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Total least-squares reconstruction with wavelets
for optical tomography
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In a previous paper [Zhu et al., J. Opt. Soc. Am. A 14, 799 (1997)] an iterative algorithm for obtaining the total
least-squares (TLS) solution of a linear system based on the Rayleigh quotient formulation was presented.
Here we derive what to our knowledge are the first statistical properties of this solution. It is shown that the
Rayleigh-quotient-form TLS (RQF-TLS) estimator is equivalent to the maximum-likelihood estimator when
noise terms in both data and operator elements are independent and identically distributed Gaussian. A per-
turbation analysis of the RQF-TLS solution is derived, and from it the mean square error of the RQF-TLS
solution is obtained in closed form, which is valid at small noise levels. We then present a wavelet-based
multiresolution scheme for obtaining the TLS solution. This method was employed with a multigrid algo-
rithm to solve the linear perturbation equation encountered in optical tomography. Results from numerical
simulations show that this method requires substantially less computation than the previously reported one-
grid TLS algorithm. The method also allows one to identify regions of interest quickly from a coarse-level
reconstruction and restrict the reconstruction in the following fine resolutions to those regions. Finally, the
method is less sensitive to noise than the one-grid TLS and multigrid least-squares algorithms. © 1998 Op-
tical Society of America
[S0740-3232(98)00910-7]

OCIS codes: 100.0100, 100.2000, 100.3010, 100.3190, 100.6950, 100.7410.
1. INTRODUCTION
Recently there has been growing interest and rapid
progress in medical optical imaging systems that emit
near-infrared light into human tissues to determine their
structures and functional status. The imaging problem
is difficult, because in this frequency range, photons
propagate through tissues in a highly diffused manner,
and the relationship between the measured signal and
the absorption properties of the medium is nonlinear.
Over the past few years Wang’s group has developed an
iterative perturbation approach for continuous-wave,
time-resolved, and frequency-domain data.1–3 Indepen-
dently, Singer et al.,4 Arridge et al.,5 and Arridge6 de-
scribed alternative iterative schemes derived from
random-walk and diffusion theory. Mathematically, all
these schemes require the solution of a linear perturba-
tion equation at each iteration:

Hx 5 y, (1)

where x is an n 3 1 vector of differences in the absorp-
tion properties between a reference and a test medium; y
is an m 3 1 vector of detector-reading changes between
the two media; and H, a linear operator, is an m 3 n ma-
trix of weights describing the influence of each volume el-
ement (voxel) on the detector readings, which are essen-
tially the derivatives of the detector readings with respect
to the absorption coefficients in the reference medium.
0740-3232/98/102639-12$15.00 ©
In general, the perturbation equation is both underdeter-
mined (m , n) and ill-posed. To solve it, several itera-
tive algorithms have been developed, including projection
onto convex sets (POCS),2 conjugate gradient descent,2

multiresolution regularized least-squares using
wavelets,7 (RLS), and total least squares (TLS).8 These
methods are developed for application to continuous-wave
measurements. Layer-stripping9 and regularized-layer-
stripping10 methods for TR data have also been proposed.
The POCS method is known to have slow convergence.
The conjugate gradient descent algorithm solves a least-
squares (LS) problem. The regularization technique
used in Refs. 10 and 7 is intended to reduce the sensitivity
to noise embedded in the measurement data, whereas the
TLS method in Ref. 8 deals with noise in both the data
vector and the operator matrix.

In optical tomographic imaging systems the linear op-
erator H is also subject to errors or noise, which may re-
sult from both the approximations used in deriving the
linear model and numerical errors in computing the op-
erator. In these cases the TLS solution is optimal and
better than the LS in the sense that errors in both the op-
erator and measurement data are minimized.11 Regular-
ized constrained TLS was proposed by Mesarović et al.12

