Multiresolution Regularized Least Squares Image
Reconstruction Based on Wavelet in Optical Tomography

Wenwu Zhu*, Yao Wang*, Yining Deng*, Yuqi Yao* and Randall L. Barbour!

*Department of Electrical Engineering,
Polytechnic University , Brooklyn, NY 11201
"Departments of Pathology and Biophysics,
SUNY Health Science Center, Brooklyn, NY 11203

Abstract

In this paper, we present a wavelet based multigrid approach to solve the perturbation equation encoun-
tered in optical tomography. With this scheme, the unknown image, the data, as well as weight matrix are
all represented by wavelet expansions, and thus yielding a multi-resolution representation of the original
perturbation equation in the wavelet domain. This transformed equation is then solved using a multigrid
scheme, by which an increasing portion of wavelet coefficients of the unknown image are solved in successive
approximations. One can also quickly identify regions of interest (ROI) from a coarse level reconstruc-
tion and restrict the reconstruction in the following fine resolutions to those regions. At each resolution
level, a regularized least squares solution is obtained using a Conjugate Gradient Descent (CGD) method.
Compared to a previously reported one grid algorithm, the multigrid method requires substantially shorter
computation time under the same reconstruction quality criterion.

1 Introduction

In this paper, we consider the recovery of optical properties in scattering media from continuous wave (CW)
near infrared optical measurements. The problem is difficult because in this frequency range, photons
propagate through the tissue in a highly diffused manner and the relation between the measured signal
and the absorption properties of the media is non-linear. In the past few years, our group has developed
an iterative perturbation approach for both CW, TR [1-3] and frequency domain data [4]. This requires
the solution of a linear perturbation equation at each iteration:

Hx =y, (1)

where x is an N? x 1 vector of differences in the absorption properties between a reference and test
medium, y an M? x 1 vector of changes in detector readings between the two media, and H an M? x N?
matrix of weights describing the influence of each volume element (voxel) on the detector readings, which
are essentially the derivatives of the detector readings with respect to the absorption coefficients in the
reference medium. In general, the perturbation equation is both underdetermined and ill-posed. To solve
the linear perturbation equation, several iterative algorithms have been developed, including projection
onto convex sets (POCS) [1], CGD [1], multigrid reconstruction [1], layer stripping [2],[5] (for TR data),
Regularized least squares (RLS) [5] [4], and total least squares (TLS) [6]. One challenging problem in
solving the perturbation equation is that the computation complexity is usually very high due to the
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extremely large dimension of the weight matrix. In order to reduce the computation time, a wavelet based
reconstruction algorithm is investigated in this paper. The unknown, the data and the weight matrix are
expanded using wavelet, thus yielding a multi-resolution representation of the perturbation equation via
wavelet transform. This transformed equation is solved from coarse to fine resolutions using the solution
obtained from the previous resolution as the initial solution in the present resolution. The computational
complexity is reduced significantly, compared to a one grid method which solves the equation in the finest
resolution directly.

2 Wavelet Theory of Multiresolution Decomposition

2.1 1-D signal wavelet representation

Mallet [7] presented that any family of orthogonal wavelets can be used to generate multiresolution de-
composition of a signal. Later on Unser [8] showed that any non-orthogonal wavelet family can also be use
to decompose a signal, leading to the multiresolution representation. In this paper, we only consider the
use of orthogonal wavelets. More specifically, we employ so called “discrete wavelets” which are obtained
by binary dilations and dyadic translations of a “mother wavelet” 3(z), defined by

bik(z) = 22z — k),j,k € Z, (2)

where Z is the set of all integers. In this wavelet family, j is a scale index while k is a location index. If
¥(z) satisfies a certain condition, then ¥;,,k € Z form a complete and orthogonal basis of L?(R.), where
L*(R) is the real function space with finite energy. For each j € Z, let W; denote the closure of the linear
span of ¥,k € Z, then L?(R) can be decomposed as an orthogonal sum:

I*(R) = Pw;, (3)

i€Z

where the circle around the plus sign indicates orthogonal sum.
Using wavelet series representation, any signal f(z) € L?(R) can be represented as

+0o0
flz) = 3 ciuvin(z), (4)

jrk=—°°

where ¢ = < f,%;r >, < .,. > represents inner product.
For each j € Z, let us consider the closed subspaces

Vi = .. eW;.1 0 W;,j€Z, ()

of L*(R). It can be shown that Vj is the linear span of scaling functions ¢;x(z) = 2//2¢(2'z — k), j,k € Z,
where ¢(z) has “two-scale relations” with wavelet ¥(z) given by

