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Regularized Total Least Squares Approach for
Nonconvolutional Linear Inverse Problems

Wenwu Zhu, Yao Wang, Nikolas P. Galatsanos, and Jun Zhang

Abstract—In this correspondence, a solution is developed for the
regularized total least squares (RTLS) estimate in linear inverse problems
where the linear operator is nonconvolutional. Our approach is based
on a Rayleigh quotient (RQ) formulation of the TLS problem, and we
accomplish regularization by modifying the RQ function to enforce a
smooth solution. A conjugate gradient algorithm is used to minimize the
modified RQ function. As an example, the proposed approach has been
applied to the perturbation equation encountered in optical tomography.
Simulation results show that this method provides more stable and
accurate solutions than the regularized least squares and a previously
reported total least squares approach, also based on the RQ formulation.

Index Terms—Image reconstruction, image recovery, image restora-
tion, inverse problems, optical tomography, regularization, tomographic
imaging.

I. INTRODUCTION

Many important image processing and medical imaging problems,
such as restoration, reconstruction, motion estimation, and segmenta-
tion, can be formulated as inverse problems where the original image
or data is corrupted by noise. When we reconstruct the original image
or data, mathematically it is required to obtain the solution of a linear
equation

Hx = y (1)

wherex is an n � 1 vector of the original image or data,y is an
m � 1 vector of the corrupted date by noise in the measurement,
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andH is a linear operator which is anm� n matrix. In most cases,
(1) is ill-posed. For some applications, such as tomographic imaging,
the inverse problem is also under-determined due to the fact that
the number of detector readingsm is smaller than the number of
unknownsn. Even ifm � n, the matrixH could be rank deficient,
which also leads to an under-determined system. When only the data
y are corrupted by noise, the regularized least squares (RLS) approach
is usually used to reduce the sensitivity to the noise in the datay [1].
With this approach, measurement data anda priori knowledge about
the original image (data) are used in a complementary way.

In some cases, the linear operatorH may be also subject to errors
or noise. For example, in many tomographic imaging applications this
results from the approximations used in deriving the linear model and
the numerical errors in computingH. In these cases, a total least-
squares (TLS) solution of (1) is optimal in the sense that errors in
both the operator and measurement data are minimized [2]. Justiceet
al. applied the TLS approach to geophysical diffraction tomography
[3]. Li et al. [4] employed the TLS method in phased array imaging
where noise inH andy are assumed independent. The TLS solution
in the above examples is obtained using singular value decomposition
(SVD). However, this may run into computational difficulties for
large-scale systems since the classical SVD computation requires
�12n3 multiplications [5], wheren is the number of the unknowns
[6]. As an alternative, we proposed a Rayleigh quotient form TLS
(RQF-TLS) approach in [7]. It reaches the TLS solution by iteratively
minimizing a Rayleigh quotient function (QRF). Because it needs
�n2 multiplications per iteration, and for largen, usually less thann
iterations are required, this approach may be more suitable for large
scale problems.

In general, the imaging operatorH is ill-conditioned. To deal with
this problem, regularization is often used. In [8], this is accomplished
by truncating the singular values in SVD [8]. In [9] and [10], the
authors apply the principle of Tikhonov regularization in the TLS
framework. ThereH is a convolutionaloperator, which corresponds
to the point spread function (PSF), and the noise inH and the data are
colored and independent. In [9], signals were assumed stationary and,
using the diagonalization properties of the discrete Fourier transform
(DFT), the problem was cast in a scalar form in the DFT domain
which allows efficient computation iteratively even for large images.
In this work, we focus on the problem whenH is nonconvolutional
where a DFT formulation cannot be used. Specifically, to improve
the stability of the RQF-TLS solution, regularization is incorporated
into the RQF-TLS formulation. To minimize the modified RQF, a
conjugate gradient (CG) method [11], [12] is employed, although for
small size problems, a direct SVD approach can also be used. In the
remainder of this work, this method is referred to as RQF-RTLS.

The rest of this correspondence is organized as follows. In
Section II, the RQF-TLS approach is briefly reviewed and the
regularized total least-squares formulation based on Rayleigh
quotient is described. Section III presents simulation results. Finally,
Section IV provides a summary and conclusions.

II. REGULARIZED TOTAL LEAST SQUARES SOLUTION

BASED ON RAYLEIGH QUOTIENT FORMULATION

The RQF-TLS solution is expressed by [7]

minimize F (q) =
qTATAq

qTq
(2)

whereF (q) is called the Rayleigh quotient

A = [H j y] (3)

and

q =
x

�1
:

The solution of (2) is equal to the eigenvectorq associated with the
smallest eigenvalue ofATA.