for image-restoration problems in which noise in H and y
are linearly dependent (algebraically correlated). There
H, called the point-spread function, is a convolution op-
erator. A TLS solution based on singular-value decom-
position (SVD) was employed by Li et al.13 in phase array
1998 Optical Society of America
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imaging where noise in H and y are assumed indepen-
dent. However, the SVD-based TLS solution has compu-
tation difficulties for large-scale systems. This is be-
cause the conventional SVD computation needs O(N3)
multiplication, where N is the length of vector x. The ap-
plication of TLS to optical tomography was first consid-
ered by Zhu et al. in Ref. 8. Since computation is a major
concern in optical tomography, a Rayleigh-quotient-form
TLS (RQF-TLS) approach was developed, which requires
O(N2) multiplication.8 In this paper the equivalence of
the RQF-TLS estimator to the maximum-likelihood (ML)
estimator is established for the case in which the noise in
both data and operator are independent and identically
distributed (i.i.d) Gaussian. A perturbation analysis of
the RQF-TLS is also performed to derive the mean square
error (MSE) of the TLS estimate.

A challenge in solving the perturbation equation of Eq.
(1) is that the computation is usually extremely expen-
sive, owing to the extremely large dimension of the weight
matrix. To alleviate this problem, a wavelet-based mul-
tiresolution reconstruction algorithm was recently
developed.7 This algorithm is based on the LS and RLS
formulation, which was developed to overcome noise in
the measurement data. Such strategies (RLS-based re-
covery algorithms) for overcoming measurement noise by
means of wavelet transform have also been reported in
other imaging and image processing applications, e.g., in
Refs. 14–17. In Ref. 14 Wang et al. proposed a RLS-
based multigrid algorithm for image restoration through
wavelet expansion. In Ref. 15 Blanc-Feraud et al. com-
pared one-dimensional (1D) and two-dimensional (2D)
wavelet transforms for a RLS solution. In Ref. 16
Delaney et al. proposed a multiresolution tomographic re-
construction algorithm (filtered backprojection) for emis-
sion tomography. In Ref. 17 Banham et al. proposed a
RLS-based multichannel subband approach for image res-
toration. However, as stated above, in optical tomogra-
phy the imaging operator usually contains errors or noise
and the TLS solution is needed. In this paper we propose
a new wavelet-based multiresolution total least-squares
algorithm. In this algorithm, the unknown, the data,
and the weight matrix are expanded by means of wave-
lets, thus yielding a multiresolution representation of the
Rayleigh quotient function. The transformed Rayleigh
quotient function is minimized from coarse to fine resolu-
tions. At each resolution, it uses the solution obtained
from the previous resolution as the initial solution. Com-
pared with that of the previous single-grid technique,
which solves the Rayleigh quotient equation in the finest
resolution directly,8 the computational complexity of the
transformed Rayleigh quotient function is reduced signifi-
cantly.

The rest of this paper is organized as follows. In Sec-
tion 2, after reviewing the RQF-TLS formulation, we
show its equivalence to the ML estimator in the Gaussian
setting and derive the MSE by a perturbation analysis.
In Section 3 the wavelet-based RQF-TLS algorithm is pre-
sented and its equivalence to the original RQF-TLS is
shown. Section 4 presents the multigrid conjugate gra-
dient (CG) algorithm that is used to obtain the RQF-TLS
in the wavelet domain. Section 5 presents experimental
results. Finally, Section 6 provides some discussion and
conclusions.

2. RAYLEIGH QUOTIENT FORM OF THE
TOTAL LEAST-SQUARES SOLUTION
AND ITS PROPERTIES
A. Total Least-Squares Solution of a Linear System
Consider an imaging system described by Eq. (1), where x
represents the unknown values to be imaged, y repre-
sents the measurement data, and H represents the linear
operator that models the relation between x and y. In
the imaging problem, the operator is usually obtained by
forward studies.6 In the conventional LS formulation, it
is assumed that the measurement y is noisy but the op-
erator H is correct. The LS solution of x is determined
by the following minimization:

minimize iDyi2 , (2)

subject to y 1 Dy P range~H!. (3)

Here i • i2 denotes the Euclidean norm and Dy is the per-
turbation of y. When the smallest Dy satisfying Eq. (3) is
found, any x satisfying

Hx 5 y 1 Dy (4)

is said to solve the LS problem.
It is well known that the solution of the LS problem

amounts to solving the normal equation

H T Hx 5 H T y, (5)

where T denotes transpose. The unique minimal two-
norm solution to the LS problem is given by

x LS 5 H†y, (6)

where H† denotes the Moore–Penrose pseudoinverse of H.
In an overdetermined case, H† 5 (HTH)21HT. For an
underdetermined case, H† 5 HT(HHT)21. In the above
LS solution the assumption is that all errors or noise are
confined to the observation and that the matrix H is cor-
rect. However, in reality there may be errors in the
weight matrix H as well.

