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Abstract

A principal difficulty encountered in dealing with
highly diffused signals is that the inverse problem
is ill-posed and often underdetermined. A progres-
sive expansion (PE) algorithm has previously been
reported, which has proven to be quite effective in
circumventing the underdetermined nature of the in-
verse problem. However, the PE approach is sen-
sitive to noise. Propagation of errors can become
especially severe when evaluating regions deep be-
neath the surface. Here we describe results of using
a Regularized PE (RPE) algorithm, which is shown
to exhibit improved stability. The RPE algorithm
has been applied to time-resolved data calculated
from a perturbation equation. The media tested in-
clude isotropically scattering slabs containing one or
two compact absorbers at different depths below the
surface. The data were corrupted by additive noise
with varying strength. Compared to the original
PE algorithm, the RPE algorithm has yielded more
accurate and stable reconstructions under the same
noise level.

Introduction

In this and accompanying reports, we consider the
recovery of scattering media having optical proper-
ties similar to tissue, based on either experimental
continuous wave (CW) or simulated time-resolved
(TR) near infrared optical measurements. The prob-
lem is difficult because in this frequency range pho-
tons propagate through the tissue in a highly dif-
fused manner and the relation between the measured
signal and the absorption properties of the media is
non-linear. In the past few years, our group has de-

OSA Proceedings on Advances in Optical Imaging and Photon 211

Migration, 1994, Vol. 21, R. R. Alfano (ed.)
©1994 Optical Society of America

veloped an iterative perturbation approach for both
CW and TR data [1-3]. This requires the solution
of a linear perturbation equation at each iteration:

WAx = Al (1)

where Ax is a vector of differences in the absorption
properties between a reference and test medium, AI
a vector of changes in detector readings between the
two media, and W a matrix of weights describing the
influence of each volume element (voxel) on the de-
tector readings, which are essentially the derivatives
of the detector readings with respect to the absorp-
tion coefficients in the reference medium. In prac-
tice, the perturbation equation is in general both un-
derdetermined and ill-conditioned. The underdeter-
minedness results from the number of detector read-
ings, M, being less than the number of unknowns
N. Even if M > N, the matrix W can be rank
deficient, which also leads to an underdetermined
system. The cause of the ill-conditioning is that W
contains many nearly zero columns. Very small vari-

ations in AT can result in very large deviations in
Ax,

Our previous studies have focused on how to
overcome the underdeterminedness problem. We
have developed a multigrid method for CW data
[1] and a progressive expansion (PE) algorithm for
TR data [2]. The PE algorithm evaluates increas-
ing depths within the medium by successively con-
sidering signals entering the detector at increasing
times following an incident pulse. Instead of solving
Eq. (1) directly, a subsystem represented by

W, AX; = AL (2)

is solved at each time interval [. Here, Ax; con-
sists of the voxels which can contribute signals at
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this time interval but not earlier, AI; includes de-
tector readings after subtracting the contributions
from the previously determined voxels, and W, con-
sists of the weights with respect to the elements in
Ax; only. As long as the very early signals can be
detected, the subsystem at each time interval will be
determined or overdetermined. In this case, W} W,
is invertible, and there exists a unique least squares
(LS) solution for each subsystem:

Ax; = (Wiw,) " '"WT AL, (3)
which minimizes the following error:
E(Ax)) =|| WiAx; — AL || . (4)

This technique is very eflective in circumventing
the underdetermined nature of the inverse problem.
However, because of the ill-conditioning of Wy, the
LS solution at each time interval is sensitive to noise.
The error in shallower regions which are solved using
earlier data can also propagate into deeper regions.
This error propagation effect can become especially
severe when the algorithm probes deep beneath the
surface. In order to overcome this problem, an
overlapping scheme has been developed. With this
method, the absorption in a voxel is not fixed the
first time it is computed. Rather, it is reconsidered
in the next several time intervals. This mechanism
can greatly reduce the error propagation and provide
more reliable reconstruction.

In order to further improve the stability of the
PE algorithm, we have incorporated the Tikhonov-
Miller regularization method [4,5] in the solution of
the subsystem at each time gate. The RPE algo-
rithm and experimental results with both PE and
RPE algorithms are presented below. For conve-
nience, we omit the subscript [ in the following dis-
cussion.

The Regularized Progressive
Expansion Algorithm

Regularization is a well-established technique for
dealing with instability in inverse problems and can
convert an ill-posed problem into a well-posed prob-
lem by incorporating a prior: knowledge about the
image to be recovered. Using the Tikhonov-Miller
regularization approach, the idea is to choose an
approximate solution from a set of admissible solu-
tions using a defined criterion. The class of feasible
solutions is defined as: Spy/ AT(AX) = 7%l ||
W Ax — Al ||?< €?}. The bound €? depends on the
noise level of the observed data. Tikhonov defined

the regularized solution to be the one which mini-
mizes a stable functional || CAx ||? subject to the
constraint || WAx — AI ||?= €2. Here, C is a reg-
ularization operator and can be selected according
to a priori knowledge. If the solution is known to
be bounded but fluctuating, we can take C to be an
identity matrix. If the solution is continuous, then
we can take C as the first-order differential opera-
tor. If we know the solution is smooth, then C can
be chosen to be a second-order differential operator.
Then, using the Lagrange multipliers method, the
problem is to minimize:

E(Ax) = ||[WAx — AI||? + )\||CAX]|]%, (5)

where the regularization parameter A can be solved
from the previously described constraint. The regu-
larized solution is given by

Ax = (WTwW 4+ AcTcC)"'wWT AL (6)

Miller took a set theoretic approach and con-
strained the solution on both SAx/AI and the set
Sax(Ax) = {Az : || CAx ||?< E?}, where E is
a constant. The two constraints can be combined
into a quadratic formula. The solution is identical
to Tikhonov regularization with A = ¢2/E?, the so-
called Miller criterion. Numerically, we can see that
the solution of Eq. (6) is more stable than that of
Eq. (3), because WTW + ACTC is better condi-
tioned than WTW.

Since the dimension of W can be extremely large,
we do not perform matrix inversion directly to ob-
tain the solutions in Eqgs. (3) and (6). Rather, we
minimize the functional in Eq. (6) using the con-
jugate gradient descent (CGD) method. The n-th
iteration of the CGD algorithm can be described by:

g™ = WT(wax™) — AI) + AcTcax™),
d(n) == g{nl AL (” g[n] I|3/” g(n—l} ”Z:‘)d(n.—lJ.
aln) = ((i(ﬂ)‘g(r!])X(H wdn) “2 +A ” Cd(”) “3),
Ax(”‘{*l) — Ax(™®) + aln)qn),
In our current implementation, the regularization
operator C is chosen to be an identity to make use of
the bounded nature of the solution. We further as-
sume that the upper bounds on ||[WAx — AT||? and
||Cx||? can be estimated from measurement data or

prior knowledge, and determine the regularization
parameter A by the Miller criterion.

Experimental Results

In this section, we compare the reconstruction re-
sults obtained by PE and RPE for several test media
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containing compact absorbers. In the following ex-
periments, the source configuration and detector dis-
tribution are the same as in [2]. Only one iteration
of the perturbation method has been performed, us-
ing the medium without absorbers as the reference.
The weights for this medium were calculated using
Monte Carlo simulations [6]. Values for AI were
first calculated based on Eq.(1). Gaussian noise was
then added to evaluate the algorithm’s sensitivity to
noise. The ratio of the noise deviation to the mean
value of the difference in detector readings is used
as the measure of the noise level.

In the first experiment, two closely juxtaposed
absorbers of size 1 cubic mean free path (mfp; 1 mfp
= the average distance a photon propagates between
successive interactions with the medium), separated
by 1 mfp, were buried between 4 mfp and 5 mfp in
a 10 mfp thick slab [6]. In the second experiment,
one single absorber of size 8 cubic mfp was buried
between 10 mfp and 12 mfp in a 20 mfp thick slab.
In the third experiment, two absorbers, one directly
above the other, were buried at depth 2-4 mfp and
6-8 mfp in a 20 mfp thick slab. In the fourth exper-
iment, one absorber of size 8 cubic mfp was buried
at depth 6-8 mfp in the center, and three contiguous
absorbers of the same size were buried at depth 10-12
mfp in a 20 mfp thick slab. In all experiments, 10%
noise was added in the detector readings. In each ex-
periment, the regularization parameter A was chosen
according to Miller criterion, since we usually know
the bound of the reconstructed image and noise vari-
ance in the detector readings. The regularization
operator C was chosen to be an indentity matrix.
An overlapping interval of 3 mean free time (mft; 1
mft = 1 mfp/c, where ¢ is the speed of light in the
medium) is used in both PE and RPE algorithms.

The reconstructed results from these experi-
ments are illustrated in Figs. 1 to 4. Figs. 1, 2 and
4(a) are the original images, Figs. 1, 2 and 4(b) are
the reconstructed images using the PE algorithm
at time 17 mft, 26 mft and 24 mft, respectively.
Figs. 1, 2 and 4(c¢) are the reconstructed images us-
ing the RPE algorithm at the same times as in (b).
In order to explain the stability of RPE and to show
how effective it is at suppressing noise, we show the
reconstructed images at different time windows in
Fig. 3. Fig. 3(a) is the original image, (b) and (¢)
are the reconstructed images using PE at time 22
mft and 28 mft, respectively; (e) and (f) are the re-
constructed images using RPE at time 22 mft and
28 mft, respectively. In all figures, the left column
is the X-Z cross-section of the medium and the right
column is the Y-Z cross-section. For display pur-

poses, the reconstructed values are quantized into
10 levels. Further, the images have been scaled indi-
vidually so that the maximum intensity value in each
image is represented by the same darkness. There-
fore, the same level in different figures may repre-
sent different absorption levels, especially in the re-
constructed images without regularization, in which
the maximum values are usually much greater than
that in the reconstructed images with regularization.
In fact, the maximum value obtained without reg-
ularization usually reaches the preset upper bound,
greatly exceeding the real value in the test medium.
From these results, we can see that the PE algo-
rithm converged to a solution containing numeri-
cal artifacts comparable in magnitude to the target.
The RPE algorithm, on the other hand, yielded a
solution much more closely resembling the original
medium. In fact, the PE algorithm tends to diverge
after a certain time interval because of strong error
propagation in the presence of noise, as shown in
Fig. 3 (¢), while the RPE algorithm can successfully
suppress this effect for noise levels up to 10%.