The RQF-TLS solution is in general ill-posed, i.e., the solution
is sensitive to noise, and is underdetermined when the matrixH

is rank deficient. In this work, we use regularization to stabilize
the solution of the RQF-TLS problem. For the LS problem (which
minimizes the perturbation in the data vectory), a penalty term which
forces the solution vectorx to be smooth or have finite energy is
usually imposed to overcome the ill-conditioning of the matrixH.
The penalty term normally has the form ofkQxk2; whereQ is the
desired regularization operator, which can be the first-order or second-
order difference of the original image or data. In general if the original
image or data is discontinuous, the first-order derivative is used. If the
original image or data is smooth, usually the second-order derivative
is used.

For the RQF-TLS, we can similarly add a penalty term to enforce
the finite energy and/or smoothness constraint. The trick here is to
add the penalty term in such a way so that the minimizing function
still has the RQ form of (2). Motivated by this consideration, we
propose to minimize the following modified RQF:

E(q) =
qTATAq

qTq
+ �

kQxk2 + 1

qTq

=
qT [ATA+ �CTC]q

qTq
=
qTBq

qTq
(4)

where

C =
Q 0
0 1

and

B = AT
A+ �C

T
C:

Obviously, (4) is still in the RQ form. In this study, we chooseQ
as a discrete approximation of the 2-D Laplacian operator in order
to impose smoothness on the solution. The regularization parameter
� was determined using a trial-and-error process in our simulations
which is briefly described in the next section.

Minimizing (4) is equivalent to determining the eigenvector asso-
ciated with the smallest eigenvalue ofB. Therefore, the regularized
TLS solution can be directly obtained by a SVD method applied
to B. We choose to use the CG method, as with the previously
reported RQF-TLS approach [7], which is computationally more
manageable than the direct SVD method for large size problems (e.g.,
n > 1000). This is because the CG method usually requires less than
n iterations to converge and it takes�n2 flops per iteration [11].
Hence, the CG method usually requires less than�n3 flops. On
the other hand, the SVD method requires�12n3 flops [5, Ch. 12].
When theH matrix is sparse, which is true for most tomographic
problems, the computational saving from using a CG method will be
more significant than a direct SVD approach [12].

III. SIMULATION RESULTS

As an example, the proposed RQF-RTLS approach has been ap-
plied to the perturbation equation encountered in optical tomography
[14], [15]. We attempted the reconstruction of several test media
using numerically simulated data. Each test medium was infinite
and homogeneous except at the location of an embedded rod. A
total of 16 sources and 16 detectors were evenly spaced around
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Fig. 1. MSE’s of reconstructed images of the off-center case obtained by
different methods under different�2n for a given�2

h
= 8:99E�12. Both

axes are represented in terms of exponents.

the rod in a ring geometry, having a diameter of 8 cm (see [7]).
The rod was located at either the center or an off-center location,
with respect to the source/detector ring. The imaged region occupied
an area of10 cm � 10 cm enclosing the source/detector ring,
and the area was discretized to32 � 32 pixels. Therefore, in our
simulation m = 162; n = 322. The absorption and scattering
coefficients of the background medium were�ba = 0:02 cm�1 and
�bs = 10 cm�1. The scattering coefficient of the rod was the same
as the background. The absorption coefficient distribution followed
one positive cycle of the sinusoidal function, with the peak value
being�a = 0:05 cm�1. Therefore the range of��a was between
0 and 0.03 cm�1. In this work, we refer to a rod with such type of
absorption coefficient distribution as a sine-like rod. The solution to
the forward problem (generatingH andy) for the continuous wave
case was obtained by analytically solving the diffusion equation using
the normal mode series method described in Ref. [16]. To evaluate
the effect of noise in the data and weight matrices, the matrixH

was corrupted by additive white Gaussian noise with variance�2h,
while additive Gaussian noise with variance�2n was added to the
observations.

As an objective metric we use the mean squares error (MSE)
between the actual media properties and the reconstructed ones
defined by

MSE =
1

n
kx� x̂k2 (5)

wheren is the length ofx. To eliminate the potential bias because
of a particular noise realization, we repeated each experiment for
every noise level five times for different noise realizations. The MSE
values reported below are the average of the MSE’s resulting from
five realizations.