#(z) = D mp(2z-k);  $(z) = Y axd(2z — k), (6)
k k

where pi and gx are a pair of QMF (Quadrature Mirror Filters ) and ¢ = (-—1)1"‘;)(;;_1).
The subspace V; and W; satisfy the following relation

V_;- = V_j-l = Wj__l,j (A (?)
- Vj—L &) Wj.__[, @ Wj—L—l S...08 W'_l. (8)
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Correspondingly, any f; € V; has a unique decomposition:

fi = fin + gi-1,i€Z (9)
= [fi-L®Ggi-L B Ggj-L-10 ... gj-1, (10)

where f; € V;j and g; € W;. This is usually called wavelet decomposition of f;, where

40
fi = Y. déix(z), ¢ = < f;ydin(z) >,

k=—c0

+oo . .
gi = Y divix(z), di =< fi,Yix(z) > . (11)

k=—0co

Eq. (9) implies that a signal at scale j can be decomposed to an “approximation signal” at the next
scale f;_; and “detail signal” g;_;. This can be implemented by QMF in practice, where fj-1 and g;—
are low frequency output and high frequency output, respectively. Eq.(10), on the other hand, provides
a multiresolution representation of f;, by an approximation signal f;_; at the coarsest resolution, plus
detailed signals at increasing scales.

For a discrete signal with IV samples, the wavelet transform can be represented in the following matrix
form:

f= WI. (12)
In Eq. (12), f = [f(21), f(22), s f(2N)]T = [f1, f2, - FN]T conmsists of the discrete sample of the original
” T

signal, = [?1, o5 ---jN] consists of the wavelet transform coefficients, including ci and di, and W is an
N x N matrix. The elements of W depends on the samples of the scaling and wavelet functions, ¢;x(z;),

Yik(z:).

2.2 2-D signal wavelet representation

In general, a 2D image can be arranged into a vector by lexicographic order. The 1D wavelet transform
described before can then be applied to the vector. One can then reorder the vector to a 2D image.
However, a more efficient way of implementing a wavelet transform of a 2D image is by applying a 1D
transform to each rows of the 2D image first, and then applying a 1D wavelet transform to each column.
This is known as separable wavelet transform. Using a separable scaling function ¢(z,y) = ¢(z)¢(y) and
separable wavelets Yia(z,y) = ¢(2)¥(y), Yr(z,y) = (2)d(y), Yrr(z,y) = ¥(z)¥(y), where 9(z) is the
1-D wavelet associated with 1-D scaling function ¢(z), we can decompose an image f(z,y) € V; in L2(R2)
into four subimages consisting of approximation image A;_; f and three detail subimages D} ,f,D%,f
and D;’_l f. This can be implemented by a set of QMFs illustrated in Fig. 1 (2-levels). Usually we refer
them as LL, LH, HL and HH images, respectively, from top to bottom. One can continue to decompose
the subimage A;_; f further to the next scale (coarser resolution) leading to a pyramid structure. The L
level MRA representation of an image is given by

=
Aof = A_Lf +_Z D;f. (13)

i=—1

f

Let X represent the 2D image with size N x N, and let x be the vector consisting of elements of X
arranged in the lexicographic order, with size N2. Let W represent the 1D wavelet transform matrix of
size N x N, the separable wavelet transform of X can be described by:

X = Wyx X Wy T, (14)
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Figure 1: Wavelet decomposition of 2D image from level j + 1 to j

where T' denotes transpose. This is equivalent to, in the 1D notation,
x = (Wx® Wy) x, (15)

where @ denotes the Kronecker product, and % is the vector consisting of elements of X arranged in the
lexicographic order. Therefore, performing 2D wavelet transform to 2D image using separable transform
matrix Wy is equivalent to performing the wavelet transform to the corresponding 1D vector by using
Wy = Wx ® Wy,

3 Solution of the Pertubation Equation in the Wavelet Domain

3.1 1-D wavelet representation of the perturbation equation

Considering the perturbation equation in Eqn. (1). To represent the perturbation equation in a wavelet
domain, let the transform matrices for x and y be represented by Wy and Wy, respectively. Multiplying
Eq. (1) from left by Wy and inserting Wy Wy = Iin between H and x, we obtain:

HX=Y. (16)

where ﬁ = WyHWxT, y= Wyy and X = Wyx. Here we assume the transform matrices are orthogonal
so that WyTWy = I Eq. (16) is the perturbation equation in the wavelet domain. From this equation,

one can solve X, the wavelet transform of X. One can then obtain X by an inverse transform * = W, k.

