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A Wavelet-Based Multiresolution Regularized
Least Squares Reconstruction Approach
for Optical Tomography
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Abstract—In this paper, we present a wavelet-based multigrid The problem is difficult because in this frequency range,
approach to solve the perturbation equation encountered in photons propagate through the tissue in a highly diffused
optical tomography. With this scheme, the unknown image, the manner and the relation between the measured signal and the

data, as well as the weight matrix are all represented by wavelet . . . . . .
expansions, thus yielding a multiresolution representation of absorption properties of the medium is nonlinear. There is

the original perturbation equation in the wavelet domain. This 9generally no direct method for solving the inverse problem.
transformed equation is then solved using a multigrid scheme, One way to attack this difficulty is to use thiéerative

by which an increasing portion of wavelet coefficients of the perturbation approachvhich entails solving a system of linear
unknown image are solved in successive approximations. One canequations at each iteration, that computes the difference in
also quickly identify regions of interest (ROI’s) from a coarse level optical properties between the target (unknown) medium and a

reconstruction and restrict the reconstruction in the following fine defined ref di M ifically it d ibed
resolutions to those regions. At each resolution level a regularized €lined reterence medium. Viore speciiically, 1t was describe

least squares solution is obtained using the conjugate gradient By some of us using both the transport [2], [3] and diffusion
descent method. This approach has been applied to continu- [4] models of the light propagation. Independently, Singer

ous wave data calculated based on the diffusion approximation al. [5] and Arridgeet al. [6], [7] described alternative iterative
of several two-dimensional (2-D) test media. Compared t0 & gchemes derived from random walk and diffusion theory. All

previously reported one grid algorithm, the multigrid method . . .
requires substantially shorter computation time under the same these schemes require, at each perturbation step, the solution

reconstruction quality criterion. of a linear perturbation equation of the following form:

Index Terms—mage reconstruction, multigrid method, optical Hr=y (1)
tomography, wavelet transform.

wherez is anL x 1 vector of differences between the optical
|. INTRODUCTION properties (such as absorption and scattering coefficients) of

ECENTLY, there has been a growing interest and rapi"1 reference_medmm and those of the |mqged medium in
. ; : N : voxels, ¢ is a K x 1 vector of changes inK detector
progress in developing medical optical imaging systems_ .. . .
: . . ; : ; eadings between the two media, alids a K x L matrix of
which use near-infrared light emitted into human tissue 10 . g .
) . . . : . Weights, each describing the influence of a voxel on a detector
determine the interior optical properties [1]. Interest remains_ 3. L S
) ) reading, which is equal to the derivative of the detector
high because the method appears to offer several important .. . : ; .
! . . - reading with respect to the optical properties at the voxel in
advantages over other established imaging modalities. These . . .
. . : ...1N€e reference medium. In general, the perturbation equation
include the use of nonionizing sources and highly sensitive . ; .
. ) N " S both underdetermined and ill posed. To solve the linear
detectors, the ability to monitor situations and events critical t0 . . . .
rturbation equation, we have developed several iterative

sustaining life (e.g., tissue oxygenation), and the availability gf orithms, including projection onto convex sets (POCS) [2]

compact, low-cost instrumentation that can be made portabi%gnjugate gradient descent (CGD) [2], multigrid reconstruction

Manuscript received December 8, 1995; revised December 3, 1996. ThY, layer stripping [8], [9] [for time-resolved (TR) data],

work was supported in part by the National Institutes of Health under Grafégmarized least squares (RLS) [9], and total least squares
RO1-CA59955 and in part by the New York State Science and Technoloe}cl_s) [10]

Foundation. The Associate Editor responsible for coordinating the review : . . . .

this paper and recommending its publication was M. W. Vanmeterisk One challenging problem in solving the perturbation equa-
indicates corresponding author. tion is that the computation complexity is usually very high

W. Zhu and Y. Yao were with the Department of Electrical Engineerin ; : ; f
Polytechnic University, Brooklyn, NY 11203 USA. They are now with Bel%tlue to the eXtremely Iarge dimension of the Welght matrix.

