Stevens et al., 2008; Thorgeirs-
son et al., 2008; Weiss et al., 2008] and has now been re-
ported as the most significant genome-wide association in
recent meta-analyses of European ancestry subjects (e.g.
rs16969968, P = 5.57 × 10−72, or rs1051730, P = 2.75 ×
10−73) [Liu et al., 2010; Saccone et al., 2010; TAG, 2010;
Thorgeirsson et al., 2010]. We will use the term “bin” to de-

note a group of correlated single nucleotide polymorphisms
(SNPs) (r2 ≥ 0.7) that may constitute the same association
signal in European ancestry samples [Carlson et al., 2004].
Under this definition and using the 1000 Genomes Pilot 1
CEU as the European ancestry reference sample [Durbin
et al., 2010], the single bin tagged by rs16969968 and
rs1051730 includes 52 known variants. This bin, which we
will call bin A, groups together and unifies the most signifi-
cant meta-analysis findings as well as individual dataset re-
ports of SNPs associated with nicotine dependence, heavy
smoking, lung cancer, and other smoking-related diseases
in European ancestry datasets.

There are additional markers of interest in this region
that are not strongly correlated with bin A. Because of
the clear association between smoking behavior and bin
A, each of the large-scale meta-analyses of European an-
cestry samples carried out association tests conditional on
bin A variants for other SNPs to determine whether ad-
ditional genetic markers in 15q25 are associated after ad-
justing for effects of bin A [Liu et al., 2010; Saccone et al.,
2010; TAG, 2010; Thorgeirsson et al., 2010]. After condi-
tioning on bin A, the meta-analyses identified additional
SNPs in this region associated with smoking behavior. These
SNPs can be grouped into three distinct bins (B, C, D) (Ta-
ble I). Bin B, tagged by rs588765 and rs880395, is associ-
ated with genome-wide significance among heavy vs. light
smokers but only in analyses conditioning on bin A (P =
1.2 × 10−9) [Saccone et al., 2010]. Notably, bin B is also as-
sociated with mRNA levels of CHRNA5 in brain and lung
[Falvella et al., 2010; Smith et al., 2010; Wang et al., 2009].
Bin C, tagged by rs6495308 [Liu et al., 2010], rs2036534
[Thorgeirsson et al., 2010], rs7163730, rs9788682, rs684513
[TAG, 2010], and rs578776 [Saccone et al., 2010], is associated
with heavy smoking after conditioning on bin A (P-values
from 9.1 × 10−5 to 6.3 × 10−9). In contrast to bin B, bin C is
less significant in conditional analysis compared to single
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TABLE I. Genetic variants associated with smoking quantity reported in meta-analyses in subjects of European ancestry

Coded allele frequency

Bin SNP References Coded allele CEU JPT/CHB ASW/YRI

A rs16969968 Saccone et al. (2010) A 0.42 0.03 0.07
A rs1051730 TAG (2010), Liu et al. (2010),

Thorgeirsson et al. (2010)
T 0.42 0.03 0.12

B rs588765/rs880395 Saccone et al. (2010) T 0.39 0.05 0.23
C rs6495308 Liu et al. (2010) C 0.20 0.80 0.31
C rs2036534 Thorgeirsson et al. (2010) C 0.19 0.50 0.24
C rs7163730 TAG (2010) G 0.19 0.49 0.25
C rs9788682 TAG (2010) A 0.19 0.28 0.20
C rs684513 TAG (2010) G 0.20 0.25 0.21
C rs578776 Saccone et al. (2010) T 0.24 0.87 0.55
D rs2869046 Thorgeirsson et al. (2010) C 0.45 0.39 0.17

Allele frequencies based on 1000 Genomes Pilot 1 and HapMap 3 Release 2.

SNP analysis. Bin D is represented by rs2869046, which also
displayed residual association after conditioning on bin A
(P = 4.8 × 10−5) [Thorgeirsson et al., 2010]. Markers from
these different bins (A, B, C, and D) are only modestly corre-
lated with one another, with r2 ≤ 0.52 in the 1000 Genomes
Pilot 1 CEU (N = 180; Table II).

