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Abstract—In this paper, we present a wavelet-based multigrid
approach to solve the perturbation equation encountered in
optical tomography. With this scheme, the unknown image, the
data, as well as the weight matrix are all represented by wavelet
expansions, thus yielding a multiresolution representation of
the original perturbation equation in the wavelet domain. This
transformed equation is then solved using a multigrid scheme,
by which an increasing portion of wavelet coefficients of the
unknown image are solved in successive approximations. One can
also quickly identify regions of interest (ROI’s) from a coarse level
reconstruction and restrict the reconstruction in the following fine
resolutions to those regions. At each resolution level a regularized
least squares solution is obtained using the conjugate gradient
descent method. This approach has been applied to continu-
ous wave data calculated based on the diffusion approximation
of several two-dimensional (2-D) test media. Compared to a
previously reported one grid algorithm, the multigrid method
requires substantially shorter computation time under the same
reconstruction quality criterion.

Index Terms—Image reconstruction, multigrid method, optical
tomography, wavelet transform.

I. INTRODUCTION

RECENTLY, there has been a growing interest and rapid
progress in developing medical optical imaging systems

which use near-infrared light emitted into human tissue to
determine the interior optical properties [1]. Interest remains
high because the method appears to offer several important
advantages over other established imaging modalities. These
include the use of nonionizing sources and highly sensitive
detectors, the ability to monitor situations and events critical to
sustaining life (e.g., tissue oxygenation), and the availability of
compact, low-cost instrumentation that can be made portable.
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The problem is difficult because in this frequency range,
photons propagate through the tissue in a highly diffused
manner and the relation between the measured signal and the
absorption properties of the medium is nonlinear. There is
generally no direct method for solving the inverse problem.
One way to attack this difficulty is to use theiterative
perturbation approachwhich entails solving a system of linear
equations at each iteration, that computes the difference in
optical properties between the target (unknown) medium and a
defined reference medium. More specifically, it was described
by some of us using both the transport [2], [3] and diffusion
[4] models of the light propagation. Independently, Singeret
al. [5] and Arridgeet al. [6], [7] described alternative iterative
schemes derived from random walk and diffusion theory. All
these schemes require, at each perturbation step, the solution
of a linear perturbation equation of the following form:

(1)

where is an vector of differences between the optical
properties (such as absorption and scattering coefficients) of
a reference medium and those of the imaged medium in

voxels, is a vector of changes in detector
readings between the two media, andis a matrix of
weights, each describing the influence of a voxel on a detector
reading, which is equal to the derivative of the detector
reading with respect to the optical properties at the voxel in
the reference medium. In general, the perturbation equation
is both underdetermined and ill posed. To solve the linear
perturbation equation, we have developed several iterative
algorithms, including projection onto convex sets (POCS) [2],
conjugate gradient descent (CGD) [2], multigrid reconstruction
[2], layer stripping [8], [9] [for time-resolved (TR) data],
regularized least squares (RLS) [9], and total least squares
(TLS) [10].

One challenging problem in solving the perturbation equa-
tion is that the computation complexity is usually very high
due to the extremely large dimension of the weight matrix.
One effective way to speedup the solution of a linear system
is by using a multigrid approach. In general, such an approach
first represents the original system equation at successively
coarser resolutions, and then solves the equation from the
coarse levels to the fine levels. There are many ways one
can deduce a multiresolution representation of a given linear
system. Recently, several researchers have investigated the use
of wavelet transforms for such a task. In [11], Wanget al.
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proposed a RLS-based multigrid algorithm for image restora-
tion using wavelet expansion. In [12], Delaneyet al. proposed
a wavelet-based multiresolution tomographic reconstruction
algorithm [filtered back projection (FBP)-based] for emission
tomography. In this paper, we explore the use of wavelet-
based multigrid reconstruction in optical tomography. In our
approach, a multiresolution representation of the perturbation
equation is obtained by expanding the unknown, the data,
and the weight matrix using wavelet bases. The transformed
equation is then solved from coarse to fine resolutions using
the solution obtained from the previous resolution as the initial
solution in the present resolution. Compared to a one-grid
method which solves the equation in the finest resolution
directly, the computational complexity is reduced significantly
under the same reconstruction quality criterion.