Labs., Lucent Technologies, Whippany, NJ 07981 USA. One effective way to speedup the solution of a linear system
*Y. Wang is with the Department of Electrical Engineering, Polytechni¢gs by using a multigrid approach. In general, such an approach
University, Brooklyn, NY 11201 USA (e-mail: yao@uvision.poly.edu). first represents the original system equation at successively
Y. Deng was with the Department of Electrical Engineering, Polytechnic . .
University, Brooklyn, NY 11201 USA. He is now with the Department ofcOQrser resolutions, and then solves the equation from the

Electrical Engineering, University of California, Santa Barbara, CA 931060arse levels to the fine levels. There are many ways one

USA. ; i i ; ;
can deduce a multiresolution representation of a given linear
R. L. Barbour is with the Departments of Pathology and Biophysics, SUNY P . .g
Health Science Center, Brooklyn, NY 11203 USA. system. Recently, several researchers have investigated the use
Publisher Item Identifier S 0278-0062(97)02401-4. of wavelet transforms for such a task. In [11], Waegal.

0278-0062/97$10.001 1997 IEEE



ZHU et al. A WAVELET-BASED MULTIRESOLUTION RLS RECONSTRUCTION APPROACH FOR OPTICAL TOMOGRAPHY 211

proposed a RLS-based multigrid algorithm for image restordimensional (1-D) transform to each row of the 2-D image
tion using wavelet expansion. In [12], Delanetyal. proposed and then apply a 1-D wavelet transform to each column. This
a wavelet-based multiresolution tomographic reconstructidknown as separable wavelet transform.

algorithm [filtered back projection (FBP)-based] for emission Let F' represent a 2-D image with sizk x N and let
tomography. In this paper, we explore the use of wavelef-be the vector consisting of elements Bfarranged in the
based multigrid reconstruction in optical tomography. In odexicographic order, with siz& = M x N. Let W y; andW »
approach, a multiresolution representation of the perturbaticepresent the 1-D wavelet-transform matrix of sike x M
equation is obtained by expanding the unknown, the datmd N x N, respectively, the separable wavelet transform of
and the weight matrix using wavelet bases. The transformétican be described by

equation is then solved from coarse to fine resolutions using - T

the solution obtained from the previous resolution as the initial F=WyFWy (3)
solution in the present resolution. Compared to a one-gijthere 7 denotes transpose. This is equivalent to, in the 1-D
method which solves the equation in the finest resolutiQ@yiation
directly, the computational complexity is reduced significantly B

under the same reconstruction quality criterion. F=(WyoWy)f 4

where @ denotes the Kronecker product affidis the vector
consisting of elements oF arranged in the lexicographic
A. 1-D Discrete Signal Wavelet Representation order. Therefore, performing 2-D wavelet transform to a

The theory of multiresolution decomposition of a signa‘ll\/l x N 2'1_) image using separable transform is equwal_ent
by a family of orthonormal wavelets can be found in [13]to performing 1—I_3 wavelet transform to the corresponding
In this study, we use discrete wavelet transform to represéﬁP vector by usingWy = Wy @ Wy. The transformed
a discrete signal. For a discrete signal with samples the image can be grouped into four subimages consisting of

: : imation imaged_F and three detail subimages
wavelet transform can be represented in the following mat approxima L
L.F, D?.F, andD3 F, ie,

Il. WAVELET MULTIRESOLUTION REPRESENTATION

form:

T_ = AL F r D\ F r

s @ o= [T R
where f = [f(z1), f(z2), -, fex)]F = [f1, for o, [K]F . ) .
consists of discrete samples of the original signfl,— This is a two-level represen_tanon_Efand can b,e |r_nplemente(_1
[fbe’___’fK]T consists of wavelet transform coefficientst a set of quadrature mirror filters (QMF’s) illustrated in

andW is anK x K transform matrix in which each row vectorF19: 1 (2-levels). Usually we refer to them as LL, LH, HL,

corresponds to a transform basis vector. The wavelet transfoffifl HH subimages—where LL represents low frequencies in
base is designed so that the transformed coefficients canNg&zontal and vetical directions, LH represents low frequency
grouped into two subsignals consisting of an approximatioR horizontal dlrecpon and high fre_quenc_y in vertlc_al dl_rectlon,

signal A_, f and a detail signalD_, f, each of dimension HL represents_hlgh _frequ_ency_ in horizontal direction gnd

K/2. We can further decompose the approximation signi@W frequency in vertical direction, and HH represents high

A_,f into an approximation signal_,f and a detail signal freql_Jenmes in horizontal and_vert|cal directions. One can
D_.f. This yields a three-level wavelet-based multiresolutiofPntinue to decompose the subimage, F” further to the next

representation off as scale (coarser resolution), which leads to the three-level repre-
sentation shown at the bottom of the page. One can repeatedly

- A—lf(K/Qxl) Ao f(x/ax1) apply the wavelet transform to the approximation su_bimage to

Jixxy=4Aof kx1)= {D Fon } = |D-2f(k/ax1) |- obtain anL < min{log, M,log, N} level representation.

—1J(K/2x1) Y

In the above equation, the subscript in parenthesis describes the [ll. SOLUTION OF THE PERTURBATION

dimension of the associated matrix. The approximation signal EQUATION IN THE WAVELET DOMAIN

can be repeatedly split in such a way to yield an arbitrary

L < log, K level representation. A. 1-D Wavelet Representation of the Perturbation Equation

Considering the perturbation equation in (1). To repre-
sent the perturbation equation in a wavelet domain, let the

An efficient way of implementing a wavelet transform of aransform matrices for: and y be represented by, and
two-dimensional (2-D) image is as follows: first apply a oneW,, respectively. Assuming the transformation mathx,

B. 2-D Signal Wavelet Representation

A_2F (ajaxnyay DEoF(ayaxnya .
) DL F :
i - —148 (M/2xN/2)
AN =N D2 F (aajasnyy D2 oF (apaxyay

D2 Fnj2xny2) D3 F(rp/25n72)
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Fig. 1. Wavelet decomposition of 2-D image from leyek 1 to j. H—3 ¥-3 X

Coarsest Resolution

is orthonormal, and multiplying (1) from left by¥, and RVWT? lForwardV\\;VaV?ktetT Tran?form
insertingW,* W, = I in betweenH andz, we obtain - [nverse Yavelet fransform
Fig. 2. Modified V-cycle multigrid algorithm.

Hi=4g (5)
where H = W, HWZ, 4§ = Wy, andz = W_z. Equation 16 Detectors
(5) is the perturbation equation in the wavelet domain. From 16 Sources
this equation, one can sols and then obtaig by an inverse
transformz = Wiz.

B. RLS Solution in Wavelet Domain

Regularizationis a well-established technique for dealing
with instability in inverse problems [14] and can convert an
ill-posed problem into a well-posed problem by incorporating
a priori knowledge about the image to be recovered. RLS can
be formulated as

& = argmin{|| Hz — y||* + All=l|*} (6)

where theregularization parametetx can be determined by
the Miller criterion [15] or Cross-validation method [16]. The
RLS solution is given by

#=(H"H+\X)'Hy. 7)

In the wavelet domain, the RLS can be formulated as
Fig. 3. The source-detector configurations of the cylindrical rod.

%zarglrgn{llfl%—z?llz’+A||:i||2} (8)
WMzHW;‘Qz. Slightly different from [17], we do the fol-
lowing. First, for each rowh, ,i = 1,2,---,M?, of H,
. (fITfIJr)\I)_lfITg). (@) we reorder it to a 2-D image of siz&/ x N and then
useW . to perform separable transform. After this separable
transformation, we reorder the transformed image back to a
C. 2-D Separable Wavelet Representation row vector h,.,. Let the resulting image bél, = HW;‘QZ.