Differences in the correlational structure of markers span-
ning the region 15q25 between populations result in distinct
sub-bins of correlated markers among Asian and African
American populations that provide an opportunity to refine
the source of the previously reported signals. For example,
bin A, consisting of 52 variants including rs16969968, sep-
arates into 20 sub-bins in Asians (based on 1000 Genomes
Pilot 1 JPT/CHB) and 38 sub-bins in African Americans
(based on combined information from the 1000 Genomes
Pilot 1 YRI and HapMap 3 Release 2 ASW) [Altshuler et al.,
2010]. In particular, rs16969968 and rs1051730 are highly
correlated in European ancestry (r2 = 1) and Asian popula-
tions (r2 = 1), but display only moderate correlation (r2 =
0.40) in the African American population. These differences
in genetic architecture can be used to dissect the association
signals.

The purpose of this meta-analysis is to determine if bins
A, B, C, and D shows consistent association with smoking
behavior across populations and, if so, to leverage these
differences in genetic correlation across populations to
refine the genetic associations in this region previously
reported in subjects of European ancestry. We expect
a sub-bin showing consistent evidence across all three
populations to be more likely to contain a variant altering
a biological mechanism. We performed meta-analyses of
results from a total of 27 datasets: nine European ancestry
samples (used to evaluate consistency with previous
results), seven Asian samples, and 11 African American
samples. We tested for association between smoking
phenotypes and the four distinct bins (A through D) across
all three populations. This cross-population study therefore
improves our understanding of genetic risk for smoking by
highlighting potentially functional variants.

METHODS

SAMPLES
Results from 27 datasets, containing a total of 32,587

smokers with measures of CPD, contributed to the meta-

analyses. Of these datasets, nine consisted of European an-
cestry subjects (N = 14,786), seven consisted of Asians (N =
6,889), and 11 consisted of African Americans (N = 10,912).
Twenty datasets were samples of unrelated individuals.
The remaining seven datasets were family-based studies,
for which the primary analyses involved an extraction of
unrelated individuals. To be included in the analyses, each
subject was required to have reported smoking cigarettes in
his/her lifetime. Genotyping varied among studies from ex-
tensive coverage based on genome-wide association geno-
typing to only a limited number of candidate SNPs geno-
typed in this 15q25 region. Text S1 provides additional de-
tails for each dataset, including recruitment, primary phe-
notypes, definitions for smokers and CPD, DNA source,
genotyping platforms, and genotyping quality control. Ta-
ble S1 shows the sample size and demographics for each
participating dataset. Four of nine datasets of European an-
cestry were included in the previous report [Saccone et al.,
2010] (see Table S1 for the overlap, which involves only
European-ancestry samples). The informed consent from
participants and approval from the appropriate institutional
review boards were obtained.

PHENOTYPES
Smoking quantity was assessed with cigarettes smoked

per day (CPD). The primary phenotype for analysis was a
dichotomous trait contrasting light smoking controls (CPD
≤ 10) to heavy smoking cases (CPD > 20). In addition, a
four-level ordered trait (CPD ≤ 10; 11 ≤ CPD ≤ 20; 21 ≤
CPD ≤ 30; CPD ≥ 31 coded as 0, 1, 2, 3, respectively) was
developed for confirmatory analysis. The only exception
was one study (Women’s Health Initiative) that measured
smoking amount with different threshold levels (CPD ≤ 14,
15 ≤ CPD ≤ 24, 25 ≤ CPD ≤ 34, CPD ≥ 35), and CPD ≤ 14
defined the light smoking controls that was contrasted with
CPD ≥ 25 as heavy smoking cases.

