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Genome-wide scans of nucleotide variation in human subjects are providing an increasing number of replicated
associations with complex disease traits. Most of the variants detected have small effects and, collectively, they account for a
small fraction of the total genetic variance. Very large sample sizes are required to identify and validate findings. In this
situation, even small sources of systematic or random error can cause spurious results or obscure real effects. The need for
careful attention to data quality has been appreciated for some time in this field, and a number of strategies for quality
control and quality assurance (QC/QA) have been developed. Here we extend these methods and describe a system of QC/QA
for genotypic data in genome-wide association studies (GWAS). This system includes some new approaches that (1)
combine analysis of allelic probe intensities and called genotypes to distinguish gender misidentification from sex
chromosome aberrations, (2) detect autosomal chromosome aberrations that may affect genotype calling accuracy, (3) infer
DNA sample quality from relatedness and allelic intensities, (4) use duplicate concordance to infer SNP quality, (5) detect
genotyping artifacts from dependence of Hardy-Weinberg equilibrium test P-values on allelic frequency, and (6)
demonstrate sensitivity of principal components analysis to SNP selection. The methods are illustrated with examples from
the “Gene Environment Association Studies” (GENEVA) program. The results suggest several recommendations for QC/QA
in the design and execution of GWAS. Genet. Epidemiol. 34 :591-602, 2010. © 2010 Wiley-Liss, Inc.
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INTRODUCTION

The number of genome-wide association studies
(GWAS) of complex human diseases has increased
markedly in recent years with the availability of low-cost,
high-density genotyping and large, well-characterized
sample sets. Like other genomic applications, the produc-
tion of GWAS data involves industrial-scale processes for
which systems of quality control and quality assurance
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(QC/QA) are essential. This article describes a system of
QC/QA for GWAS with a focus on the genotypic data. We
define QC as steps taken to monitor and control the
quality of a product as it is being produced, while QA is
defined as a post-production review of product quality. In
this case, the “product” is a set of GWAS data produced
for the purpose of detecting genotype-phenotype associa-
tions and gene-environment interactions. The QC/QA
system is illustrated with examples from four projects in
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the “Gene Environment Association Studies” (GENEVA)
program [Cornelis et al., 2010]. GENEVA projects consist
of case-control, cohort, and family-based study designs.
We focus here on QC/QA for case-control study designs,
but many of the principles also apply to other designs.

The fundamental goal of a case-control association study
is to test for an allelic frequency difference between cases
and controls to find SNPs that affect disease susceptibility.
Because GWAS typically involve large sample sizes to
detect small effects and hundreds of thousands of
polymorphisms are studied, even small artifactual differ-
ences in allelic frequency between cases and controls can
generate false-positive results. Therefore, it is particularly
important to avoid associations between case-control status
and experimental factors that have potential effects on
allelic frequency. Well-recognized artifacts occur when cases
and controls differ in population structure [Cardon and
Palmer, 2003] or when case and control DNA samples are
handled differently in ways that affect DNA quality
[Clayton et al., 2005]. Differences in DNA quality can result
in differences in the frequency of missing genotype calls,
which are often biased toward one genotype or another
[Wellcome Trust Case Control Consortium, 2007]. When
studies contain related subjects, methods that implicitly
assume independence of subjects may have inflated false-
positive rates. False-negative results may be increased by
failure to control various experimental factors, leading to
“noise” in the system and thereby reducing power. Such
factors include low-quality DNA samples, poorly perform-
ing SNP assays, and errors in sample identification. All of
these problems are best handled by appropriate experi-
mental design and QC, but QA also plays an important role
in identifying biases that may be reduced or eliminated
during the analysis phase of GWAS.

The need for careful QC/QA of genotypic data in GWAS
is well recognized and several publications address various
aspects [Broman, 1999; Chanock et al., 2007; Manolio et al.,
2007; McCarthy et al., 2008; Miyagawa et al., 2008; Wellcome
Trust Case Control Consortium, 2007; Ziegler et al., 2008].
We have extended these methods to include some new
approaches that (1) combine analysis of allelic probe
intensities and called genotypes to distinguish gender
misidentification from sex chromosome aberrations, (2)
detect autosomal chromosome aberrations that may affect
genotype calling accuracy, (3) infer DNA sample quality
from relatedness and allelic intensities, (4) use duplicate
concordance to infer SNP quality, (5) detect genotyping
artifacts from dependence of Hardy-Weinberg equilibrium
(HWE) test P-values on allelic frequency, and (6) demon-
strate sensitivity of principal components analysis (PCA) to
SNP selection. Here we describe the QC/QA process
applied to GENEVA studies and provide some guidelines
for the design of GWAS to avoid experimental artifacts.

METHODS

PROJECTS AND SUBJECTS

The GENEVA projects covered in this article are (1)
Addiction to alcohol and other drugs, (2) Lung Cancer, (3)
Type 2 diabetes (T2D) with subjects from the Nurses’
Health Study (NHS) and (4) T2D with subjects from the
Health Professionals Follow-up Study (HPFS). The Addic-
tion and Lung Cancer projects were genotyped on the
lumina HumanlMvl ¢ and HumanHap550-2v3 B
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arrays, respectively, at the Center for Inherited Disease
Research (CIDR). The T2D projects were genotyped on the
Affymetrix Genome-Wide Human 6.0 array at the Broad
Institute Center for Genotyping and Analysis (Broad).
Details about GENEVA organization, study designs and
subjects are described in Supporting Information, on the
GENEVA website (see Web Resources), and in Cornelis
et al. [2010]. Data for these projects, along with QC/QA
reports are posted in the NCBI database for Genotypes and
Phenotypes [Mailman et al., 2007] (dbGaP). The QC/QA
reports are posted also on the GENEVA web site.