3.2 Regularized least squares (RLS) solution in wavelet domain

Regularization is a well-established technique for dealing with instability in inverse problems [10] and can
convert an ill-posed problem into a well-posed problem by incorporating a priori knowledge about the
image to be recovered. Regularized Least Squares (RLS) can be formulated as

% = argmin{[Hx - |2 + Ax|[2} (17)

where the regularization parameter A can be determined by the Miller criterion [11] or Cross-validation
method [12]. The regularized solution is given by

% = (HTH + AI)'HTy. (18)
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In the wavelet domain, the RLS can be formulated as
% = argmin{[Fz - g + A/}, (19)
with corresponding solution given by

x=(HTH + A1)'A7y. (20)

3.3 2-D separable wavelet representation

Suppose x and y in Eq. (1) are vectors obtained from 2D N x N image X and M x M image Y in the
lexicographic order. Let Wy and Wy represent 1D transform matrices for X and Y, respectively. Define
Wiz = Wy @ Wy and WE, = W,T @ Wy7, then similar to the 1D case, we have

H= WirHWpT, = Wiy, X= Wyex. (21)

Substituting ITI,S;, and X into Eqn.(20), we can have the RLS solution in the 2D wavelet domain. The

question is how to calculate the 4D wavelet transform H= W2 HW 2T, Slightly different from [13], we
do the following. First, for each row h,, i=1,2,..,M? of H, we reorder it to a 2D image of size N x N
and then use W, to perform separable transform. After transforming each row, we reorder the transformed

image back to a row vector h,,. Let the resulting image be ﬁ,- = HW;{,;. Then, for each column of ﬁ,,
he;, j =1,2,...,N% we perform W gc_, in the form of Wy(ﬁcj )20Wy j = 1,2,...,N?, where (ﬁc,- )2D
is the 2D ordering of (ivlcj). Finally we reorder the transformed vectors to a 2D matrix which is H.

4 Multigrid Algorithm

As we see from section 2, wavelet decomposition of a signal leads to a multiresolution representation of
the signal. If we exploit the multiresolution property, the computational time will be reduced. In this
paper, we use a modified V-cycle algorithm. The principle of this algorithm is illustrated in Fig. 2. There
are two differences compared to the classical V-cycle method [14]. First, instead of downward (from fine
to coarse) restriction where error is calculated and restricted, here we use wavelet decomposition to reach
the vertex (coarsest grid) of the V-cycle. For the upward reconstruction (form coarse to fine), we use
multigrid reconstruction instead of error prolongation (error compensation). Specifically, this modified
V-cycle algorithm consists of the following steps: N

1. Perform wavelet transform of y and H to obtain H; and ;;, l=-1,-2,...,—L. Set | = —L.

2. Solve for the RLS solution X; of the perturbation equation at the Ith level, H)%; = 7, using the CGD
algorithm.

3. Prolongate from X; to X;41 by padding zeros, i.e., %14 = %7, o]T.

4. Let I =1+ 1,if | = 0 stop, otherwise, go back to 2.

The wavelet based multigrid RLS algorithm described above slightly differs from the one proposed by
Wang et al. [15] in several aspects. First, in that method, at each resolution level, the LL, LH, HL and
HH components are reconstructed alternatingly until the solution converges. In our method, at each level,
the LL component only is solved, assuming the other components are zeros. Secondly, in the method of
[15], the regularization parameter is fixed at a constant at different resolutions. In our multigrid RLS, the
regularization parameters at different grids (resolutions) are varied. In the coarsest resolution, the noise
is quite weak, so we do not need to apply much regularization. When the resolution goes from coarse
to fine, the regularization parameter is increased. This is because the noise is more pronounced in high
frequencies.
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Figure 2: Modified V-cycle multigrid algorithm

In real clinic applications, most of time one is only interested in certain regions with abnormal features.
The above multigrid algorithm can not only save computational time compared to the one-grid algorithm,
but also allow one to “zoom-in” special regions of interests (ROI). Let’s say we are interested in a region
that appears “questionable” in a coarser level reconstruction. Then only the corresponding region in the
next finer resolution need to be further refined by the CGD algorithm, while other regions can be kept as
the result obtained in the previous coarser resolution.

Currently, we have only implemented a two-grid algorithm (L = 1) by which we first reconstruct the
LL component of the wavelet transform % of x. This yields the coarse level reconstruction %_;. Starting
from this solution, we then solve all the components of %.