VARIANTS FOR ANALYSES
Multiple SNPs in 15q25 have been identified as associ-

ated with smoking behavior in studies of European ances-
try subjects. We focused on the results highlighted in the
most powerful studies, namely the large meta-analyses [Liu
et al., 2010; Saccone et al., 2010; TAG, 2010; Thorgeirsson
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TABLE II. Correlation between the examined variants (r2) in European, Asian, and African American ancestry
populations: Bins A, B, C, and D denote four groups of correlated SNPs (r2 ≥ 0.7) in the European ancestry reference
sample (1000 Genomes Pilot 1 CEU)

European ancestry

rs16969968 rs1051730 rs588765 rs880395 rs6495308 rs2036534 rs7163730 rs9788682 rs684513 rs578776 rs2869046

rs16969968 1.0
rs1051730 1.0 1.0
rs588765 0.44 0.44 1.0
rs880395 0.46 0.46 0.76 1.0
rs6495308 0.18 0.18 0.11 0.05 1.0
rs2036534 0.17 0.17 0.1 0.15 0.75 1.0
rs7163730 0.17 0.17 0.1 0.15 0.75 1.0 1.0
rs9788682 0.17 0.17 0.1 0.15 0.75 1.0 1.0 1.0
rs684513 0.1 0.1 0.11 0.16 0.7 0.85 0.85 0.85 1.0
rs578776 0.23 0.23 0.04 0.01 0.78 0.66 0.66 0.66 0.61 1.0
rs2869046 0.18 0.18 0.54 0.52 0.07 0.14 0.14 0.14 0.15 0.04 1.0

Asian ancestry

rs16969968 1.0
rs1051730 1.0 1.0
rs588765 0 0 1.0
rs880395 0 0 0.1 1.0
rs6495308 0.1 0.1 0.21 0.08 1.0
rs2036534 0.03 0.03 0.05 0.04 0.07 1.0
rs7163730 0.03 0.03 0.05 0.04 0.06 0.97 1.0
rs9788682 0.01 0.01 0.02 0 0.1 0.38 0.39 1.0
rs684513 0.01 0.01 0.02 0.02 0.08 0.28 0.29 0.64 1.0
rs578776 0.17 0.17 0.11 0.06 0.62 0.02 0.02 0.02 0.02 1.0
rs2869046 0.04 0.04 0 0.01 0.01 0.11 0.13 0.13 0.09 0.02 1.0

African American ancestry

rs16969968 1.0
rs1051730 0.4 1.0
rs588765 – 0.04 1.0
rs880395 – 0.02 0.68 1.0
rs6495308 0.04 0.06 0.14 0.11 1.0
rs2036534 0.03 0.05 0.06 0.04 0.09 1.0
rs7163730 0.03 0.05 0.06 0.04 0.09 1.0 1.0
rs9788682 0.02 0.03 0.06 0.05 0.03 0.6 0.6 1.0
rs684513 – 0.04 0.08 0.06 0.16 0.62 0.62 0.48 1.0
rs578776 0.1 0.01 0.55 0.34 0.22 0.08 0.08 0.05 0.13 1.0
rs2869046 – 0.03 0.03 0.01 0.13 0 0 0.04 0.02 0.02 1.0

We used SNAP to obtain LD values from HapMap 3 ASW and 1000 Genomes Pilot 1 reference populations. –, data unavailable.

et al., 2010] (Table I). Table II lists the 11 targeted SNPs
and illustrates how LD (measured by r2) structure varies
across different populations. We used SNAP [Johnson et al.,
2008] with 1000 Genomes Pilot 1 reference samples [Alt-
shuler et al., 2010; Durbin et al., 2010] and HapMap3 ASW
to obtain LD estimates for our three populations: CEU for
European ancestry, JPT/CHB for Asians, and ASW/YRI for
African Americans.

It is important to examine not just the 11 previously
identified SNPs listed in Table I, but all SNPs correlated
with these 11 SNPs in Europeans. We used a two-step pro-
cess to define distinct groups of correlated SNPs, which we
call bins. First, we grouped previously identified SNPs by
their correlation in the 1000 Genomes Pilot 1 CEU (i.e. Eu-
ropean ancestry) reference sample, using r2 ≥ 0.7 as our
threshold [Durbin et al., 2010]. Under this strategy, the 11

previously identified SNPs listed in Table I are partitioned
into four groups: Group A (rs16969968, rs1051730), Group
B (rs588765, rs880395), Group C (rs6495308, rs2036534,
rs7163730, rs9788682, rs684513, rs578776), and Group D
(rs2869046) (Table II). From these four groups, we estab-
lished the bins by including all SNPs correlated (r2 ≥ 0.7)
in the European ancestry reference sample with at least one
of the SNPs defining the bin. The threshold of 0.7 was cho-
sen to provide an inclusive collection of tested SNPs. Using
SNAP to obtain correlated variants in a bin based on 1000
Genomes Pilot 1 CEU, we identified 52 SNPs in bin A, 111
SNPs in bin B, 82 SNPs in bin C, and 15 SNPs in bin D.