DEFINITIONS OF QUALITY MEASURES

Missing call rate is either the fraction of missing calls per
SNP over samples or the fraction per sample over SNPs.
On a scatterplot of the normalized allelic probe intensities
produced by SNP assays, 0 is defined to be the polar
coordinate angle of a point (i.e. a sample-SNP combina-
tion) and R is defined to be the sum of those intensities.
BAlleleFreq (BAF) is a measure of allelic imbalance, defined
as an estimate of the allelic frequency in a population of
cells from a single individual. LogRRatio (LRR) is a
measure of relative intensity, the logarithm (base 2) of
the observed value of R divided by the expected value
[Peiffer et al.,, 2006]. The genotype cluster plot of a SNP
displays either the intensities of the two alleles or R versus
0 and the genotype calls of each sample. The confidence
score is a measure related to the distance between a given
data point and the centroid of the nearest genotype cluster
in a cluster plot. The heterozygosity of a sample is the
fraction of non-missing genotype calls that are hetero-
zygous. The genotype discordance rate is the number of
genotype calls that differ between a pair of samples
divided by the total number of SNPs for which both calls
are non-missing. A Manhattan signal plot is a genome-wide
plot of —logyo of the P-value for SNP-phenotype associa-
tion versus chromosomal position. A regional association
plot is similar to the Manhattan plot except that it zooms in
on a small region showing trait associations and will
usually include SNP-SNP correlation data. Contrast QC
measures the separation of raw allelic intensities from
Affymetrix arrays into three clusters. Genomic inflation
factor [Devlin and Roeder, 1999] is the ratio of the median
of the observed statistic for a set of genome-wide tests to
the expected median of that statistic under the null
hypothesis. More details for some of these terms are given
in Supporting Information.

GENOTYPING BATCH DESIGN

A genotyping batch consists of a set of samples that are
processed together through the genotyping chemistry,
hybridization, and scanning stages. For the Affymetrix
projects, a batch consisted of a 96-well plate and for the
[Mlumina projects, a set of 24 samples (quarter-plate). Except
for the Addiction project, samples were assigned to batches
to balance case-control status and, in some projects,
ethnicity. Each 96-well plate included one or more HapMap
[International HapMap Consortium, 2005] controls and
some plates included study sample duplicates.

GENOTYPING CENTER QC

At both genotyping centers, DNA samples provided by
study investigators are fingerprinted with a 24- or 79-SNP
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panel. The fingerprints are used to assess genotyping
performance and to track sample identity. If gender
discrepancies or unexpected duplicates are detected, study
investigators may correct sample annotation or replace
DNA samples prior to high-density genotyping. Labora-
tory Information Management Systems are used to track
and monitor samples, reagents and equipment at all stages
of the genotyping process. Daily and monthly reports are
reviewed to identify quality issues. Metrics based on raw
intensities are used to eliminate low-quality samples prior
to genotype calling. Genotype calling was done using
normalized intensities with the Birdseed algorithm [Korn
et al., 2008] for Affymetrix and with BeadStudio (see Web
Resources) for lllumina projects. Genotypes were called by
plate for Affymetrix and by project for Illumina. The
software calculates a confidence score for each sample-
SNP data point and those beyond a fixed threshold have
their genotype set to missing. Samples with low-quality
scans are repeated. Post-production metrics are used to
eliminate low-quality samples and SNPs from the Geno-
typing Center data release, using project-specific thresh-
olds. These metrics vary among platforms and projects,
and may include call rate, allele frequency-plate associa-
tions, Hardy-Weinberg deviations, duplicate discordance
of HapMap controls, and sex differences in SNP metrics.
More details of Genotyping Center QC are provided in
Supporting Information.

QA METHODS

The QA analyses were performed using two software
packages, PLINK [Purcell et al., 2007] and the R statistical
package [R Development Core Team, 2006]. For analysis
in R, the genotypic and quantitative variables (probe
intensities, etc.) are stored in netCDF files accessed with
the “ncdf” package (see Web Resources). netCDF is a
compact storage format that allows rapid access to array-
structured data sets. The results presented here were
generated in R unless stated otherwise.

Most of the QA methods are described in the Results
section below. More details on some methods are in the
Supporting Information, which also includes an outline of
the process (Table SI). Initially, the focus is on identifying
samples of poor quality or questionable identity, which are
removed for subsequent analyses and not posted on
dbGaP. For the remaining samples and for SNPs, filters
are provided to flag various features such as ethnicity,
relatedness, and data quality.

RESULTS

SAMPLE QUALITY

The missing call rate per sample is an informative
indicator of sample quality. The Genotyping Centers
generally fail samples with missing call rates >5%. During
QA, we look for high outliers in the distribution of missing
call rates and for low outliers in the distribution of the
mean confidence score (over all non-missing genotypes)
for each sample. None were found for the projects
considered here.

Three additional quality measures are used in the QA
process to detect mixed (contaminated) DNA samples.
First, we identify outliers in autosomal heterozygosity
within each ethnic group (for example, as points more than

1.5 inter-quartile ranges from the upper/lower quartile
value). Second, we screen for samples with a high variance
of BAF for non-homozygous SNPs, as described in
Supporting Information. Third, we look for unusual
patterns of relatedness, such as samples that appear to
be related to many other samples. Samples with one or
more of these characteristics may be mixtures of multiple
DNA samples, which can be identified by examination of
BAF/LRR plots. Figure S1 in Supporting Information
shows examples of normal and low-quality samples. The
“Relatedness” section below describes an example of
mixed sample detection.