To alleviate this problem, the TLS was introduced by
Golub and Van Loan.11 The TLS approach attempts to
minimize the errors in both y and H; i.e.,

minimize i@DHuDy#iF , (7)

subject to y 1 Dy P range~H 1 DH!. (8)
Here i • iF denotes the Frobenius norm, which is defined,
for an arbitrary m 3 n matrix B, as

iBiF
2 5 tr~BTB ! 5 (

i51

m

(
j51

n

~bij!
2. (9)

When the smallest perturbations in both y and H are
found, then any x satisfying

~H 1 DH!x 5 y 1 Dy (10)

is said to solve the TLS problem.
The TLS problem in Eqs. (7) and (8) can be restated as

minimize iDAiF , (11)

subject to ~A 1 DA!q 5 0, (12)
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where
A 5 @Huy#, DA 5 @DHuDy#, (13)

q 5 S x
21 D .

The closed-form TLS solution is given by xTLS
5 (HTH 2 s n11

2 I)21HTy, where sn11
2 is the smallest

nonzero singular value of the matrix A.11 Comparing the
LS and TLS solutions, the only difference is the term
s n11

2 , which helps to reduce the effect of the error in H.
Golub and Van Loan11 showed that, when A has full col-
umn rank, the TLS solution is related to the right singu-
lar vector vn11 of A associated with the smallest singular
value sn11 , under the condition that the singular value
sn . sn11 and vn11, n11 Þ 0. Here sn represents the
nth largest singular value and vn11,n11 is the last compo-
nent of the singular vector vn11 . Let vn11

T

5 @ ṽn11
T vn11, n11#, where T represents transpose. The

TLS solution for a full-rank system is

x 5 2
1

vn11, n11
ṽn11 . (14)

For a rank-deficient and hence underdetermined problem,
the minimum norm solution is given by

x 5 2

(
i5p11

n11

vi,n11ṽi

(
i5p11

n11

vi,n11
2

, (15)

where sp . sp11 5 . . . 5 sn11 5 0 and vi
5 @ ṽi

Tvi,n11#T are the singular value and the singular
vector of A, respectively. Hence one way to obtain the
TLS solution is through performing the SVD of A.11

For large-scale systems the computation of SVD is
difficult.13,18 Therefore we have opted for iterative
schemes that are more suitable for large-scale systems.
It has been shown that the constrained minimization
problem in Eqs. (11) and (12) is equivalent to the follow-
ing minimization problem19:

minimize FF~q ! 5
qTATAq

qTq
5

iy 2 Hxi2

ixi2 1 1 G , (16)

where F(q) is called the Rayleigh quotient. The solution
of Eq. (16) is equal to the eigenvector q associated with
the smallest eigenvalue of ATA.19 We use the CG
method20,21 to iteratively solve the above optimization
problem for q. Recall that when qT 5 @xT,21#, one can
obtain the TLS solution by x 5 2(q n)/qn11 , where q n is
the vector containing the first n component of q and qn11
is the (n 1 1)th component of q. Note that when the
problem is underdetermined, there is no guarantee that
the minimization of the RQF by the CG method will yield
the minimum norm solution. One way to guide the algo-
rithm toward the minimum norm solution is to start with
a zero initial solution in which all elements except the
last are zero and the last element is set to 1. Then we
use the convergence criterion in Ref. 8, which is essen-
tially the difference between two successive eigenvalues.
B. Equivalence between the Rayleigh-Quotient-
Form–Total Least-Squares Solution and the Maximum-
Likelihood Estimate
It has been shown in the multivariate linear errors-in-
variables (EIV) model that the TLS estimator is a ML es-
timator when the noise is additive and Gaussian.22 In
Ref. 23, by use of the regression model, it was also shown
that the constrained TLS estimator is a ML estimator
from a constrained state space. Here we show (also by
use of the regression model) that the TLS solution that
uses the formulation given in Eq. (16) (i.e., the RQF-TLS
solution) is a ML estimator.