5 Experimental Results

In order to demonstrate the effectiveness of the wavelet based multigrid RLS algorithm compared to a one-
grid algorithm, two sets of experiments are performed. In the first experiment, a 1em diameter rod is placed
in an infinite homogeneous medium. The rod is homogeneous, with absorption and scattering coefficients
pe = 0.05¢cm™" and p, = 10em™. The background medium has sy = 0.02cm™ and pb = 10em=1. A
total of 16 sources and 16 detectors are evenly spread about the rod in a ring geometry having a diameter
of 10 ¢m. Solution to the forward problem was accomplished by analytically solving the diffusion equation
using the normal mode series method described in reference [17]. Fig. 3 shows the comparison of the
reconstructed images using one-grid and two-grid algorithms, respectively. The coarse level reconstruction
only solves a quarter of the pels in the fine resolution. In our computer implementation, one iteration of
the coarse level roughly requires 1/7 of the computational time taken by one iteration in the fine resolution.
From the experimental results, we see that the proposed multigrid algorithm can obtain significantly better
reconstruction than the one-grid method under similar computation time, or require significantly shorter
time to reach the same resolution quality. In the second experiment, a 1.5¢m diameter rod is placed
at an off-center position with respect to the source and detector ring. The rod has a nonhomogeneous
absorption distribution, following a sinusoidal pattern (one positive cycle only). The forward solution in this
experiment is obtained by a multigrid finite difference solver described in [4]. Fig. 4 is the reconstruction
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results of the off-center case. We also show the wavelet decomposition of the original image and the final
reconstructed image. From this figure, we can see that we can obtain quite accurate results from the
coarse level reconstruction alone, in this example. This is because the energy of the original image is
mostly contained in the LL band. This energy compaction property of the wavelet transform makes the
reconstruction in the wavelet domain more efficiently for images that are smooth.

In the above examples, the calculated data from the forward solution were used and the regularization
parameter was set to zero. Below, we show the results when the data are corrupted by 10% white Gaussian
noise, with an equivalent signal to noise ratio (SNR) of 20 dB. Fig. 5 compares the reconstruction results
with and without regularization in each grid. The regularization parameter was chosen roughly based on
the Miller criterion, followed by slight manual tuning. The regularization parameter in the coarse grid is one
magnitude smaller than that in the fine grid. From these results, we can see that the use of regularization
is more efficient in the fine grid (compare (c) and (e)). Further we also see that if we impose regularization
in both coarse grid and fine grid we can always get better reconstruction in each grid.

6 Conclusion and Discussion

In this paper, a wavelet based multiresolution RLS reconstruction scheme is proposed for solving the
perturbation equation. The proposed scheme performs reconstruction in the wavelet domain using a
multigrid algorithm. At each grid level, a CGD algorithm is used to obtain the RLS solution of the
perturbation equation at that grid. It can achieve substantial computational savings compared to the
one-grid method. The incorporation of regularization in the wavelet domain can suppress noise effectively.
This scheme also enables one to focus on regions of interest (ROI) from coarse to fine resolution.

7 Acknowledgement

This work was supported in part by the National Institutes of Health under Grant # RO1-CA59955, by
an ONR grant # N000149510063, and by the New York State Science and Technology Foundation.

References

[1] Y. Wang, J. Chang, R. Aronson, R.L. Barbour, H.L. Graber, and J. Lubowsky, “Imaging scattering
media by diffusion tomography: An iterative perturbation approach,” in Proc. Physiological Monitor-
ing and Early Detection Diagnostic Methods, vol. SPIE-1641, (Los Angeles), pp. 58-71, Jan. 1992.

[2] J. Chang, Y. Wang, R. Aronson, H. L. Graber, and R.L. Barbour, “A layer-stripping approach for
recovery of scattering media from time-resolved data,” in Proc. Inverse Problems in Scattering and
Imaging, vol. SPIE-1767, (San Diego), pp. 384-395, July 1992.

[3] R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, and R. Aronson, “A perturbation approach for
optical diffusion tomography using continuous-wave and time-resolved data,” SPIE Medical Optical
Tomography — Functional Imaging and Monitoring, SPIE Institutes, IS11, pp. 87-120, 1993.

[4] Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, J. H. Hu and R. L. Barbour, “ Frequency Domain Optical
Tomography In Human Tissue,” in this proceedings.

[5] W. Zhu, Y. Wang, H. L. Graber, R. L. Barbour and J. Chang, “A Regularized Progressive Expan-
sion Algorithm for Recovery of Scattering Media from Time-Resolved Data,” in Advances in Optical

192 / SPIE Vol. 2570



Imaging and Photon Migration , pp.211-216, edited by Robert R. Alfano, Optical Society of America,
1994.