GENOTYPING BATCH QUALITY

All four studies have highly significant batch effects
on the logarithm of missing call rate (ANOVA
P-values <10 '%). In most cases, despite the high level of
significance, the distribution of the mean missing call rate
per batch is continuous with no obvious outliers. There-
fore, no batches were excluded by this criterion, except for
one batch in the Addiction study in which only three of 24
samples passed QC at the genotyping center.

Another way to detect batch effects is to assess
differences in allelic frequency between each batch and a
pool of all other batches in a study, using a homogeneity test
(see Supporting Information). This allelic frequency test can
be affected not only by laboratory processing, but also by
the biological characteristics of the samples in a batch, such
as continental ancestry, other ethnic variation, and related-
ness. After taking continental ancestry into consideration,
no batch outliers were found in any of the four projects,
except for the batch with only three passing samples noted
above (see Figure 52 and text in Supporting Information).

GENDER CHECKS AND SEX CHROMOSOME
ANEUPLOIDY

Gender identity is usually inferred from X chromosome
heterozygosity, but we find that this variable alone gives
ambiguous results, because of sex chromosome aneuploi-
dies and genotyping artifact. Therefore, we also use plots
of the mean intensities of the X and Y chromosomes, as
shown in Figure 1 for the Addiction and T2D NHS
projects.

In the Addiction project, the majority of males and
females fall into two very distinct clusters based on X and
Y chromosome intensities. All samples annotated as males
have a Y intensity greater than all samples annotated as
females. Therefore, there is no evidence of gender
misidentification. However, several samples (delineated
by the dashed lines in Fig. 1) are distinct from the majority
of males and females. Two males with DNA samples from
blood have an X chromosome intensity typical of females
and a Y intensity typical of males. They appear to be XXY.
One of these males has high X heterozygosity and might
be mistaken for a female if X heterozygosity alone was
used for checking gender. Four male samples (three cell
line and one blood) have unusually high intensities of the Y
chromosome and may be either XYY or perhaps XY/XYY
mosaics. Similarly, two males have a low Y intensity and
may be XY/XO mosaics (one cell line, one blood). Several
females have low X intensities and low X heterozygosity,
indicating that they are XO or, perhaps more likely, XX/
XO mosaics, since they are all cell line samples. As
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Fig. 1. Gender and sex chromosome anomalies in the Addiction and T2D HPFS projects. The X and Y probe intensities are calculated
for each sample as the mean of the sum of the normalized intensities of the two alleles for each probe on those chromosomes. Probe pair
samples sizes are given in the axis labels. In the Addiction project, the standard error of the mean intensity for each sample ranges from
0.002 to 0.004 for the X chromosome and 0.007 to 0.018 for the Y chromosome. In the T2D HPFS study, the standard error of the mean
intensity for each sample ranges from 5 to 8 for the X chromosome and from 20 to 98 for the Y chromosome. X heterozygosity is the
fraction of heterozygous calls out of all non-missing genotype calls on the X for each sample. Red/blue symbols are for subjects
annotated as female/male. Symbols designate the tissue source of DNA samples, where triangle is for whole blood and circle is for

lymphoblastic cell lines.

expected, many of the putative XX/XO mosaics show
allelic imbalance in BAF plots of the X chromosome, which
will be discussed in the next section. Data for samples with
a sex (or other) chromosome abnormality are posted on
dbGaP, but the affected chromosome is flagged.

In the T2D HPFS project, all subjects are male, but
several HapMap females were genotyped as controls for
the gender identity check. Figure 1 shows one HapMap
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female (a cell line sample) that appears to be XX/XO. The
plot also shows five unusual males with low Y intensity
and substantial levels of X heterozygosity, while all other
males have zero heterozygosity. This situation is an artifact
of the Birdseed method for calling X chromosome
genotypes. In this algorithm, samples inferred to be males
by annotation and/or Y chromosome intensity are
analyzed with a prior assumption of two genotype
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clusters, while those inferred to be females have a prior
assumption of three clusters. Based on their low Y
intensities, these five males were mis-assigned as females
during automated calling of the X chromosome genotypes.
Consequently, the X chromosome SNPs of these five
samples are flagged for omission from association
analyses.

CHROMOSOMAL ABERRATIONS

Previous studies have documented the use of measures
of allelic imbalance (BAF) and relative intensity (LRR) for
detecting chromosomal aberrations with SNP array data
[Conlin et al., 2010; Peiffer et al., 2006]. Aneuploidy and
large (multi-megabase) duplications and deletions have
been detected in tumor cells and in lymphoblastoid cell
lines [Simon-Sanchez et al.,, 2007]. We also find such
aberrations in blood and buccal cell samples. The
frequencies and types of aberrations will be reported
elsewhere, but some examples are given here from the
Lung Cancer project. The upper panel of Figure 2 shows
“sample 1,” a female with low X chromosome intensity
and heterozygosity. Chromosome 8 in this sample has a
normal pattern of three BAF bands, but on chromosome X
the intermediate band (corresponding to heterozygous
SNPs) is split into two, widely separated bands. These
characteristics are expected for a mosaic population of
disomic and monosomic cells in which monosomic cells
predominate. The lower panel shows “sample 2,” which
has a high intensity of chromosome 8 relative to its other
chromosomes. In this case, the separation of the two
intermediate bands is smaller. The positions of these bands
(at about 0.4 and 0.6) and the high intensity indicate a
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mosaic population of trisomic and disomic cells. (A purely
trisomic cell population would have the intermediate
bands at 0.33 and 0.66.) Samples with a chromosome
aberration are included in the posting on dbGaP, but we
flag the affected chromosome to be filtered out during
association analysis, since it is likely to have a high rate of
genotyping errors. In addition, we suggest filtering out
any sample-chromosome combination with a missing call
rate greater than 5%, since such chromosomes may contain
undetected aberrations.