Next, we partitioned these SNPs within a bin into “sub-
bins” based on r2 ≥ 0.8 in the Asian and African Ameri-
can populations. The higher threshold of 0.8 was used for
sub-bins in the other populations to refine the focus of the
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analyses. In Asians, we identified 20 sub-bins for bin A, 39
sub-bins for bin B, 24 sub-bins for bin C, and seven sub-bins
for bin D. In African Americans, we identified 38 sub-bins
for bin A, 37 sub-bins for bin B, 26 sub-bins for bin C, and
seven sub-bins for bin D.

STATISTICAL ANALYSES AND
META-ANALYSES

We evaluated the genetic associations between heavy
smoking and each genotyped SNP in three populations.
Standardized scripts were developed centrally by the co-
ordinating site (Washington University) for analyses of all
participating datasets at each individual research center.
Results were returned to the coordinating site for quality
checks and meta-analyses. Individual SNP analyses were
performed using SAS (SAS Institute, Cary, NC).

In each dataset, association between heavy vs. light smok-
ing based on CPD and all SNPs was evaluated with logis-
tic regression models as the primary analysis. Genotypes
were coded additively as the number of nonreference alle-
les, where the reference allele was defined as the major allele
in the European ancestry population in dbSNP [Sherry et al.,
2001]; consistency of allelic coding was confirmed by com-
paring allele labels and allele frequencies across all datasets
within each population. Age as a continuous variable and
gender were included as covariates. Secondary analyses of
the four-level CPD trait used linear regression models with
the same covariates, assuming that the trait has a simple
linear relationship with the predictors.

Analyses were stratified by ancestry: European, Asian,
and African American. We evaluated the effect of each bin
A SNP using single SNP association analyses. For bins B, C,
and D, both single SNP association and conditional analyses
controlling for bin A were performed. Analyses conditional
on bin A (rs16969968) served as our primary analysis model
for bins B, C, and D because they were targeted due to
previously reported results of analyses conditional on bin
A in European ancestry meta-analyses.

For each ancestry group, every dataset with at least one
genotyped SNP in a given sub-bin contributed to the meta-
analysis of that sub-bin. For each sub-bin, a SNP was se-
lected as the target. In samples where the target SNP was
missing, we used the results from the SNP with highest cor-
relation (r2) with the target SNP in the sub-bin defined by
the 1000 Genome Pilot 1 JPT/CHB for Asians, and the 1000
Genome Pilot 1 YRI or HapMap3 ASW project for African
Americans.

We used PLINK to perform meta-analyses and generate
overall summary odds ratios (ORs), standard errors, and
P-values [Purcell et al., 2007]. The R package, rmeta, was
used to confirm results and generate meta-analysis plots
[Lumley, 2009]. Meta-analyses results were based on fixed
effect models to determine the evidence for association
within our collected samples, so we are not making a
general inference about what might be observed in other
samples.

MULTIPLE TEST CORRECTION
Our primary analysis was to determine if any intersect-

ing sub-bins across Asians and African Americans would
display evidence of consistent association when compar-
ing heavy vs. light smokers, where we defined a consis-
tent association as having the same direction and P-value

< 0.01 in both populations. Our binning strategy resulted in
100 single sub-bin tests and 67 conditional association tests
across the four bins: a total of 167 tests. Because the proba-
bility of any particular test resulting in a P-value < 0.01 in
both non-European populations by chance would be 0.0001
(=0.01 × 0.01), results consistently associated in both popu-
lations would remain significant after Bonferroni correction
(167 × 0.0001 < 0.05).

RESULTS

GENETIC ASSOCIATIONS IN BIN A
Bin A (tagged by rs16969968 and rs1051730 in Europeans)

includes 52 SNPs correlated (r2 ≥ 0.7) in the European an-
cestry reference sample. This bin separates into 20 sub-bins
in Asian populations and 38 sub-bins in African American
populations. We had adequate coverage to test nine of these
20 sub-bins in Asian data and 27 of these 38 sub-bins in
African American data.