Let D H and Dy represent the noise in the operator and
data, respectively; then the imaging model is given by

y 5 ~H 1 DH!x 1 Dy. (17)

Assume that the elements of D H and Dy are i.i.d. Gauss-
ian variables with zero mean and variance s2. Then the
conditional mean of y given x is hy/x 5 Hx and the cova-
riance matrix is

Cy/x 5 E@~ y 2 hy/x!~ y 2 hy/x!T#

5 E@~DHx 1 Dy!~DHx 1 Dy!T#

5 E@DHxxTDHT# 1 s2I, (18)

where E$ • % is the expectation operator and I is the m
3 m identity matrix. From the assumption that the el-
ements of DH are i.i.d. with zero mean and variance s2,
we can obtain

E@DHxxTDHT# 5 s 2ixi2I. (19)

Thus

Cy/x 5 s 2~ ixi2 1 1 !I. (20)

Because DH and Dy are both Gaussian, y in Eq. (17) for a
given x is also Gaussian. Therefore the conditional prob-
ability P( y/x) is

P~ y/x! 5 @~2p!muCy/xu#21/2exp@2
1
2 ~ y 2 Hx!T

3 Cy/x
21 ~ y 2 Hx!#, (21)

where uCy/xu is the determinant of Cy/x . Taking the loga-
rithm of Eq. (21) yields the following likelihood function:

L ~ y/x! 5 2~ y 2 Hx!TCy/x
21 ~ y 2 Hx!

2 log@~2p!muCy/xu#. (22)

The ML solution is obtained by maximizing the likelihood
function L ( y/x) with respect to x. It was tested and
verified in Ref. 24 that the log term in Eq. (22) is negli-
gible. Thus maximizing L ( y/x) can be accomplished by
minimizing

L ~ y/x! ' ~ y 2 Hx!TCy/x
21 ~ y 2 Hx!. (23)

When Eq. (20) is substituted into Eq. (23), the ML solu-
tion is obtained by minimizing

1

s2~ ixi2 1 1 !
~ y 2 Hx!T~ y 2 Hx!. (24)

One can see immediately that the minimization of Eq.
(24) is equivalent to the minimization of the Rayleigh
quotient in Eq. (16). Thus we have shown that the RQF-
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TLS solution is ML estimator. From this we know that
the RQF-TLS solution has the desired statistical proper-
ties that have been shown for the SVD-based TLS solu-
tion, including asymptotic efficiency, among others.

C. Perturbation Analysis of the
Rayleigh-Quotient-Form–Total Least-Squares Estimator
In the past, statistical properties of the TLS solution have
been analyzed from the EIV model,22 or from the formu-
lation described in Refs. 12 and 23 for the constrained
TLS from the regression model. Specifically, with the
EIV model it has been shown that the TLS estimator is
unbiased and that statistical properties of the TLS esti-
mate have been derived. In Refs. 12 and 23 it was shown
that the constrained TLS estimator is also unbiased and
that other statistical properties are obtained from the
constrained TLS formulation. In this paper we analyze
the statistical properties of the RQF-TLS estimator. Be-
cause the RQF-TLS solution is nonlinear, error analysis
is difficult. As in Refs. 12 and 23, we will perform a per-
turbation analysis to derive an analytic closed-form for-
mula for the covariance matrix of the RQF-TLS solution
for a small noise level.

Let H o and yo represent the noise-free system matrix
(operator) and data vector, and let xo represent the cor-
rect solution; then these must satisfy

A oq o 5 0, (25)

where

Ao 5 @H ouyo#, q o 5 S x o

21 D . (26)

Now we perturb Ao by adding a small noise term DA
5 @DHuDy#; this will lead to a perturbation of the solu-
tion by Dq. The necessary condition for minimizing Eq.
(16) is that the gradient of F(q) with respect to q be zero.
That is,

]F~q!