(6] W. Zhu, Y. Wang, J. Chang, H. L. Graber, and R. Barbour, “A Total Least Squares approach for
the solution of the perturbation equation,” in Proc. of Optical Tomography, Photon Migration, and
Spectroscopy of Tissue and Model Media, part of An International Symposium on Biomedical optics,
pp.-420-430, SPIE vol. 2389, San Jose, Feb. 1995.

(7] S. G. Mallet, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE
Trans. on Pattern Anal. Machine intell., vol. 11, no. 7 , pp.674-693, 1989.

[8] M. Unser, A. Aldroubi, and M. Eden, “A family of polynomial spline wavelet transform”, Signal
Processing, vol. 30, no.2, pp. 141-162, 1993.

[9] J. Kovacevic and M. Vetterli, “Nonseparable multidimensional perfect reconstruction filter banks and
wavelet basis for Ry ,”

[10] A. N. Tikhonov and V. Y. Arsenin, Solution of Tli-Posed Problems, Washington D. C.: V. H. Winston,
1977.

[11] K. Miller, “Least squares method for ill-posed problems with a prescribed bound,” SIAM J. of Math-
ematical Analysis, vol. 1, pp. 52-74, Feb. 1970.

[12] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as a method for choosing a good
ridge parameter,” Technometrics, vol. 21, No. 2, pp. 215-223, 1979.

[13] L. Blanc-Feraud, P. Charbonnier, P. Lobel and M. Barlaud, “A fast tomographic reconstruction algo-
rithm in the 2D wavelet transform domain,” in Proc. IEEE Int Conf. ASSP (ICASSP94), vol. V, pp.
305-308.

[14] W. Hackbusch, Multigrid Methods and Applications, Berlin: Springer-Verlag, 1985.

[15] G. Wang, J. Zhang and G. W. Pan, “Solution of inverse problems in image processing by wavelet
expansion,” IEEE Trans. on Image Processing, vol. 4, no. 5, pp. 579-593.

[16] A. H. Delaney and Y. Bresler, “Multiresolution tomographic reconstruction using wavelets,” to appear
in JEEFE Trans. on Image Processing, 1995.

[17] Y. Q. Yao, Y. Wang, R. L. Barbour, H. L. Graber and J. W. Chang, “Scattering Characteristics of
Photon Density Waves from an Object in a Spherically Two-Layer Medium,” In SPIE Proceedings on
Biomedical Optics, B. Chance and R. R. Alfano, ed., Vol. 2389, pp. 291-303, (1995).

SPIE Vol. 2570/ 193



AMP
0.015
0.013
0.011
0.010
0.008
0.006
0.005
0.003
0.001
0.000

(c) (d)

(e) (f)

Figure 3: Reconstructed results for a medium with a centered rod. (a) is the original image. (b) is the
reconstructed image using one-grid CGD with 32 iterations; (c) is the reconstructed image using two-grid
algorithm with 500 iterations in the coarse grid; (d) is the reconstructed image using one grid CGD with
235 iterations; (e) is the reconstructed image using the two-grid algorithm with additional 200 iterations
in the fine grid, using (c) as initial solution; and (f) is the reconstructed image with 800 iterations in a
localized region at the fine grid, also using (c) as the initial solution. The computation time for (b) and
(c) are roughly same. So are (d), (e) and (f). The time for (c) is about 1/7 of (d).
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Figure 4: Reconstruction results and wavelet analysis of a medium with an off-center rod with Sin-like
distribution. (a) is the original image; (b) shows the wavelet transform of original image in (2); (c) is the
reconstruction result using one grid with 235 iterations; (d) is the reconstruction image using two-grids
algorithm with 500 iterations in the coarse grid; (e) is the reconstruction image using two-grid algorithm
with additional 200 iterations in the fine grid; and (f) is the wavelet transform of (e). The total computation

time for (e) and (c) are roughly the same. The time for (d) is about 1/7 of (c).
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Figure 5: The reconstruction results for the medium shown in Fig. 4(a) when the data are corrupted by
10% noise. (a) is the reconstruction image with 500 iterations in the coarse grid without regularization;
(b) is the reconstruction image with additional 200 iterations in the fine grid without regularization using
(a) as an initial solution; (c) is the reconstruction image with additional 200 iterations in the fine grid with
regularization also using (a) as an initial solution; (d) is the reconstruction image with 500 iterations in
the coarse grid with regularization; (e) is the reconstruction image with additional 200 iterations in the
fine grid without regularization using (d) as an initial solution; and (f) is the reconstruction image with
additional 200 iterations in the fine grid with regularization using (d) as an initial solution.
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