II. WAVELET MULTIRESOLUTION REPRESENTATION

A. 1-D Discrete Signal Wavelet Representation

The theory of multiresolution decomposition of a signal
by a family of orthonormal wavelets can be found in [13].
In this study, we use discrete wavelet transform to represent
a discrete signal. For a discrete signal with samples the
wavelet transform can be represented in the following matrix
form:

(2)

where
consists of discrete samples of the original signal,

consists of wavelet transform coefficients,
and is an transform matrix in which each row vector
corresponds to a transform basis vector. The wavelet transform
base is designed so that the transformed coefficients can be
grouped into two subsignals consisting of an approximation
signal and a detail signal , each of dimension

. We can further decompose the approximation signal
into an approximation signal and a detail signal

. This yields a three-level wavelet-based multiresolution
representation of as

In the above equation, the subscript in parenthesis describes the
dimension of the associated matrix. The approximation signal
can be repeatedly split in such a way to yield an arbitrary

level representation.

B. 2-D Signal Wavelet Representation

An efficient way of implementing a wavelet transform of a
two-dimensional (2-D) image is as follows: first apply a one-

dimensional (1-D) transform to each row of the 2-D image
and then apply a 1-D wavelet transform to each column. This
is known as separable wavelet transform.

Let represent a 2-D image with size and let
be the vector consisting of elements ofarranged in the

lexicographic order, with size . Let and
represent the 1-D wavelet-transform matrix of size
and , respectively, the separable wavelet transform of

can be described by

(3)

where denotes transpose. This is equivalent to, in the 1-D
notation

(4)

where denotes the Kronecker product andis the vector
consisting of elements of arranged in the lexicographic
order. Therefore, performing 2-D wavelet transform to a

2-D image using separable transform is equivalent
to performing 1-D wavelet transform to the corresponding
1-D vector by using . The transformed
image can be grouped into four subimages consisting of
an approximation image and three detail subimages

, , and , i.e.,

This is a two-level representation ofand can be implemented
by a set of quadrature mirror filters (QMF’s) illustrated in
Fig. 1 (2-levels). Usually we refer to them as LL, LH, HL,
and HH subimages—where LL represents low frequencies in
horizontal and vetical directions, LH represents low frequency
in horizontal direction and high frequency in vertical direction,
HL represents high frequency in horizontal direction and
low frequency in vertical direction, and HH represents high
frequencies in horizontal and vertical directions. One can
continue to decompose the subimage further to the next
scale (coarser resolution), which leads to the three-level repre-
sentation shown at the bottom of the page. One can repeatedly
apply the wavelet transform to the approximation subimage to
obtain an level representation.

III. SOLUTION OF THE PERTURBATION

EQUATION IN THE WAVELET DOMAIN

A. 1-D Wavelet Representation of the Perturbation Equation

Considering the perturbation equation in (1). To repre-
sent the perturbation equation in a wavelet domain, let the
transform matrices for and be represented by and

, respectively. Assuming the transformation matrix
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Fig. 1. Wavelet decomposition of 2-D image from levelj + 1 to j.

is orthonormal, and multiplying (1) from left by and
inserting in between and , we obtain

(5)

where and . Equation
(5) is the perturbation equation in the wavelet domain. From
this equation, one can solve, and then obtain by an inverse
transform .

B. RLS Solution in Wavelet Domain

Regularizationis a well-established technique for dealing
with instability in inverse problems [14] and can convert an
ill-posed problem into a well-posed problem by incorporating
a priori knowledge about the image to be recovered. RLS can
be formulated as

(6)

where theregularization parameter can be determined by
the Miller criterion [15] or Cross-validation method [16]. The
RLS solution is given by

(7)

In the wavelet domain, the RLS can be formulated as

(8)

with the solution given by

(9)

C. 2-D Separable Wavelet Representation

For notational simplicity we will assume both and are
square images. Supposeand in (1) are vectors obtained
from 2-D image and image in the
lexicographic order. Let and represent 1-D transform
matrices for and , respectively. Define
and , then similar to the 1-D case, we have

(10)

Substituting , , and into (9), we can have the RLS
solution in the 2-D wavelet domain. The question is how
to calculate the four–dimensional wavelet transform

Fig. 2. Modified V-cycle multigrid algorithm.