]q
5

2

~qTq!2 @qTqA TA 2 qTATAqI#q 5 0. (27)

Substituting A 5 A o 1 DA and q 5 q o 1 Dq into Eq.
(27) and ignoring high-order terms of Dq and DA, we ob-
tain

q o
Tq o~A o

TA o 1 A o
TDA 1 DATA o!q o 1 q o

Tq oA o
TA oDq

1 2q o
TDqA o

TA oq o 5 iA oq oi2~q o 1 Dq!. (28)

Using the condition in Eq. (25) and after some algebraic
manipulations, we obtain

Dq 5 2~A o
TA o!†Ao

TDAq o, (29)

which is the closed-form perturbation solution. If we as-
sume D A has zero mean, then E@Dq# 5 0; i.e., the RQF-
TLS estimator is unbiased.

Next, we derive the MSE of the RQF-TLS estimate.
By definition,

MSETLS 5 E@DqTDq # 5 trace~R!, (30)

where R 5 E@DqDqT# is the correlation matrix of Dq,
which is equivalent to the covariance matrix of Dq, since
D q has zero mean. Using the solution in Eq. (29), we
have
R 5 ~A o
TA o!†A o

TE@DAq oq o
TDA T#A o~A o

TA o!†T. (31)

As above, if we assume that the elements of DA are i.i.d.
with zero mean and variance s2, then

E@DAq oq o
TDA T# 5 s2iq oi2I. (32)

Thus

R 5 s2iq oi2~A o
TA o!†. (33)

Substituting Eq. (33) into Eq. (30) yields

MSETLS 5 trace~R! 5 s2iq oi2trace@~A o
TA o!†#.

(34)

Assume that the rank of (A o
TA o) is r, and let

l1 , l2, . . . , lr represent the r positive eigenvalues of
(A o

TA o). Then Eq. (34) can be rewritten as

MSETLS 5 s2iq oi2(
i51

r

l i
21 5 s2~1 1 ixoi2!(

i51

r

l i
21.

(35)

Equation (35) is useful for predicting the accuracy of the
RQF-TLS estimator at small noise levels.

3. WAVELET-BASED TOTAL
LEAST-SQUARES SOLUTION
A. Two-Dimensional Multiresolution Representation by
a Wavelet Transform
A wavelet is a function whose dilations and shifts form an
orthonormal basis for the space of all energy-finite
signals.25 For a given (energy-finite) signal, the wavelet
basis provides a multiresolution representation of the sig-
nal. For a 1D discrete signal this involves taking the dis-
crete wavelet transform (DWT) of the signal. For ex-
ample, for a 1D signal that has length N and is denoted
by x, a two-level DWT is an N-dimensional vector x̃,

x̃N 5 Wx 5 @A21x~N/2! D21x~N/2!#
T, (36)

where A21x and D21x are the lowpass and bandpass com-
ponents, respectively, of x, both of dimension N/2. In the
above equation the subscript denotes the dimension of the
underlying vector.

Since we are dealing with images, which are 2D, in this
paper we use the 2D DWT. In general, a 2D image can
be arranged into a vector by lexicographic ordering. The
1D wavelet transform described above can then be ap-
plied to the vector. One can then reorder the vector as a
2D image. However, a more efficient way of implement-
ing a wavelet transform of a 2D image is by first applying
a 1D transform to each row of the 2D image and then ap-
plying a 1D wavelet transform to each column of the re-
sulting image from the previous step. This is known as
separable wavelet transform.

Let F represent a 2D image with size M 3 N, and let f
be the vector consisting of elements of F arranged in lexi-
cographic order, with size K 5 M 3 N. Let WM and WN
represent the 1D wavelet transform matrix of size M
3 M and N 3 N, respectively; the separable wavelet
transform of F can be described by

F̃ 5 WMFW N
T . (37)
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This is equivalent, in the 1D notation, to

f̃ 5 ~WM ^ WN!f, (38)

where ^ denotes the Kronecker product and f̃ is the vec-
tor consisting of elements of F̃ arranged in lexicographic
order. Therefore performing the 2D wavelet transform
on a M 3 N 2D image by means of a separable transform
is equivalent to performing a 1D wavelet transform on the
corresponding 1D vector by means of WK 5 WM ^ WN .
The transformed image can be grouped into four sub-
images consisting of an approximation image A21F and
three detail subimages D21

1 F, D21
2 F, and D21

3 F; i.e.,

F̃~M3N ! 5 F A21F~M/23N/2! D21
1 F~M/23N/2!