We detected a strong association between the dichoto-
mous phenotype of heavy smoking vs. light smoking and
bin A in European ancestry data (OR = 1.31, 95% CI = 1.22–
1.40, P = 1.3 × 10−14). The only sub-bin showing consistent
association with heavy smoking across the other two pop-
ulations is tagged by rs16969968 (Asian population: OR =
1.64, 95% CI = 1.15–2.32, P = 5.8 × 10−3; African American
population: OR = 1.62, 95% CI = 1.21–2.17, P = 1.1 × 10−3).
As noted in the “Methods,” because the probability of any
particular test resulting in a P < 0.01 in both populations
by chance alone would be 0.0001, this result of consistent
association in both populations remained significant after
Bonferroni correction.

Figure 1 shows all SNPs in bin A, and the only consistently
associated sub-bins (P < 0.01 in both Asians and African
Americans). Bin A variants span six genes in the European
ancestry population, the sub-bin tagged by rs16969968 in
the Asian population spans three genes, and the sub-bin
tagged by rs16969968 in the African American population
spans only one gene (CHRNA5). Figure 2 provides a for-
est plot summary of the stratified meta-analyses for the
bin/sub-bin tagged by rs16969968, the only consistent asso-
ciation for bin A, in all three populations. Each plot lists ORs
for each contributing sample. The overall cross-population
meta-analysis across all datasets gave an OR of 1.33 (95%
CI = 1.25–1.42, P = 1.1 × 10−17).

In European and Asian populations, rs16969968 and
rs1051730 are highly correlated. However, due to the dif-
ferent LD structure in African Americans, rs16969968 and
rs1051730 represent two different sub-bins (r2 = 0.40 in
HapMap 3 Release 2 ASW). In our analysis of African Amer-
icans, there is stronger evidence of association between the
dichotomous phenotype heavy smoking vs. light smoking
and the sub-bin tagged by rs16969968 (OR = 1.62, 95% CI =
1.21–2.17, P = 1.1 × 10−3), compared to the sub-bin tagged
by rs1051730 (OR = 1.15, 95% CI = 1.03–1.28, P = 1.1 × 10−2).
This stronger finding is seen despite the lower minor allele
frequency (MAF) and much smaller available sample and
for rs16969968 (MAF = 0.06, 667 cases/1,140 controls) com-
pared to that for rs1051730 (MAF = 0.12, 1,712 cases/5,640
controls).

For bin A, no tested sub-bin other than the one tagged
by rs16969968 shows consistent association across popula-
tions. The meta-analyzed genetic associations between all
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Fig. 1. Top associations with heavy vs. light smoking: Bin A across three populations. This figure shows all 52 SNPs in bin A, and also the
only consistently associated sub-bins (P < 0.01 in both Asians and African Americans). This figure also lists corresponding odds ratios
for the association between the sub-bins and heavy smoking. Bin A variants span across six genes in the European ancestry population,
the sub-bin tagged by rs16969968 in the Asian population spans across two genes, and the sub-bin tagged by rs16969968 in the African
American population spans across only one gene (CHRNA5).

available constituent sub-bins and heavy smoking are
shown in Table S2.

GENETIC ASSOCIATIONS IN BIN B
Bin B (tagged by rs588765 and rs880395 in Europeans)

includes 111 SNPs correlated (r2 ≥ 0.7) in the European
ancestry reference sample, which was partitioned into 39
sub-bins in Asian and 37 sub-bins in African American an-
cestry reference samples. We had adequate coverage to test
10 of these 39 sub-bins in Asian samples and 22 of these
37 sub-bins in African American samples. Consistent with
the previous report [Saccone et al., 2010] that used some of
these same data (see Table S1 for the overlap, which involves
only European-ancestry samples), we find that in European
ancestry samples, bin B is associated (OR = 1.27, 95% CI =
1.16–1.38, P = 8.7 × 10−8) with heavy smoking in conditional
analyses with rs16969968; bin B is not associated in single
SNP analyses (OR = 1.0, 95% CI = 0.94–1.07, P = 0.99).
In Asian samples, testing for SNP association conditioning
on rs16969968 show an association between heavy smoking
and bin B, with the strongest result for the sub-bin tagged
by rs514743 (OR = 1.30, 95% CI = 1.07–1.58, P = 9.7 × 10−3),
which is similar to the single SNP test (OR = 1.28, 95% CI =
1.05–1.56, P = 0.014). In African American subjects, there is
a trend of association for the same sub-bin in conditional