RELATEDNESS

We estimate the degree of relatedness between every
pair of individuals in a study to identify unexpected
relatedness. Three identity-by-descent (IBD) coefficients
(Zy, Z4, and Z5), the probabilities of sharing 0, 1, or 2 alleles
that are identical by descent, are estimated using a method
of moments procedure implemented with PLINK software
[Purcell et al., 2007] and compared with their expectations
and evolutionary variance (see Supporting Information).
Some pedigree errors can be corrected by consulting
original records, while others are corrected based on the
inferred genetic relationships.

Figure 3 shows a plot of estimates of Z; versus Z for all
pairs of Lung Cancer study subjects with a kinship
coefficient estimate greater than 0.025. All study subjects
were expected to be unrelated, but this is clearly not the
case. Based on expected values (+2 SD), we inferred 14
pairs of full sibs and 5 pairs of half sibs. In addition, there
is one parent-offspring pair and 36 pairs of duplicates,
including a pair of identical twins. Two of the duplicate
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Fig. 2. Allelic imbalance reveals mosaic aneuploidy. Scans of BAF for two blood samples in the Lung Cancer project indicate X
chromosome aneuploidy in one and chromosome 8 aneuploidy in the other. In both cases, the evidence suggests cell populations that

are mosaic for normal and aneuploid cells (see text).
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Fig. 3. Relatedness inference from IBD estimates for the Lung
Cancer project. Estimates of the IBD coefficients, Z; and Z,, are
used to infer relatedness. Each point is for a pair of samples and
the diagonal line is Z,+Z;=1. The orange bars show the
expected values +2 standard deviations (SD) for full sibs
(Zy,=0.25+0.08, Z,=0.50+0.10), half sibs (Z;=0.5+0.10,
Zy=1-Z;) and first cousins (Z; =0.25+0.08, Z,=1-Z,). Par-
ent-of fspring pairs are expected to occur at Z; =1 and duplicates
(or identical twins) at Zy=Z; = 0. Only pairs of samples with
kinship coefficient estimates >1/32 are plotted. (This truncation
is responsible for the sharp downturn at the lower right end of
the diagonal.)

pairs could not be documented as coming from the same
subject and were removed from the data set.

In the T2D NHS project, the relatedness analysis
revealed two samples that appeared to be related to nearly
every other sample in the study with a kinship coefficient
between the expected values of half sibs and first cousins
(Figures S3-5S6). These samples have relatively high
heterozygosity and their BAF plots indicate that they are
mixed samples (Figure S1 d and e). Several other samples
that appeared to have relatedness to a large number of
other samples are not clearly mixed, but appear to be of
low quality since they all have more than five chromo-
somes flagged for high variance of BAF (e.g. Figure S1 f).
Similar samples were found in the T2D HPFS project and
both projects are discussed further in Supporting Informa-
tion.

POPULATION STRUCTURE

To investigate population structure, we use PCA,
essentially as described by Patterson et al. [2006]. The
choice of which SNPs to use for PCA is not obvious. Using
all SNPs on a whole-genome array is computationally
demanding, but feasible, and would seem to be the best
approach in terms of utilizing all available information
about genetic relationships. However, whole-genome
arrays contain clusters of highly correlated SNPs and a
single cluster may have a very strong influence on certain
PCs, as noted previously [Novembre et al., 2008; Tian et al.,
2008]. For example, in the Lung Cancer project (which
consists entirely of European-ancestry subjects), when
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using all autosomal SNPs with missing call rate less than
5% (~545k SNPs), the first two PCs separate US and Italian
subjects, while the third PC separates both US and Italian
subjects into three distinct groups. These three groups
correspond to the genotypes of a cluster of highly
correlated SNPs in 8p23, a region that contains a
polymorphic inversion. The same result was found
previously in PCA of other European-ancestry populations
[Novembre et al, 2008]. The highly localized features
underlying some principal components may limit their
usefulness in detecting and controlling for population
structure. Moreover, they may even be counterproductive
when used as covariates in association testing for traits
affected by SNPs in those chromosomal regions. There-
fore, when adjusting for potential population structure, we
recommend against the use of PCs that are highly
correlated with localized SNP clusters.

One approach to avoiding the strong influence of SNP
clusters is to prune the full genome-wide SNP set before
PCA to obtain a subset of SNPs in which all pairs have low
correlations. In the T2D project, we compared two such
SNP sets, one reported by Yu et al. [2008] selected to have
pair-wise linkage disequilibrium (LD) of *<0.004 and
minor allele frequencies (MAF)>0.05 in a European-
ancestry population. The other SNP set we selected, from
among the 870,000 autosomal SNPs assayed on the NHS
subjects, to have LD r?*<0.04 and MAF>0.05. Both sets
contained about 12,000 SNPs and the overlap is 445 SNPs.
The first two eigenvectors obtained from the two SNP sets
are very similar, whereas the third, fourth, and fifth have
much lower correlations (Figures S7 and S8). Similar
sensitivity to SNP selection has been observed in other
projects. These results suggest that, beyond the first one or
two components, eigenvectors ordered by sample eigen-
values may not be robust indicators of population
structure. However, we note that this does not rule out
the eigensystem as a whole being similar across SNP sets.
When subsets of SNPs are used for PCA, we recommend
exploring the variability in PCA-based representations of
the data under different SNP set selections.

CASE-CONTROL ASSOCIATIONS WITH
POPULATION STRUCTURE AND
EXPERIMENTAL FACTORS

To check for association between case-control status and
population structure, we test for an association between
disease status and the first two eigenvectors from the PCA
of each population subgroup of interest. No significant
associations have been found so far, which may be a
reflection of study designs that carefully match the
geographic origins and other characteristics of cases and
controls. We also test for a difference in missing call rate
per sample between cases and controls, as a way of
detecting association with experimental factors. No sig-
nificant differences have been found so far, except for a
special case in the Addiction project described below. In
addition to case-control status, we test for correlation
between missing call rate and quantitative traits of
interest. For example, in the T2D NHS project, the
correlation between body mass index and missing call
rate is small and not significant (r = —0.01, P-value = 0.28).