D21
2 F~M/23N/2! D21

3 F~M/23N/2!
G .

This is a two-level representation of F and can be imple-
mented by a set of QMF’s as illustrated in Fig. 1 (for two
levels). Usually we refer to these QMF’s as LL, LH, HL,
and HH subimages, from top to bottom, respectively.
One can decompose the subimage A21F further to the
next scale (coarser resolution), which leads to a three-
level representation:

F̃~M3N ! 5 F A22F~M/43N/4! D22
1 F~M/43N/4!

D21
1 F~M/23N/2!

D22
2 F~M/43N/4! D22

3 F~M/43N/4!

D21
2 F~M/23N/2! D21

3 F~M/23N/2!

G .

The above procedure can be applied to the approxima-
tion subimage repeatedly to obtain an L
< min$log2 M, log2 N%-level representation.

B. Total Least-Squares Solution with One-Dimensional
Wavelet Representation
Considering the perturbation equation in Eq. (1), to rep-
resent the perturbation equation in a wavelet domain
let the transform matrices for x and y be represented by
Wx and Wy, respectively. We consider only orthonormal
wavelets that satisfy W x

TWx 5 WxW x
T 5 I and W y

TWy
5 WyW y

T 5 I. Multiplying Eq. (1) from the left by Wy
and inserting Wx

T Wx 5 I in between H and x, we obtain

H̃ x̃ 5 ỹ, (39)

where H̃ 5 Wy HW x
T , ỹ 5 Wyy and x̃ 5 Wxx. Equation

(39) is the perturbation equation in the wavelet domain.
From this equation one can formulate the TLS in the WT
domain. Let

Ã 5 @H̃uỹ#,

q̃ 5 S x̃
21 D . (40)

Fig. 1. Wavelet decomposition of 2D image from level j 1 1 to j.
From the orthonormality of the wavelet transform it can
easily be shown that minimizing the Rayleigh quotient
function defined in Eq. (16) is equivalent to the following
problem:

minimize FF~ q̃! 5
q̃TÃTÃq̃

q̃ T q̃
G . (41)

That is, the TLS solution to the original Eq. (1) is equiva-
lent to the TLS solution to the transform equation (39).
Once we get the solution q̃, and consequently x̃, we can
take the inverse wavelet transform to obtain the desired
solution x 5 W x

T x̃.

C. Transform of the Perturbation Equation by Use of
Separable Operation
Suppose that x and y in Eq. (1) are vectors obtained from
2D N 3 N image X and M 3 M image Y, respectively.
Here, for notational simplicity, we consider only the case
in which both X and Y are square images. Let WX and
WY represent 1D transform matrices for X and Y, respec-
tively. Then Wy 5 WY ^ WY and Wx 5 WX ^ WX. The
transforms of X and Y can be performed easily with sepa-
rable processing. The question is how to calculate the
wavelet transform of the operator H̃ 5 Wy HW x

T . Our
method, slightly different from that in Ref. 15, is to do the
following. First, we reorder each row hri

, i
5 1, 2,..., M2, of H as a 2D image of size N 3 N, H ri

,
and then use WX to perform a separable transform. The
result can be represented as H̃ ri

5 WXH ri
W X

T . This
transformed image is then reordered back into a row vec-
tor h̃ ri

. Let the resulting image be H̃ r 5 HWX
T . Then

we first order each column of H̃r , h̃cj
, j 5 1, 2,..., N2, as a

2D image H̃ cj
and then perform a separable transform

with WY; i.e., HM cj
5 WY H̃ cj

WY, j 5 1, 2,..., N2. This
transformed image is then ordered back into a column
vector, hM cj

, which forms the jth column of the trans-
formed operator H̃.

4. MULTIGRID ALGORITHM
As shown in Subsection 3.B, the TLS solution can be ob-
tained by directly minimizing the Rayleigh quotient in
Eq. (16) or Eq. (41). When x, y, or H is slowly varying,
its wavelet transform coefficients at high frequencies are
zero or negligible. Then the minimization can be per-
formed in the transform domain more efficiently by tak-
ing advantage of the sparsity of q̃ and Ã. Even when the
operator H is not smooth in the original domain, we can
exploit the multiresolution property of the wavelet trans-
form to reduce computation time.