association (OR = 1.16, 95% CI = 0.99–1.36, P = 0.064; Table
S3), compared to the single SNP association (OR = 1.05, 95%
CI = 0.96–1.15, P = 0.24). Thus, we found evidence of asso-
ciation in the Asian samples consistent with the association
observed in the samples of European ancestry, but only a
trend toward association in the African American subjects.
The meta-analyzed conditional and single SNP associations
between these constituent sub-bins and heavy smoking are
shown in Tables S3 and S6.

GENETIC ASSOCIATIONS IN BIN C
Bin C (tagged by rs6495308, rs2036534, rs7163730,

rs9788682, rs684513, and rs578776 in Europeans) includes
82 SNPs correlated (r2 ≥ 0.7) in the European ancestry ref-
erence sample, which was partitioned into 24 sub-bins in
Asian and 26 sub-bins in African American reference sam-
ples. We had adequate coverage to test 12 of these 24 sub-
bins in Asian samples and 19 of these 26 sub-bins in African
American samples. Consistent with the previous studies
[Liu et al., 2010; Saccone et al., 2010; TAG, 2010; Thorgeirs-
son et al., 2010], in European ancestry samples, there is an
association between heavy smoking and bin C (OR = 0.79,
95% CI = 0.72–0.86, P = 2.5 × 10−7) in association tests
conditioning on rs16969968 as well as an association in a
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Fig. 2. Rs16969968 and heavy smoking in samples of European, Asian, and African American ancestry. The ORs and 95% CIs are for
the effect per allele using additive coding in the logistic regression with age and sex as covariates. *When rs16969968 is not available,
rs1051730 and rs951266 are used as proxy SNPs in European and Asian ancestry samples.

single SNP analysis (OR = 0.77, 95% CI = 0.71–0.83,
P = 4.0 × 10−11).

Neither the Asian nor African American populations pro-
vide strong evidence of association with heavy smoking in
any tested sub-bin in bin C under conditional association
tests (all P > 0.01). In the Asian data, the strongest single
SNP signal was the sub-bin tagged by rs6495308 (OR = 0.83,

95% CI = 0.72–0.96, P = 9.8 × 10−3). In the African Ameri-
can data, there was no evidence of consistent association in
either single SNP or conditional analyses (P > 0.01) for the
sub-bin tagged by rs6495308 or any other sub-bin. The meta-
analyzed conditional and single SNP associations between
tested sub-bins and heavy smoking are shown in Tables S4
and S7.
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GENETIC ASSOCIATIONS IN BIN D
Bin D (tagged by rs2869046 in Europeans) includes 15

SNPs correlated (r2 ≥ 0.7) in the European ancestry refer-
ence sample, which was partitioned into seven sub-bins in
Asians and seven sub-bins in African Americans. We had
adequate coverage to test two of these seven sub-bins in
Asian samples and three of the seven sub-bins in African
American samples. We found no evidence of association
between bin D and heavy smoking in European ancestry
data, or across populations in single SNP or conditional
association analyses (P > 0.1). The meta-analyzed genetic
associations between available sub-bins and heavy smok-
ing conditional and single SNP associations are shown in
Tables S5 and S8.

All bins were tested in secondary analyses using the four
level phenotype measured by CPD and results were similar.