The Addiction project has three categories of case status:
(a) alcohol and possibly other illicit drug dependence
(“case”), (b) controls exposed to alcohol, but never
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addicted to alcohol or illicit drugs (“control”), and (c)
addicted to illicit drug(s) but not to alcohol (“other”).
There is a significant association between case status and
genotyping batch, which could lead to bias in case-control
allelic frequencies, although the occurrence of 213 batches
with median size of 21 samples reduces the magnitude of
any potential problem. Using analysis of variance, there is
a significant effect of case status on the logarithm of
missing call rate (P<0.01), which is due to the “other”
category having a higher rate than the other two (0.12
versus 0.10%, Figure S9). This effect appears to be due to
confounding with the DNA source, which was either
blood or cell line. Among the DNA samples in the “other”
category, 77% are from cell lines, whereas the values for
alcohol cases and controls are 34 and 25%, respectively.
The missing call rate for cell lines is very significantly
higher than for blood (P <9 x 10~'%), as shown in Figure S9
(0.12 versus 0.10%). Therefore, allelic frequency differ-
ences between “other” versus “case” and “control”
categories are potentially biased by non-random missing-
ness. In a situation like this, it may be useful to adjust for
tissue type in the association analysis, by including it as a
regression covariate.

We have found significant effects on the missing call
rate of several experimental factors in multiple studies,
including tissue type, tissue collection date, DNA extrac-
tion method and date, study site, plate, well, and
genotyping batch. Although confounding makes it diffi-
cult to distinguish causative factors, it is prudent to
balance these factors with respect to phenotypic traits as
much as possible in the design of GWAS experiments.

GENOTYPING COMPLETENESS AND
ACCURACY

Current genotyping technology is very reliable and
typically produces data with both high call rates and high
accuracy. However, both types of measures should be
evaluated for each project because genotyping processes,
reagents, and instrumentation may vary. The missing call
rate is a measure of data completeness, but is also a
measure of genotype quality because missingness is often
non-random. Two methods can be used to assess genotyp-
ing accuracy, duplicate sample concordance, and consis-
tency with Mendelian transmission.

Genotyping error rates can be estimated from duplicate
discordance rates. Each of the three genotypes may be
miscalled as either of the other two genotypes, resulting in
six potentially different error rates. For a given true
genotype, we consider two error rates, o and B The
probability that duplicate genotyping instances of the
same subject give a discordant genotype is 2[(1—a—p)
(a+P)+afl. When o and P are very small, this is
approximately 2(a+f) or twice the total error rate. In
high-density genotyping, the number of SNPs per sample
is so high that duplicating a single sample would give a
good estimate of overall error rate, assuming that the rate
was similar for every sample. However, DNA sample
quality may vary considerably so that error rates can vary
among samples. Therefore, we recommend using at least
five study samples for estimating error rates.

For duplicate sample pairs, the median discordance
rates (discordant calls per SNP) are 7 x 107> for Lung
Cancer (33 pairs, Illumina HumanHap550 array) and
2x10™* for Addiction (60 pairs, Illumina HumanlM

array), so the genotyping error rates are on the order
of 107%. The corresponding mean completion (call) rates
are very high: 99.8% for Lung Cancer and 99.7% for
Addiction samples. For the T2D projects run on the
Affymetrix 6.0 array, study samples were not duplicated,
but multiple replicates of a single HapMap control sample
(NA12144) provide discordance rate estimates of 4 x 107>
for NHS and 1 x 1072 for HPFS. The corresponding mean
completion rates are 99.6% for NHS and 99.7% for HPFS. It
appears that the error rate is about an order of magnitude
larger for the Affymetrix 6.0 than for the Illumina 1M
arrays, although different sample sets and other factors
could affect these results.

Duplicate discordance estimates for individual SNPs
also can be used as a SNP quality filter. The problem here
is to find a level of discordance that would eliminate a
large fraction of SNPs with high error rates, while
retaining a large fraction with low error rates. For example,
if the mean error rate is 107% we may wish to retain
greater than 99% of SNPs with error rates less than 1073,
while eliminating as many as possible of SNPs with error
rates greater than 102 For the Addiction project, with 60
duplicates, a threshold of >1 discordant call seems
appropriate, since it would eliminate 99.9% of SNPs with
an error rate of 107}, 33.5% with a rate of 1072, 0.65%
with a rate of 1073, and <0.1% with an error rate of 1074,
Figure S10 shows the relationship between the probability
of observing greater than 0, 1, 2, or 3 discordant calls and
the number of duplicates for different genotyping error
rates. These binomial calculations can be used to select the
optimum threshold and number of duplicates to achieve
various levels of distinction among different error rates. At
least 30 pairs are indicated for most situations.

MENDELIAN ERRORS

Mendelian errors can be detected in parent-offspring
pairs or trios. In principle, this method of error detection is
less efficient than evaluating concordance of duplicate
samples because some genotyping errors are consistent
with Mendelian inheritance (e.g. offspring of AB and BB
parents, with a true BB genotype called as AB). However,
Mendelian errors can be used to detect clustering
problems that are not detectable with duplicate concor-
dance. For example, consider an SNP assay in which the
AA and AB clusters merge together and are both called as
AA, while the actual BB cluster is called as AB. In this case,
two AB parents (both called as AA) with a BB offspring
(called as AB) would generate a Mendelian error. Similarly,
Mendelian errors can detect SNPs with null alleles (N)
segregating. For example, one parent as AN, the other as
BB, and the offspring as BN would give apparently
inconsistent genotypes of AA, BB, and BB, respectively. In
both cases, a duplicate sample would give concordant
results.