In this paper we propose a multigrid scheme that uses
a modified V-cycle algorithm. The principle of this algo-
rithm is illustrated in Fig. 2. It differs from the classical
V-cycle method26 in two aspects. First, instead of down-
ward (from fine to coarse) restriction, in which error is
calculated and restricted, we use wavelet decomposition
to reach the lower vertex (coarsest grid) of the V cycle.
For the upward reconstruction (from coarse to fine), we
use multigrid reconstruction instead of error prolongation
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(error compensation). Specifically, this modified V-cycle
algorithm consists of the following steps:

1. Perform the wavelet transform of y and H to obtain
H̃ l and ỹl , l 5 21, 22,...,2L. Set l 5 2L, the coarsest
level.

2. Solve for the TLS solution q̃ l and hence x̃l at the
lth level, by minimizing F(q l) 5 (q̃ l

TÃ l
TÃ lq̃ l)/(q̃ l

Tq̃ l) us-
ing the CG algorithm.

3. Prolongate from x̃l to x̃ l11 by padding zeros; i.e.,
x̃l11 5 @ x̃ l

T , 0#T.
4. Let l 5 l 1 1. If l 5 0, stop; otherwise, go back to

Step 2, using the solution obtained in the previous step as
the initial solution.

The multigrid algorithm described above differs
slightly from the one proposed by Wang et al.14 In the
latter method, at each resolution level the LL, LH, HL,
and HH components are reconstructed alternatingly until
the solution converges. In our method, at each level only
the LL component is solved, assuming that the other com-
ponents are zeros.

In real clinic applications most of the time one is inter-
ested only in certain regions of the image with abnormal
features. The above multigrid algorithm can not only
save computational time compared with the single-grid
algorithm but also allows one to zoom in on special re-
gions of interest (ROI). Suppose we are interested in a
region that appears questionable in a coarser-level recon-
struction. Then only the corresponding region in the
next-finer resolution needs to be further refined by the
CG algorithm, while other regions in the finer resolution
can be kept fixed. This will reduce the computation time
for this grid significantly. This process can be repeated
so that only a small number of unknowns are solved in
each grid level.

In our study, we implemented a two-grid algorithm
(L 5 1) by which we first reconstruct the LL component
of the wavelet transform x̃ of x. This yields the coarse-
level reconstruction x̃21 . Starting from this solution, we
then solve all the components of x̃.

5. EXPERIMENTAL RESULTS
In our experiment the length-4 Daubechies’ wavelet27 was
used because it achieves a good trade-off between compu-

Fig. 2. Modified V-cycle multigrid algorithm.
tational precision and computational complexity. To
demonstrate the effectiveness of the wavelet-based multi-
grid TLS algorithm compared with a single-grid algo-
rithm, three experiments were performed. We used the
MSE and correlation coefficient (CC) between the original
image x and reconstructed image x̂ to evaluate the recon-
struction accuracy quantitatively. The MSE and the CC
are defined as

MSE 5
1
n

ix 2 x̂i2, (42)

CC 5
^x, x̂&

ixiix̂i
, (43)

respectively.
In the first experiment a 1-cm-diameter rod was placed

in an infinite homogeneous medium. The rod was homo-
geneous, with absorption and scattering coefficients ma
5 0.05 cm21 and ms 5 10 cm21, respectively. The opti-
cal properties of the background medium were ma

b

5 0.02 cm21 and ms
b 5 10 cm21, respectively. The im-

aged region occupied an area of 10 cm 3 10 cm, which
was discretized to 32 3 32 pixels. A total of 16 sources
and 16 detectors were evenly spread around the rod in a
ring geometry with a diameter of 8 cm (see Fig. 3).
Therefore, in our simulation, M 5 16 and N 5 32, or m
5 162, n 5 322. The solution to the forward problem (to
get H and y) was obtained by analytically solving the dif-
fusion equation with the normal-mode series method de-
scribed in Ref. 28. The data were corrupted by white
Gaussian noise with a 30-dB signal-to-noise ratio (SNR).
The weights were also corrupted by white Gaussian noise
with the same noise variance as that in the detector read-
ing. We performed this experiment five times for differ-
ent noise realizations. The LS algorithm we used here
was described in Ref. 2. The average MSE and CC ob-
tained with different methods are given in Table 1. Fig-
ure 4 shows reconstructed images that use one-grid and
two-grid algorithms, respectively, for noise realization.
The coarse-level reconstruction solves only a quarter of
the pixels in the fine resolution. In our computer imple-
mentation, one iteration of the coarse level roughly re-

Fig. 3. The source–detector configurations of the cylindrical
rod.