DISCUSSION
This collaborative genetic meta-analysis of smoking be-

havior is the first to show consistent association in the chro-
mosome 15q25 region with heavy smoking, across sam-
ples representing three genetically distinct populations—
European ancestry, Asian, and African American. Previ-
ous meta-analyses examined only European ancestry data
to definitively identify associations between chromosome
15q25 and smoking behavior. Smaller individual studies of
Asians and African Americans have previously examined
this region for association with smoking and related phe-
notypes. Smoking quantity has been reported as associated
with variants correlated with rs16969968 in subjects of Asian
and African American descent [Amos et al., 2010; Li et al.,
2005; Li et al., 2010; Saccone et al., 2009; Schwartz et al., 2010;
Shiraishi et al., 2009; Wu et al., 2009]. Our meta-analysis syn-
thesizes reported findings of individual SNP associations
and compares genetic associations across multipopulation
samples to take the correlations between genetic variants
within each population into account. Our meta-analysis
strengthens the evidence of association between the spe-
cific SNP rs16969968 in bin A and heavy smoking across
these diverse populations.

The strongest association signal seen in this gene cluster
in European ancestry populations is represented by a group
of 52 correlated variants, including rs16969968, which we
call bin A. Due to these high correlations, the ability to sta-
tistically refine the association between smoking and these
SNPs is very limited when using only European ancestry
subjects. However, the LD structure between these 52 vari-
ants breaks down into 20 sub-bins in Asians and 38 sub-bins
in African Americans.

By requiring consistent genetic effects across the three
populations, we can refine a genetic association to vari-
ants that are more likely to reflect potential functional vari-
ants. Two SNPs in bin A are the most frequently reported
from previous meta-analyses of smoking behavior in Euro-
pean ancestry subjects: rs16969968 and rs1051730. They are
highly correlated (r2 = 1) in European ancestry and Asian
populations, but display only modest correlation in African
Americans (r2 = 0.40; HapMap 3 Release 2 ASW). We can
leverage this difference in LD architecture to differentiate
the association of heavy smoking with these two variants.

In our meta-analysis of African Americans, rs16969968 is
more strongly associated with heavy smoking (OR = 1.62,

95% CI = 1.21–2.17, P = 0.0011, N = 1,807) than rs1051730
(OR = 1.15, 95% CI = 1.03–1.28, P = 0.011, N = 7,352). SNP
rs16969968 is the most strongly associated polymorphism
across all three populations and the only variant meeting
the consistent association threshold in our study. In addi-
tion, SNP rs16969968 causes an amino acid change in the
nicotinic receptor !5 subunit and alters function of its re-
ceptor [Bierut et al., 2008]. The observed consistent asso-
ciations across diverse populations, combined with the re-
sults of biological experiments on rs169669968, provide con-
verging evidence that rs16969968, rather than rs1051730, is
most likely one causative variant in this region driving the
strongest association signal.

Prior meta-analyses in European ancestry populations
have reported additional association signals distinct from
bin A, and they cluster into three groups. Bin B, a group
of 111 variants highly correlated in Europeans, includes the
previously reported associated SNPs rs588765 and rs880395.
The association with bin B previously reported in Euro-
peans was seen only in association analyses conditioning
on rs16969968. Bin B consists of 39 sub-bins in Asian sub-
jects and 37 sub-bins in African American subjects. In condi-
tional analyses, we found evidence of association between
bin B and heavy smoking in the Asian data (OR = 1.30, 95%
CI = 1.07–1.58, P = 9.7 × 10−3) as well as reproducing the
European ancestry finding (OR = 1.27, 95% CI = 1.16–1.38,
P = 8.7 × 10−8). In the African American data, there was a
trend toward association in the same direction (OR = 1.16,
95% CI = 0.99–1.36, P = 0.064).

Bin B variants, located upstream of the coding region
of CHRNA5, are associated with variability in CHRNA5
mRNA levels in European ancestry samples [Falvella et al.,
2010; Smith et al., 2010; Wang et al., 2009]. Low levels of
CHRNA5 mRNA expression are associated with lower risk
for nicotine dependence. No data exist on CHRNA5 mRNA
expression in other populations, and further work to exam-
ine expression data and smoking behavior in other popula-
tions is needed. Because the risk allele of rs16969968 occurs
primarily on the low mRNA expression alleles represented
by bin B, conditional SNP analysis controlling for bin A
(rs16969968) is important to distinguish between these two
distinct mechanisms [Saccone et al., 2010; Wang et al., 2009].
This is an important example to demonstrate how a genetic
effect could be better detected and characterized when ad-
ditional related variants are taken into account.