For notational simplicity we will assume boff andY are Then, for each column ofi,, h.,j = 1,2,---,N?, we
square images. Supposeandy in (1) are vectors obtained perform Wy,zh., in the form of W, H. »_pW,, j =
from 2-D N x N image X and M x M imageY in the 1,2,..-,N?% where ﬁICjQ_D is the 2-D ordering ofﬁcj.
lexicographic order. LeW 5 andWy represent 1-D transform Finally, we reorder the transformed vectors to a 2-D matrix
matrices forX andY’, respectively. Defin®/ - = W,@W, which is H.

andWh. = Wi ®WZ, then similar to the 1-D case, we have

with the solution given by

- IV. MULTIGRID ALGORITHM
H=W,-HWZL., §=W,py, &=Wnxz. (10) _ N
As we see from Section Il, wavelet decomposition of a

Substituting H, ¢, and % into (9), we can have the RLSsignal leads to a multiresolution representation of the signal.
solution in the 2-D wavelet domain. The question is holf we exploit the multiresolution property, the computational
to calculate the four—dimensional wavelet transfolin = time may be reduced. In this paper, we employ a modified
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AMP AMP
0.0270 0.0012
0.0240 0.0011
0.0210 0.0009
0.0180 0.0008
0.0150 0.0007
0.0120 0.0005
0.0090 0.0004
0.0060 0.0003
0.0030 0.0001
0.0000 0.0000

() (b)

AMP AMP
0.020 1 0015
0.017 0.013
0.015 0.011
0.013 0.010
0.011 0.008
0.008 4 0.006
0.006 0.005
0.004 0.003
0.002 it
0.000 0.000

(d)

AMP AMP
0.020 0.024
0.017 0.021
0.015 0.018
0.013 0.016
0.011 0.013
0.008 0.010
0.006 ! 0.008
0.004 0.005
0.002 0.002
0.000 0.000

(e) ®

Fig. 4. Reconstruction results for a test medium containing a centered rod: (a) is the original object (difference between the absorptiam difttieuti

test medium and a homogeneous background), (b) is the reconstructed object using one-grid CGD with 32 iterations, (c) is the reconstructed object usi
two-grid algorithm with 500 iterations in the coarse grid, (d) is the reconstructed object using one grid CGD with 235 iterations, (e) is thectedonstru
object using the two-grid algorithm with additional 200 iterations in the fine grid, using (c) as initial solution, and (f) is the reconstructeditibject

800 iterations in a localized region at the fine grid, also using (c) as the initial solution. The computation time for (b) and (c) are roughly same. So
are (d), (e) and (f). The time for (c) is about 1/7 of (d).

V-cycle multigrid algorithm. The principle of this algorithm 2) Solve for the RLS solutios; of the perturbation equa-
is illustrated in Fig. 2. There are two differences compared to  tion at the ith level, H;# = ¥;, using the CGD
the classical V-cycle method [18]. First, instead of downward  algorithm, with#; o as the initial solution.

(from fine to coarse) restriction, where error is calculated and3) Optain the initial solution in the(l + 1)th grid by
restricted, here we use wavelet decomposition to reach the
vertex (coarsest grid) of the V-cycle. For the upward recon-
struction (form coarse to fine), we use multigrid reconstruction
instead of error prolongation (error compensation). et
represent the level of wavelet decomposition, this modified

prolongating from#; to #;4; through padding zeros,
ie., -’El+1,0 = ['%l 7OT]T.
4) Letl=1+1,if =0, solveHz =y usingW'i, as

the initial solution. Otherwise, go back to Step 2.