The GENEVA studies analyzed to date are not family
based, but the Addiction and Lung Cancer projects
included a small number of HapMap trios as genotyping
controls. For each SNP in the Addiction project, the
Mendelian error rate was calculated as the number of
errors detected divided by the number of families in
which the offspring and at least one parent have non-
missing genotypes. Among the 1,040,106 SNPs with a
possibility for error detection, 99.1% have no errors and
the mean error rate is 0.04%.

Genet. Epidemiol.
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HARDY-WEINBERG EQUILIBRIUM TESTING

We use an exact test for Hardy-Weinberg equilibrium
[Haldane, 1954] (HWE) performed on unrelated control
subjects with relatively homogenous ancestry. In quantile-
quantile (QQ) plots, all four projects show deviations of
observed from expected p-values at about 0.01 for
autosomal SNPs (e.g. Figure S11). It is not clear how many
of these deviations are due to genotyping artifacts and
how many are due to true genotypic frequency deviations
from HWE, but examination of cluster plots indicates that
most of the extreme deviations are due to poorly
performing SNP assays.

The HWE test appears to detect different types of
genotyping artifact on the two genotyping platforms.
Figure 4 shows the HWE P-value versus MAF for the
Addiction and T2D NHS projects. The pattern of extreme
HWE deviations is strikingly different. The Illumina data
(Addiction) show a curve of low P-values that corresponds
to SNPs for which one homozygous class is missing, or
nearly so (as indicated by the theoretical plot in Figure S12
and the color-coding in Fig. 4). This feature is not observed
in the Affymetrix data (T2D NHS) and is likely due to the
Ilumina calling algorithm setting a limit on the distance
between adjacent clusters (which may cause merging of
adjacent clusters). The extreme HWE deviations in the
Affymetrix data show a different pattern: SNPs with
relatively low MAFs tend to have more very significant
deviations than those with high frequency, and there are
many SNPs in which the heterozygous class is deficient.
This feature may be due to the Birdseed algorithm calling
by 96-sample plate, which may make calling genotypes of
SNPs with rare alleles more difficult. We should empha-
size, however, that extreme deviations are rare with both
platforms (<0.3% of SNPs having P-value<10~'7).
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One of the SNP filters that we recommend is based on
HWE test P-value. Interpretation of these P-values is
difficult because the choice of significance level depends
on sample size [Wakefield, 2009]. However, the purpose of
the recommended filter is to flag poorly performing assays
rather than detecting real deviations in the population, so
we examine genotype cluster plots to set a threshold for
filtering. In all four studies described here, these 3plots
show that many assays with P-values between 107~ and
10~* have good clustering and genotype calling, whereas
many of those with P-values less than 10™* are of poor
quality. (For example, in the Lung Cancer project, among
48 plots in the range of P=10"°10"% 12 of 48 plots
showed good clustering, whereas in the range of
P=10"%-10"2, 42 of 48 showed good clustering.) There-
fore, we recommend filtering at P = 10~ for these four
studies. Other studies may require a different threshold to
account for variations in sample size and genotyping
technology.

SAMPLE EXCLUSION AND FILTERING

Samples are designated for exclusion if they are of
questionable identity (e.g. unresolved gender mismatch)
or of unacceptable quality (e.g. appear to be contami-
nated). All remaining samples are posted on dbGaP, but
we recommend that filters are applied prior to association
testing. In some cases, the filters apply only to certain
chromosomes of a sample (e.g. chromosome aberrations).
We recommend filtering out samples with an overall
missing call rate greater than 2% and those that are PCA
outliers from all major ethnic groups in the study. The
percentages of data lost by application of the sample filters

Diabetes, Affymetrix 6.0
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Fig. 4. Exact HWE test statistic and minor allele frequency. The data presented are for autosomal SNPs in European-ancestry subjects,
either for the Addiction study (Illumina Human1M array) or for the NHS study of the Diabetes project (Affymetrix 6.0 array). The
sample sizes are 1,365 for Addiction and 1,752 for the NHS study. The SNPs tested in the Addiction project (930,358) were filtered by
excluding SNPs with a missing call rate greater than 15% (and some other criteria, Table I). The NHS SNP test results shown here
(867,003) are filtered by excluding SNPs with a missing call rate greater than 15%. The plot for a completely unfiltered set is very
similar. SNPs colored in red are those for which one of the two homozygotes occurs at less than 10% of the expected value, while those
in green are those for which heterozygotes occur at less than 10% of the expected value. See Figure S13 for a version of this figure in
which the Y-axis is focused on —log;o(P-value) from 0 to 10. See Figure S12 for a theoretical explanation of curves highlighted in green

and red.
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is 1.6% for Addiction, 0.5% for Lung Cancer, 1.6% for T2D
NHS, and 0.5% for T2D HPFS.

The presence of low-quality samples during genotype
calling may affect the cluster definitions and, therefore, the
accuracy of genotype calls for high-quality samples. This
effect was demonstrated by Pluzhnikov et al. [2008] in a
project that used the Affymetrix 5.0 array with Birdseed v2
calling by plate. Eight low-quality samples were detected
with high heterozygosity and “unusual patterns of
relatedness.” These samples were all on one plate, which
had a disproportionately high number of cases. False-
positive associations were found and these remained after
simply removing the eight low-quality samples. Re-calling
of the remaining samples on the affected plate was
necessary to remove the false positives.