Bin C, a group of 82 variants correlated in Europeans, con-
sisted of 24 sub-bins in subjects of Asians and 26 sub-bins
in African Americans. Variants reported in previous meta-
analyses of European ancestry (rs6495308 [Liu et al., 2010],
rs2036534 [Thorgeirsson et al., 2010], rs7163730, rs9788682,
rs684513 [TAG, 2010], rs578776 [Saccone et al., 2010]) were
all examined. However, no tested SNP in bin C was con-
sistently associated with heavy smoking with P < 0.01 in
both Asians and African Americans. Similarly, we have no
consistent associations with bin D, which contains 15 SNPs
correlated in Europeans and consists of seven sub-bins in
Asians and seven sub-bins in African Americans.

In undertaking this project, we faced numerous chal-
lenges. First, smoking behavior differs substantially across
populations. Smoking quantity distributions differ across
populations; smokers of European ancestry smoke more
heavily than do Asians or African Americans. As a re-
sult, we decided to compare heavy (>20 CPD) vs. light
smoking (≤10 CPD) in our primary association analy-
sis to more closely capture the contrast between nicotine
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dependent smokers and nondependent smokers. We then
confirmed the consistency of results using the full distribu-
tion of smoking quantity in subsequent analyses.

Second, genotyping coverage varied between studies,
and several studies in our meta-analysis had only a few
variants genotyped. As a result, not all sub-bins were tested
and the sample size varied across the tested sub-bins. For
example, SNP rs55853698 that was imputed and reported as
highly associated with smoking quantity in a previous meta-
analysis of European ancestry subjects [Liu et al., 2010],
lies in bin A, but no genotyping data were available for
testing this SNP or the sub-bin it represents in Asian and
African American populations. Use of imputed data has
the potential to mitigate these problems. However, imputa-
tion was not possible for our low-coverage studies. There-
fore, the concerns about having untested SNPs and unequal
subjects in the region would remain even with imputed
data. We believe it is important to report our findings based
on directly genotyped variants, and the interpretation of
the consistent associations is not expected to change with
imputation.

In addition, we were not able to perform thorough ad-
mixture tests in all datasets due to variable genotyping.
Population stratification unaccounted for by our stratified
analyses of self-identified ancestry—European, Asian, and
African American—could be a confounder in our results.
Although we are leveraging the admixture to separate the
effects of different genetic variants, there may be differential
admixture in the cases and controls among African Ameri-
cans. The impact of varied genetic architecture within given,
broadly defined populations as well as within and across
populations represented by individual sites (e.g., Japanese,
Chinese, and Korean) needs to be elucidated in future larger
scale studies with sufficient representation of individuals
from different population backgrounds and more compre-
hensive genotyping.

Lastly, an association seen in one population that is not
consistent across all three may nonetheless represent a true
biological signal. Lack of consistency for the association
may simply reflect differences in power for our popula-
tion samples. Issues that can affect power across our three
diverse populations include sample size, MAF, and even
population-specific effect size. The last factor could arise in a
variety of ways, including differences in LD structure, back-
ground variation, and marker information content. Thus,
we suggest caution when interpreting the negative or non-
consistent association results from this study. Though these
results strengthen the evidence for rs16969968 as a likely
causal variant, this region remains in need of further in-
terrogation with additional genotyping and standardized
imputation across all populations.

Despite the limitations of this study, this meta-analysis
refines the association signals with heavy smoking across
samples representing European ancestry, Asian, and
African American populations. In particular, for bin A,
we present evidence showing rs16969968 is a likely causal
variant for heavy smoking among the common SNPs in
the bin. Our evidence also suggests there are additional
distinct genetic variants in the chromosome 15q25 region
associated with smoking, but we are unable to clearly
identify these other associations across all three popula-
tions. For example, we extend the finding of association
with bin B in European ancestry samples to an associa-
tion in Asians, and a trend toward association in African
Americans.

This consistent pattern of cross-population association
despite many unmeasured genetic and environmental dif-
ferences has provided important evidence to support true
causal variants. It also provides critical information by nar-
rowing a region of interest so laboratory experiments that
must follow association studies can focus on a smaller num-
ber of variants. Thus, this study represents an important
step on the pathway from association to function.
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