V-cycle algorithm consists of the following steps. The wavelet-based multigrid RLS algorithm described
1) Perform wavelet transform @f and H to obtaing, and above differs from the one proposed by Waegal. [11]
H,, | =-1,-2,---,—L. Setl = —L and select an in several aspects. First, in that method, at each resolution

initial solutionZ_r ¢ = o. level, the LL, LH, HL, and HH components are reconstructed
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AMP AMP
0.0270 0.0500
{0.0240 0.0444
0.0210 0.0389
0.0180 0.0333
0.0150 0.0278
0.0120 0.0222
0.0090 0.0167
0.0060 0.0111
0.0030 0.0056
0.0000 0.0000
(b)

AMP er s
0.014 0.014
0.012 0.012
0.010 0.010
0.009 0.009
0.007 0.007
0.00¢ 0.006
0,00 0.004
0.003 0.003
0.001 0.001
0.000 0.000

(d)

AMP AMP
0.016 0.031
0.014 0.027
0.012 0.024
0.010 0.020
0.008 0.017
0.007 0.013
0.005 0.010
0.003 0.006
0.001 0.003
0.000 0.000

(e) ®

Fig. 5. Reconstruction results and wavelet analysis of a medium with an off-center rod with Sine-like distribution: (a) is the original objem#tis(thesh
wavelet transform of original object in (a), (c) is the reconstructed object using one grid with 235 iterations, (d) is the reconstructed objed-gsu®y
algorithm with 500 iterations in the coarse grid, (e) is the reconstructed object using two-grid algorithm with additional 200 iterations in tice §iné @)
is the wavelet transform of (e). The total computation time for (e) and (c) are roughly the same. The time for (d) is about 1/7 of (c).

alternatingly until the solution converges. In our method, atjuestionable” in a coarser level reconstruction. Then, only

each level, the LL component only is solved, assuming tliee corresponding region in the next finer resolution need to

other components are zeros. Second, in the method of [10§, further refined by the CGD algorithm, while other regions

the regularization parameter is fixed at different resolution@n be kept the same as in the previous coarser resolution.

In our scheme, the regularization parameters at different grigscurrently, we have only implemented a two-grid algorithm

(resolutions) are varied. In the coarsest resolution the noise s h: 1) byl which \;ve fws'; re‘flf)r?_s"“?cltdtheh LL compcl)ner:t

quite weak compared to the signal, so we do not need to ap the wave et~ trans orm of . This yields the coarse leve
L . construction_;. Starting from this solution, we then solve

much regularization. When the resolution goes from coarse f ,

: o . . all the components of or selected ROI’s.

fine the regularization parameter is increased. This is because

the noise is more pronounced in high frequencies.

In clinical applications, usually only certain regions with V. NUMERICAL SIMULATION RESULTS

abnormal features are of interest. The above multigrid al-|n our current implementation, we have only considered

gorithm allows one to “zoom-in” special regions of interesimaging of absorption coefficients, assuming the scattering

(RQOI's). Let's say we are interested in a region that appegrsoperty of the target medium is the same as that of the back-
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ground. In our simulation, the length-4 Daubechies’ wavelet _90
[19] is used because it achieves a good tradeoff between )
computational precision and computational complexity. In 2N

order to demonstrate the effectiveness of the wavelet-based _o5 |
multigrid RLS algorithm compared to a one-grid algorithm,

two sets of simulations are performed. In the first simulation, =237
a 1-cm-diameter rod is placed in a background medium 94
which is infinite and homogeneous. The rod is homogeneous,

with absorption and scattering coefficients = 0.05 cntt  los(F) 25+
and p, = 10 cntl. The background medium has, = 961

0.02 cntt and x4 = 10 cnil. A total of 16 sources
and 16 detectors are evenly spread about the rod in a ring %71