Fig. 3. The source-detector configurations of the cylindrical rod.

. Slightly different from [17], we do the fol-
lowing. First, for each row , of ,
we reorder it to a 2-D image of size and then
use to perform separable transform. After this separable
transformation, we reorder the transformed image back to a
row vector . Let the resulting image be .
Then, for each column of , we
perform in the form of

, where is the 2-D ordering of .
Finally, we reorder the transformed vectors to a 2-D matrix
which is .

IV. M ULTIGRID ALGORITHM

As we see from Section II, wavelet decomposition of a
signal leads to a multiresolution representation of the signal.
If we exploit the multiresolution property, the computational
time may be reduced. In this paper, we employ a modified
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Reconstruction results for a test medium containing a centered rod: (a) is the original object (difference between the absorption distribution of the
test medium and a homogeneous background), (b) is the reconstructed object using one-grid CGD with 32 iterations, (c) is the reconstructed object using
two-grid algorithm with 500 iterations in the coarse grid, (d) is the reconstructed object using one grid CGD with 235 iterations, (e) is the reconstructed
object using the two-grid algorithm with additional 200 iterations in the fine grid, using (c) as initial solution, and (f) is the reconstructed objectwith
800 iterations in a localized region at the fine grid, also using (c) as the initial solution. The computation time for (b) and (c) are roughly same. So
are (d), (e) and (f). The time for (c) is about 1/7 of (d).

V-cycle multigrid algorithm. The principle of this algorithm
is illustrated in Fig. 2. There are two differences compared to
the classical V-cycle method [18]. First, instead of downward
(from fine to coarse) restriction, where error is calculated and
restricted, here we use wavelet decomposition to reach the
vertex (coarsest grid) of the V-cycle. For the upward recon-
struction (form coarse to fine), we use multigrid reconstruction
instead of error prolongation (error compensation). Let
represent the level of wavelet decomposition, this modified
V-cycle algorithm consists of the following steps.

1) Perform wavelet transform of and to obtain and
. Set and select an

initial solution .

2) Solve for the RLS solution of the perturbation equa-
tion at the th level, , using the CGD
algorithm, with as the initial solution.

3) Obtain the initial solution in the th grid by
prolongating from to through padding zeros,

i.e., .
4) Let , if , solve using as

the initial solution. Otherwise, go back to Step 2.

The wavelet-based multigrid RLS algorithm described
above differs from the one proposed by Wanget al. [11]
in several aspects. First, in that method, at each resolution
level, the LL, LH, HL, and HH components are reconstructed
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Reconstruction results and wavelet analysis of a medium with an off-center rod with Sine-like distribution: (a) is the original object, (b) shows the
wavelet transform of original object in (a), (c) is the reconstructed object using one grid with 235 iterations, (d) is the reconstructed object usingtwo-grids
algorithm with 500 iterations in the coarse grid, (e) is the reconstructed object using two-grid algorithm with additional 200 iterations in the fine grid, and (f)
is the wavelet transform of (e). The total computation time for (e) and (c) are roughly the same. The time for (d) is about 1/7 of (c).

alternatingly until the solution converges. In our method, at
each level, the LL component only is solved, assuming the
other components are zeros. Second, in the method of [11],
the regularization parameter is fixed at different resolutions.
In our scheme, the regularization parameters at different grids
(resolutions) are varied. In the coarsest resolution the noise is
quite weak compared to the signal, so we do not need to apply
much regularization. When the resolution goes from coarse to
fine the regularization parameter is increased. This is because
the noise is more pronounced in high frequencies.