The GENEVA T2D projects were genotyped on the
Affymetrix 6.0 array with Birdseed v1.33 calling by plate.
A total of 28 (NHS) and 26 (HPFS) low-quality samples
were found with high heterozygosity, a high level of
relatedness to other samples, and poor BAF plots (see
Supporting Information for more details). However,
important differences from the situation described by
Pluzhnikov et al. [2008] are that the samples are
distributed across many plates and we did not find
evidence of spurious associations. The QQ plots show
low genomic inflation (Figure S14) and genotypic cluster
plots for the top hits (after SNP filtering described below)
are generally of good quality. Nevertheless, the possible
effect of low-quality samples was investigated in two
ways.

First, for the HPFS project, we estimated the concor-
dance between a HapMap control (NA12144) run on each
plate and the consensus genotype calls of 139 replicate
genotyping instances of this subject from an independent
study using the same array and calling algorithm (and
using SNPs that pass the quality filters described below).
The mean discordance is very low for plates with and
without low-quality samples and the difference is not
significant (15.8 x 107> for 15 plates with low-quality
samples and 9.8 x 10~° for 14 plates without such samples;
P-value =0.72). Second, we re-called a sample of eight
plates from each study, four plates with and four plates
without low-quality samples. The maximum number of
low-quality samples per plate was five. The discordance
between the original and recalled genotypes is signifi-
cantly higher for plates from which low-quality samples
were removed (P-value=9 x10™% and it varies signifi-
cantly with the number of samples removed
(P-value =2 x 107%). However, the discordance is very
low for both types of plates. The highest median
discordance between original and recalled genotypes is
6 x 107° for an HPFS plate with five low-quality samples.
For comparison, the median discordance between 15
HapMap control samples from HPFS (all from plates with
no low-quality samgles) and the external consensus
reference is 1.4 x 107", Therefore, the effect of recalling
after low-quality sample removal (measured as discor-
dance between original and recalled genotypes) is less
than independent genotyping of the same sample.

We concluded that the substantial effort required to
recall and reanalyze all of the affected plates in the T2D
studies (14/29 in HPFS and 15/41 in NHS) was very
unlikely to make a significant improvement in the quality
of the data, so these data sets were released to dbGaP
without doing so. However, we advise GWAS analysts to

consider re-calling a plate whenever one or more of the
following occur: (a) a significant portion of the plate
consists of low-quality samples; (b) the plate is an outlier
with respect to median missing call rate and/or the allelic
frequency-plate association test; (c) the study has high
genomic inflation and low-quality cluster plots for
association test hits; (d) case-control association with
affected plates.

In the two Illumina projects, we did not detect unusual
patterns of relatedness or evidence of mixed samples. No
low-quality samples were detected in the QA process for
the Lung Cancer project. In the Addiction project, one
problematic genotyping batch of three samples was
detected and removed from the data set (of which only
one sample was used in cluster definition). For Illumina
genotype calling, all samples (except those with call rate
<98%) are used for cluster definition, so this system is
much less susceptible to the influence of a few low-quality
samples than the by-plate Birdseed calling for Affymetrix
projects. In another GENEVA Illumina project (performed
by the Broad genotyping center and not described in this
article), we evaluated the effect of recalling after removing
846 low-quality scans (out of 2,970) and replacing them
with high-quality scans from the same subjects. The
discordance between genotype calls in the original and
recalled genotypes was extremely low: 1,594 of 2,124
samples had no discordance and the highest discordance
rate was 9 x 107°.

SNP FILTERING

Data for all SNPs released by the Genotyping Centers
are posted on dbGaP, but we recommend filtering
association test results based on missing call rate,
duplicate discordance, Mendelian errors, sex differences
in allelic frequency and heterozygosity, and MAF. The
thresholds vary among studies according to quality metric
distributions and genotyping platform. For both the
[Mlumina HumanlM and Affymetrix 6.0 arrays, the
fraction of SNPs that were either failed by the Genotyping
Center QC or flagged for filtering during QA is about 7%
without the MAF>0.01 filter (Table I), while the corre-
sponding figure for the Illumina HumanHap550 array is
2%. The recommended MAF filter level is based on power
to detect associations. However, for comparison among
studies, the filters in Table I are all set to MAF>0.01 in
subjects from the United States with primarily European
ancestry. For this ethnic group and MATF criterion, the
percent of SNPs lost from the Affymetrix 6.0 and Illumina
Human1M arrays after both quality and MAF criteria are
applied is about 20%, while that for the Illumina
HumanHap550 array is 6%. The table also shows that
genome coverage (estimated for HapMap II CEU subjects)
is decreased by only 1-2% due to the recommended filters.
Supporting information provides data about overlap of
SNP filters within and among studies and the physical
distribution of SNPs that fail to pass these filters.

PRELIMINARY ASSOCIATION TESTS

Our final data cleaning step is to perform preliminary
association tests and then examine QQ, Manhattan signal,
regional association, and genotype cluster plots. We use
logistic regression and likelihood ratio tests for case-
control studies, using samples filtered by quality criteria

Genet. Epidemiol.
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TABLE 1. SNP failure and recommended filter criteria
with results from 4 GENEVA projects

Remove SNPs with Projects SNPs lost®
using Illumina arrays
Addiction Lung Cancer
Ilumina Illumina
Human1M HumanHap550
Pre-release failures
Missing call rate >15% 4,434 417
>1 discordance in 2,725 331
replicate HapMap
controls
Manual review and other 1,743 213
criteria®
Total SNPs failed by 8,902 961