T=o-6-0-

geometry having a diameter of 10 cm (see Fig. 3). Solution  _,q | o Onegrid TLS

to the forward problem (i.e., elements & and y) was

accomplished by analytically solving the diffusion equation —294 o Multigrid TLS

using the normal mode series method described in [20]. _30 : | ,
The data (i.e., elements @f) consist of the difference in 1 11 21 31
the forward-calculated continuous wave (CW) signal for the Number of Work Unit

hquQeneous medium and the m,ed'“m. containing the Cyl'ﬂg’]. 6. Comparison of error reduction rates of multigrid versus one-grid
drical rod. The reconstructed object (i.e., elementszdf RLS. Here,E = L||Hx — y||2 and one work unit is the computation time
consists of the differences in the absorption coefficients @fuired for one iteration in the finest grid.

the real test medium and those of the background. Fig. 4

Sh.OWS th_e reconstructgd objects using one-grid and YWRe wavelet transform makes the reconstruction in the wavelet
grid algorithms, respectively. Th_e coarse Ieve! reconstruction , ain more efficient for images that are smooth. To evaluate
(énly solvehs %ggartler 9];] the p|>_<eIsL|£1 the f|?_e resc;lutlorﬂhe savings of the computation times by the multigrid over the

ef:aur?et € b a}gor:: m requires : ) opera l?nshw €' single-grid algorithm, Fig. 6 compares the values of the error
L is the number of unknowns, one |t¢rat|on of t € Coal3fnction in (6) (at log scale) after successive numbers of work
!evel tal_<es 1716 O.f the computatlo_n time of one Iteratl_o nits obtained using the one-grid and two-grids methods. A
in the fine resolution. The comparison of the computati ork unit here is defined as the amount of computation for

times inc_iicated in thg figure caption is derived based on t - rforming one iteration in the finest grid [21]. In plotting this
assumption. From Fig. 4, we see that the proposed multig

[€aches a lower minimum upon convergence.

significantly shorter time to reach the same resolution quality |, \he anove examples, the calculated data from the forward
[compare Fig. 4(c) and (d)]. Fig. 4(f) is obtained by restricting, sion \ere used and the regularization parameter was
reconstruction in the fine grid within a ROI selected basegl; 5 ser0. Next. we show the results when the data are

on the coarse grid resolution. The ROl we used here iS.g. \htaq by white Gaussian noise, with a signal-to-noise
square block (a quarter of the size of the original imag&yi, (SNR) of 20 dB. Fig. 7 compares the reconstruction
domain) containing the rod at the center. Because MQig s with and without regularization in each grid. The
iterations can be performed under the same total time, 4o, arization parameter was also chosen roughly based on
yields a quantitatively more accurate result than Fig. 4(§he wjiller criterion, followed by slight manual tuning. The

In our reconstruction, we do not put any constraints on Qg arization parameter in the coarse grid is one magnitude
range ofz. Therefore, some reconstruction values could & ojier than that in the fine grid. From these results, we can

negative, which are set to zeros at the final step of e that the use of regularization is more efficient in the fine
reconstruction. grid [compare Fig. 7(c) and (e)]. Further, we also see that if

In the second simulation a 1.5-cm-diameter rod is placed gt jmpose regularization in both coarse grid and fine grid we
an off-center position with respect to the source and deteciay, get improved reconstruction in both grids.

ring. The rod has a nonhomogeneous absorption distribution,

following a sinusoidal pattern (one positive cycle only) whose

maximum value foru, is 0.05 cnt!. The forward solution VI.  CONCLUSION AND DISCUSSION

in this simulation is obtained by a multigrid finite difference In this paper, a wavelet-based multiresolution RLS recon-
solver described in [4]. Fig. 5 is the reconstruction results sfruction scheme is proposed to solve the perturbation equation
the off-center case. We also show the wavelet decompositiesed to compute images of the internal properties of a random
of the original image and the final reconstructed image. Froseattering medium. Compared to the one-grid method, we have
this figure, we can see that we can obtain quite accurate resditsnonstrated that the proposed method can produce images of
from the coarse level reconstruction alone [see Fig. 5(dgomparable or improved quality and accuracy at much lower
This is because the energy of the original image is mosttymputation costs. We have also shown that incorporation of
contained in the LL band. This energy compaction property odégularization in the wavelet domain can effectively suppress
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AMP AMP