In clinical applications, usually only certain regions with
abnormal features are of interest. The above multigrid al-
gorithm allows one to “zoom-in” special regions of interest
(ROI’s). Let’s say we are interested in a region that appears

“questionable” in a coarser level reconstruction. Then, only
the corresponding region in the next finer resolution need to
be further refined by the CGD algorithm, while other regions
can be kept the same as in the previous coarser resolution.

Currently, we have only implemented a two-grid algorithm
by which we first reconstruct the LL component

of the wavelet transform of . This yields the coarse level
reconstruction . Starting from this solution, we then solve
all the components of or selected ROI’s.

V. NUMERICAL SIMULATION RESULTS

In our current implementation, we have only considered
imaging of absorption coefficients, assuming the scattering
property of the target medium is the same as that of the back-
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ground. In our simulation, the length-4 Daubechies’ wavelet
[19] is used because it achieves a good tradeoff between
computational precision and computational complexity. In
order to demonstrate the effectiveness of the wavelet-based
multigrid RLS algorithm compared to a one-grid algorithm,
two sets of simulations are performed. In the first simulation,
a 1-cm-diameter rod is placed in a background medium
which is infinite and homogeneous. The rod is homogeneous,
with absorption and scattering coefficients 0.05 cm
and 10 cm . The background medium has
0.02 cm and 10 cm . A total of 16 sources
and 16 detectors are evenly spread about the rod in a ring
geometry having a diameter of 10 cm (see Fig. 3). Solution
to the forward problem (i.e., elements of and ) was
accomplished by analytically solving the diffusion equation
using the normal mode series method described in [20].
The data (i.e., elements of) consist of the difference in
the forward-calculated continuous wave (CW) signal for the
homogeneous medium and the medium containing the cylin-
drical rod. The reconstructed object (i.e., elements of)
consists of the differences in the absorption coefficients of
the real test medium and those of the background. Fig. 4
shows the reconstructed objects using one-grid and two-
grid algorithms, respectively. The coarse level reconstruction
only solves a quarter of the pixels in the fine resolution.
Because the CGD algorithm requires operations where

is the number of unknowns, one iteration of the coarse
level takes 1/16 of the computation time of one iteration
in the fine resolution. The comparison of the computation
times indicated in the figure caption is derived based on this
assumption. From Fig. 4, we see that the proposed multigrid
algorithm can obtain significantly better reconstruction than
the one-grid method under similar computation time [compare
Fig. 4(b) and (c), also compare Fig. 4(d) and (e)], or require
significantly shorter time to reach the same resolution quality
[compare Fig. 4(c) and (d)]. Fig. 4(f) is obtained by restricting
reconstruction in the fine grid within a ROI selected based
on the coarse grid resolution. The ROI we used here is a
square block (a quarter of the size of the original image
domain) containing the rod at the center. Because more
iterations can be performed under the same total time, it
yields a quantitatively more accurate result than Fig. 4(e).
In our reconstruction, we do not put any constraints on the
range of . Therefore, some reconstruction values could be
negative, which are set to zeros at the final step of the
reconstruction.

In the second simulation a 1.5-cm-diameter rod is placed at
an off-center position with respect to the source and detector
ring. The rod has a nonhomogeneous absorption distribution,
following a sinusoidal pattern (one positive cycle only) whose
maximum value for is 0.05 cm . The forward solution
in this simulation is obtained by a multigrid finite difference
solver described in [4]. Fig. 5 is the reconstruction results of
the off-center case. We also show the wavelet decomposition
of the original image and the final reconstructed image. From
this figure, we can see that we can obtain quite accurate results
from the coarse level reconstruction alone [see Fig. 5(d)].
This is because the energy of the original image is mostly
contained in the LL band. This energy compaction property of

Fig. 6. Comparison of error reduction rates of multigrid versus one-grid
RLS. Here,E = 1

L
kHHHx � yyyk2 and one work unit is the computation time

required for one iteration in the finest grid.

the wavelet transform makes the reconstruction in the wavelet
domain more efficient for images that are smooth. To evaluate
the savings of the computation times by the multigrid over the
single-grid algorithm, Fig. 6 compares the values of the error
function in (6) (at log scale) after successive numbers of work
units obtained using the one-grid and two-grids methods. A
work unit here is defined as the amount of computation for
performing one iteration in the finest grid [21]. In plotting this
curve, we have assumed that one coarse iteration takes 1/16
work unit. It can be seen that the multigrid method requires
significantly fewer work units to reach the same error. It also
reaches a lower minimum upon convergence.