For the off-center case, the data was corrupted by white Gaussian
noise at different noise levels with variances8:99E�14; 8:99E�13;

8:99E�12, and8:99E�11, which correspond to 40 dB, 30 dB, 20
dB, and 10 dB signal-to-noise ratio (SNR), respectively.

Two sets of simulation experiments were performed for the off-
center case. In the first, the noise variance added toH was fixed
at �2h = 8:99E�12, while the additive noise variance for the data
�n varied and took the following values:8:99E�14; 8:99E�13;
8:99E�12, and8:99E�11, which correspond to 40 dB, 30 dB, 20
dB and 10 dB SNR, respectively. In the second set of experiments,
the additive noise for the data was fixed at�2n = 8:99E�12, while
the noise inH were varied.

For each test medium and a given noise level, the proposed RQF-
RTLS method was compared against the previously reported RLS
[17] and RQF-TLS [7] methods, all using CG algorithms. Fig. 1
compares the MSE’s obtained by different methods, when�2n is
varied for a fixed value of�2n. Fig. 2 shows the results when�2h

Fig. 2. MSE’s of reconstructed images of the medium containing an
off-center object under different�2

h
for a given �

2

n = 8:99E�12. Both
axes are represented in terms of exponents.

is varied under a fixed�2n. Fig. 3 shows the reconstructed images for
�2n = 8:99E�12 and�2h = 8:99E�12, obtained by the RQF-TLS,
RLS and RQF-RTLS methods, respectively.

For the center-rod case, the data were corrupted with white
Gaussian noise with 20 dB SNR(�2n = 1:79E�13). The same
amount of additive white Gaussian noise (same noise variance as
in the data) was also added toH. Results shown are averaged
from five different noise realizations. Fig. 4 shows the reconstruction
results for a noise realization by the RQF-TLS, RLS and RQF-
RTLS methods, respectively. The regularization parameters in RLS
and RQF-RTLS in both center and off-center cases are obtained
by trial-and-error. Specifically, we first selected the regularization
parameter by the Miller criterion in the RLS and then we increased
or decreased the value by an order based on the MSE and the visual
quality.

From the above simulation results, it is clear that RQF-RTLS yields
more stable and accurate solutions than both the RLS and RQF-
TLS approaches. The visual improvement is very significant. We
also found that RLS outperforms RQF-TLS. This implies that the
incorporation of an appropriate form of regularization into the LS
formulation is more beneficial than considering the inaccuracies in
the operatorH. Such results are not surprising: as has been shown in
other studies, applying proper regularization in an inverse solver is
extremely important and beneficial. However, to our knowledge, this
work is the first report a successful application of RTLS for optical
tomography problems.

IV. SUMMARY AND CONCLUSIONS

In this work, A RQF-RTLS approach was proposed for solving
the linear inverse problem where the operator is nonconvolutional.
The minimization of the modified RQF was accomplished with the
CG method, which has potential computational advantages over the
direct SVD method. We applied the RQF-RTLS approach to solve
the perturbation equation in optical tomography. Simulation results
confirmed that the RQF-RTLS is more robust to noise in the data and
operator matrix than the RLS and RQF-TLS methods.

Note that for small size problems, as those simulated here, SVD
can also be applied to the modified operator matrixB to yield
the same RTLS solution. However, for larger size problems, the
CG method should be more efficient. The investigation of such
computational issues is one of future work. In our current studies,
the regularization parameter was selected based on a trial-and-error
process. The automation of the selection of the regularization param-
eter requires further investigation [18]. Another possible direction for
future research is to use the relation between the MAP estimator and
RQF-RTLS estimate developed in [19] in a manner similar to [10]
for image restoration.
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(a) (b)

(c) (d)

Fig. 3. Reconstruction results of a medium with an off-center rod with a sine-like distribution. The SNR of the data is 20 dB. The weights are corrupted by
the same noise as in the data. The data size is256� 1. (a) Original image. (b) Reconstructed image using the RLS method. (c) Reconstructed image using
the RQF-TLS method. (d) Reconstructed image using the RQF-RTLS method. All reconstruction results are obtained with 1000 iterations.

(a) (b)

(c) (d)

Fig. 4. Reconstruction results of a medium with a center rod with a sine-like distribution. The SNR of the data is 20 dB. The weights are corrupted by the
same noise as in the data. The data size is 256� 1. (a) Original image. (b) Reconstructed image using the RLS method. (c) Reconstructed image using the
RQF-TLS method. (d) Reconstructed image using the RQF-RTLS method. All reconstruction results are obtained with 1000 iterations.
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