00420 0.0240
0.0373 {00213
0.0327 0.0187
0.0280 0.0160
0.0233 0.0133
0.0187 0.0107
0.0140 0.0080
0.0093 0.0053
0.0047 0.0027
0.0000 0.0000

(@) (b)
AME AMP
0.011 o
e 0.005
9,006 0.004
0.007 /004
0.006 G003
0.004. 0.002
0.003 0.002
0.002 o
0.01 0.000
0.000 &0

(d)
AMP AMP
0015 0.011
0,013 0.009
0.011 0.008
0.010 0.007
0.008 0.006
0.006 0.004
0.005 0.003
0.003 0.002
0.001 0.001
0.000 0.000

(e) ®

Fig. 7. The reconstruction results for the object shown in Fig. 6(a) when the SNR is 20 dB: (a) is the reconstructed object with 500 iterationssia giniel coar
without regularization, (b) is the reconstructed object with additional 200 iterations in the fine grid without regularization using (a) a$ solutigia (c) is

the reconstructed object with additional 200 iterations in the fine grid with regularization also using (a) as an initial solution, (d) is theatecbabkject with
500 iterations in the coarse grid with regularization, (e) is the reconstructed object with additional 200 iterations in the fine grid withozategulaing

(d) as an initial solution, and (f) is the reconstructed object with additional 200 iterations in the fine grid with regularization using (d) a aaluriin.

image degradation caused by added noise. A point of furthetDevelopment of practical methods for imaging thick tissue
study will be to develop criteria and strategies for selection efructures using optical sources will require balancing the
regularization parameters at different scales. needs of accuracy and resolution against the cost of com-
Incorporation of multiresolution methods map well to exanputation. The method described here would seem to fit well
ining selected ROI's without the need, and added computimgth this requirement. It is also appreciated that the accuracy
effort, to evaluate the entire domain. Selected regions can dfecomputed solutions and the speed of convergence can
based ora priori knowledge and/or on determination of anomeften be significantly improved by the availability of prior
alies present in solutions obtained at a coarse grid. Subsequerwledge. In this regard it would be of interest to assist
focusing on a ROI on a finer grid invokes the assumption thdite approach described here with anatomical priors that can
computed coefficients in other regions are accurate. While tlhis acquired using magnetic resonance (MR) imaging. We
may prove useful for examination of simply structured mediajention this because of the apparent practicality of performing
its use with arbitrary media will require careful implementatiooptical measurements within an MR magnet. We also note
especially if quantitatively accurate results are desired.  that because the physical parameters being measured by MR
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and optical methods are very different, information deriveds] J. Chang, Y. Wang, R. Aronson, H. L. Graber, and R. L. Barbour, “A
from a combined measurement might be expected to aid layer-stripping approach for recovery of scattering media from time-

L omuIer ; . lved data," iProc. SPIE Cont. | Problems in Scattering and
synergistically in diagnostic studies. In fact, we have recently |20 r=" ™ 0000 P CEIE 767, pp. 384-305 o

demonstrated, using single grid solvers, the ability to recovgp] w. zhu, Y. Wang, H. L. Graber, R. L. Barbour, and J. Chang, “A
gualitatively accurate images of simulated inclusions added to regularized progressive expansion algorithm for recovery of scattering

. . media from time-resolved data,” iRroc. of OSA Topical Meeting on
MR derived maps of female breast [22]. These studies also o< 'in Optical Imaging and Photon Migratioklar. 1994, pp.

modeled time-independent optical sources. Further study is 211-216.
needed to explore adaptation of the described scheme to ev&lflk W. Zhu, Y. Wang, J. Chang, H. L. Graber, and R. Barbour, “A total least
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