In the above examples, the calculated data from the forward
solution were used and the regularization parameter was
set to zero. Next, we show the results when the data are
corrupted by white Gaussian noise, with a signal-to-noise
ratio (SNR) of 20 dB. Fig. 7 compares the reconstruction
results with and without regularization in each grid. The
regularization parameter was also chosen roughly based on
the Miller criterion, followed by slight manual tuning. The
regularization parameter in the coarse grid is one magnitude
smaller than that in the fine grid. From these results, we can
see that the use of regularization is more efficient in the fine
grid [compare Fig. 7(c) and (e)]. Further, we also see that if
we impose regularization in both coarse grid and fine grid we
can get improved reconstruction in both grids.

VI. CONCLUSION AND DISCUSSION

In this paper, a wavelet-based multiresolution RLS recon-
struction scheme is proposed to solve the perturbation equation
used to compute images of the internal properties of a random
scattering medium. Compared to the one-grid method, we have
demonstrated that the proposed method can produce images of
comparable or improved quality and accuracy at much lower
computation costs. We have also shown that incorporation of
regularization in the wavelet domain can effectively suppress
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. The reconstruction results for the object shown in Fig. 6(a) when the SNR is 20 dB: (a) is the reconstructed object with 500 iterations in the coarse grid
without regularization, (b) is the reconstructed object with additional 200 iterations in the fine grid without regularization using (a) as an initial solution, (c) is
the reconstructed object with additional 200 iterations in the fine grid with regularization also using (a) as an initial solution, (d) is the reconstructed object with
500 iterations in the coarse grid with regularization, (e) is the reconstructed object with additional 200 iterations in the fine grid without regularization using
(d) as an initial solution, and (f) is the reconstructed object with additional 200 iterations in the fine grid with regularization using (d) as an initial solution.

image degradation caused by added noise. A point of further
study will be to develop criteria and strategies for selection of
regularization parameters at different scales.

Incorporation of multiresolution methods map well to exam-
ining selected ROI’s without the need, and added computing
effort, to evaluate the entire domain. Selected regions can be
based ona priori knowledge and/or on determination of anom-
alies present in solutions obtained at a coarse grid. Subsequent
focusing on a ROI on a finer grid invokes the assumption that
computed coefficients in other regions are accurate. While this
may prove useful for examination of simply structured media,
its use with arbitrary media will require careful implementation
especially if quantitatively accurate results are desired.

Development of practical methods for imaging thick tissue
structures using optical sources will require balancing the
needs of accuracy and resolution against the cost of com-
putation. The method described here would seem to fit well
with this requirement. It is also appreciated that the accuracy
of computed solutions and the speed of convergence can
often be significantly improved by the availability of prior
knowledge. In this regard it would be of interest to assist
the approach described here with anatomical priors that can
be acquired using magnetic resonance (MR) imaging. We
mention this because of the apparent practicality of performing
optical measurements within an MR magnet. We also note
that because the physical parameters being measured by MR
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and optical methods are very different, information derived
from a combined measurement might be expected to aid
synergistically in diagnostic studies. In fact, we have recently
demonstrated, using single grid solvers, the ability to recover
qualitatively accurate images of simulated inclusions added to
MR derived maps of female breast [22]. These studies also
modeled time-independent optical sources. Further study is
needed to explore adaptation of the described scheme to evalu-
ate MR derived anatomical maps, and examine the possibility
of focusing on ROI’s identified from the MR image. ROI’s
could also be chosen based on converged solutions achieved on
a coarse grid. If necessary, additional improvements in image
accuracy could be obtained by computing iterative forward-
inverse solutions on the coarse grid before computing solutions
to ROI’s on finer grids.
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