In terms of computation time, when both the PE
and RPE algorithms are run on a parallel computer
(Kilonode [7]), the computation time of the RPE
algorithm is increased by about 10% over the PE
algorithm.

Conclusion and Discussion

In this study, Tikhonov-Miller regularization has
been incorporated into the PE algorithm previously
proposed for image reconstruction from TR data.
Our experimental results have shown that it is very
effective in stablizing the PE algorithm and sup-
pressing error propagation. Arridge et al. have re-
ported the use of a Tikhonov regularization algo-
rithm and the Levenberg-Marquardt algorithm for
image reconstruction from CW and mean—time—of—
flight data [8, and references therein]. We have con-
sidered a much larger 3D problem rather than a 2D
problem, at a higher noise level, and the reconstruc-
tion was based on a much more restricted data set
(back-scattered signal in response to a single source
only).

A critical problem in the use of regularization
i1s the selection of the parameter A when the up-
per bounds on ||WAx — AI||? and/or ||CAx||? are
unknown. If only one of the bounds is known, a
constrained least-squares approach can be followed
[9]. When both bounds are unavailable, the cross-
validation method [10] can be used. One disadvan-
tage of these two approaches is that they require
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Figure 1: Reconstruction of a 10 mfp (mean free path) thick slab medium containing two 1 cubic mfp absorbers,
separated by 1 mfp, at depth 4-5 mfp. Left column: X-Z cross-section, right column: Y-Z cross-section. Within
each column: (a) original medium, (b) reconstruction by PE with an overlapping interval of 3 mft (mean free
time); and (c) reconstruction by RPE with the same overlapping interval. The noise level was 10%. All the
reconstructed images are obtained after 17 time windows of width 1 mft. The maximum values level in (a),
(b) and (c) correspond to 0.01,0.1 and 0.0031 respectively.

Figure 2: Reconstruction of a 20 mfp thick slab medium containing one absorber of size 8 cubic mfp at depth
10-12 mfp. Left column: X-Z cross-section, right column: Y-Z cross-section. Within each column: (a) original
medium, (b) reconstruction by PE with an overlapping interval of 3 mft; and (c) reconstruction by RPE with
the same overlapping interval. The noise level was 10%. All the reconstructed images are obtained after 26
time windows of width 2 mft. The maximum values level in (a), (b) and (c) correspond to 0.01,0.1 and 0.01
respectively.
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Figure 3: Reconstruction of a 20 mfp thick slab medium containing two 8 cubic mfp absorbers, one above the
other, at depth 2-4 mfp and depth 6-8 mfp. (a) original medium, (b) and (c) reconstruction by PE with an
overlapping interval of 3 mft after 22 time windows and 28 time windows of width 2 mft, respectively; (e) and
(f) reconstruction by RPE with the same overlapping interval after 22 time windows and 28 time windows of
width 2 mft, respectively. The noise level was 10%. The maximum values level in (a), (b), (c), (d) and (e)
correspond to 0.01, 0.01, 0.1, 001 and 0.01 respectively.

Figure 4: Reconstruction of a 20 mfp thick slab medium containing one absorber of size 8 cubic mfp at
depth 6-8 mfp and three contiguous absorbers of the same size at depth 10-12 mfp. (a) original medium, (b)
reconstruction by PE with an overlapping interval of 3 mft; and (c) reconstruction by RPE with the same
overlapping interval. The noise level was 10%. All the reconstructed images are obtained after 24 time windows
of width 2 mft. The maximum values level in (a), (b) and (¢) correspond to 0.01,0.1 and 0.01 respectively.
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an overwhelming amount of computation when the
weight matrix is large. When incorporating regu-
larization in our PE algorithm, this computation
would have to be repeated for each time-window.
Recently, an algorithm has been developed by Kang
and Katsaggelos [11] that obtains the regularized
least squares solution iteratively using a gradient de-
scent method, and at each iteration calculates an up-
dated regularization parameter A based on the pre-
vious solution. The algorithm is powerful, in that
A upon convergence does not depend on the initial
estimate of Ax. Because A does not need to be de-
termined in a separate initial step, additional com-
putational overhead is minimal. The incorporation
of this approach in RPE will be investigated in fu-
ture studies. Another problem to be investigated is
what kind of regularization operator, C, is appropri-
ate for our problem. Studies can be performed that
compare the results obtained by using the 0-th, 1-st,
and 2-nd order derivatives of the image Ax.
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