Genotyping Center
Post-release recommended filters

MAF =0 31,755 106
Missing call rate>2% 28,800 7,569
Missing call rate>5% in 0 0
one or both sexes
>1 family with 835 486
Mendelian error(s)
>1 subject with 843 66
discordant call(s)
Sex difference in allelic 13 0
frequency >0.2
Sex difference in 0 0
heterozygosity > 0.3°
HWE P-value<10~* in 2,275 1,242
study controls
MAF<0.01 134,710 23,036
Initial number of SNPs 1,049,008 561,466
Percent of SNPs lost 7.0% 1.9%
excluding MAF filter
Percent of SNPs lost 19.8% 6.0%
including MAF filter
Genome coverage at 1*>0.8 91.2% 87.4%
for all SNPs on the
array®
Genome coverage at r*>0.8 90.0% 86.8%
after filtering®
T2D NHS T2D HPFS
Projects with Affymetrix Affymetrix Affymetrix
arrays 6.0 6.0
Pre-release failures
Missing call rate>5% 23,859 26,872
HWE P-value<10~% in 3,312 2,389
all samples
Plate associations 3,380 5,844
(single plate
P<107% 2 or
more P<107%f
Total SNPs failed by 30,551 35,105

Genotyping Center
Post-release recommended filters
One member of each pair 2,839 2,903
of duplicate probes
(mostly AFFX)®
MAF =0 1,438 2,782
Missing call rate>3% 17,802 15,987
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TABLE 1. Continued

T2D NHS T2D HPFS
Projects with Affymetrix Affymetrix Affymetrix
arrays 6.0 6.0
>1 discordance in 7,121 5,340
replicate samples of
NA12144
HWE P-value<10™* in 540 513
study controls
MAF<0.01 126,331 121,469
Initial number of SNPs 909,622 909,623
Percent of SNPs lost excluding 6.6% 6.9%
MAF filter
Percent of SNPs lost including 20.5% 20.2%
MAF filter
Genome coverage at 1*>0.8 80.0% 80.0%
for all SNPs on the array®
Genome coverage at #>0.8 78.1% 77.9%

after filtering®

“The number of SNPs lost at each step is after losses at the
previous step.

POther criteria include gender difference in missing call rate and
autosomal heterozygosity, male X heterozygosity, female Y
heterozygosity.

‘For autosomal and pseudo-autosomal SNPs only.

9The initial number of SNPs assayed is the total number of probes
on the Illumina Human1M array (1,072,820) minus the number of
intensity-only probes.

®Calculated with HapMap II data for CEU subjects [Barrett and
Cardon, 2006] with software by Carl Anderson (see Web
resources).

fThese plate association tests were conducted without adjustment
for ethnicity differences among plates.

8The Affymetrix 6.0 array has 3024 SNPs with the same “rs”
number and the same map position. Each of these SNPs is assayed
with two different probes, one of which is “AFFX,” used for
quality control.

and retaining unrelated subjects. Initially, we select which
of the following covariates to include in the model: age,
sex, recruitment center, and the first several eigenvectors
from the PCA. These potential covariates are analyzed in
models that exclude genotype and those with significant
effects are included in the final model. We then include the
genotype (coded for an additive model) for each SNP in
turn and test for SNP effects with a likelihood ratio test. We
recommend examination of cluster plots for the “top hits”
(most significant SNPs) in an association study and flag
results for any SNPs that show poor clustering. Examples
of QQ and cluster plots are illustrated for the Addiction
study in Figure S15. Another check on the quality of top
hits is to examine Manhattan signal and regional associa-
tion plots of association test P-value versus chromosomal
position. As noted previously [Wellcome Trust Case
Control Consortium, 2007], valid associations are likely to
appear as a small cluster of SNPs with low P-values, unless
the sentinel polymorphism is in a SNP-poor region.

The benefits of attention to QC/QA of genotypic data
are difficult to quantify, but some examples have been
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reported. Pluzhnikov et al. [2008] describe a genotyping
plate effect (due to a small number of low-quality
samples) that resulted in spurious associations. The
Wellcome Trust Case Control Consortium [2007] (supple-
ment) reported a decrease in the genomic inflation factor
with the application of a series of quality filters and we
observed a similar effect in the GENEVA Addiction study,
where the genomic inflation factor changes from 1.08 to
1.04 after filtering.

DISCUSSION

The most effective QC/QA process starts with a good
experimental design. Our experience with GENEVA and
other projects has led to the following recommendations.
Adherence to sound epidemiological principles in the
recruitment of subjects for case-control studies is a crucial
first step [Zondervan and Cardon, 2007]. Subsequently, it is
critical to avoid association between case-control status (or
other phenotypes) and any variables that may affect
genotyping quality. Variables that may affect DNA sample
quality include tissue collection date, storage and shipping
conditions, tissue type, DNA extraction method, extraction
batch, and study site. Factors that may affect genotyping
process quality are reagent batches, instrumentation, and
processing batches (such as plate effects). Therefore, to avoid
confounding, we recommend balancing case-control status
across experimental factors and randomizing the order of
processing and the plate positions of samples. We also
recommend the use of at least five duplicate sample pairs to
assess the overall accuracy of genotyping and at least 30 pairs
for SNP filtering. The duplicates should be selected to
represent the overall quality and tissue source of the study
samples. Family trios as additional control samples are useful
for detecting SNPs with poor clustering via Mendelian error
detection. Rigorous sample tracking systems should be
employed to avoid sample identity problems, since a large
fraction of sample switches are not detectable.

In the past few years, despite the phenomenal increase
in the number of published GWAS and in the number of
replicated associations for complex human diseases
[Hirschhorn, 2009; Manolio et al., 2008], much of the
genetic variation in disease traits remains unexplained by
SNP associations detected so far. One possible explanation
is that the variance is due to a large number of SNPs with
small effects, in which case many more loci might be
detected as power increases with increasing sample size.
Studies with very large sample sizes, on the order of tens
of thousands of subjects, have more power, but are also
more likely to be affected by experimental errors. There-
fore, QC/QA of genotypic data in GWAS will continue to
be an important aspect of human genetics research.
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