Zhu et al. Vol. 15, No. 10 /October 1998 /J. Opt. Soc. Am. A 2645
Fig. 4. Reconstruction results for a medium with a centered rod. The absorption coefficient distribution is a constant in the rod. The
SNR in the data is 30 dB. The weights are corrupted by the same noise as that in the data. (a) Original image, (b) reconstructed image
with one-grid TLS with 85 iterations, (c) reconstruction result with one grid with 885 iterations, (d) reconstruction image with two-grid
TLS algorithm with 1200 iterations at the coarse grid only, (e) reconstruction image with two-grid algorithm with additional 800 itera-
tions at the fine grid, (f ) reconstructed image with 3200 iterations in a localized region at the fine grid with (d) as the initial solution.
The total computation time for (b) and (d) are roughly the same, and the total computation time for (c), (e), and (f ) are also similar. The
time for (d) is approximately 1/10 of (c). Note that although (f ) looks the same as (e), it is quantitatively more accurate.

Table 1. MSE and CC for Different Methods for a Test Medium Containing a Rod Absorber at the Center

One-Grid TLS
with 85

Iterations

Two-Grid TLS with
1200 Iterations

at the Coarse Grid

One-Grid TLS
with 885
Iterations

Two-Grid TLS with
800 Iterations

at the Fine Grid

Two-Grid
TLS with

ROI

Average CC 2.27E 3 1021 4.95E 3 1021 4.95E 3 1021 5.22E 3 1021 5.29E 3 1021

Average MSE 1.80E 3 1024 1.51E 3 1024 1.50E 3 1024 1.50E 3 1024 1.46E 3 1024
quired 1/10 of the computational time taken by one itera-
tion in the fine resolution. From Fig. 4 and Table 1 we
see that the proposed multigrid algorithm provided sig-
nificantly better reconstruction than the one-grid method
under similar computation times [compare Figs. 4(b) and
4(d)] or required significantly shorter time to reach the
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same resolution quality [compare Figs. 4(c) and 4(d)].
Figure 4(f ) was obtained by restricting reconstruction in
the fine grid within a ROI that was selected on the basis
of the coarse-grid resolution. The ROI was a square
block (a quarter of the size of the original image domain)
in the center. By restricting the unknowns within this
Fig. 5. Reconstruction results of a medium with an off-center sinelike absorber. The SNR in the data is 30 dB. The weights are
corrupted by the same noise as that in the data. (a) Original image, (b) reconstruction result with multigrid LS with 1200 iterations at
the coarse grid and 800 at the fine grid, (c) reconstructed image with one-grid TLS with 85 iterations, (d) reconstructed image with
one-grid TLS with 885 iterations, (e) reconstructed image with two-grid TLS algorithm with 1200 iterations in the coarse grid only, (f )
reconstructed image with the two-grid TLS algorithm with an additional 600 iterations at the fine grid with (e) as initial solution. The
computation time for (c) and (e) are roughly same. The time for (f ) is approximately 3/4 of (d) and that for (c) or (e) is approximately 1/10
of (d).

Table 2. MSE and CC for Different Methods for a Test Medium
Containing an Off-Centered Sinelike Absorber

One-Grid TLS
with 85

Iterations

Two-Grid TLS with
1200 Iterations

at the Coarse Grid

One-Grid TLS
with 885
Iterations

Two-Grid TLS with
600 Iterations

at the Fine Grid
Two-Grid

LS

Average CC 1.85E 3 1021 4.43E 3 1021 4.65E 3 1021 4.63E 3 1021 4.60E 3 1021

Average MSE 1.77E 3 1024 1.66E 3 1024 1.65E 3 1024 1.65E 3 1024 1.80E 3 1024



Zhu et al. Vol. 15, No. 10 /October 1998 /J. Opt. Soc. Am. A 2647
ROI, we convert the original underdetermined problem
into a determined one and therefore can achieve a more
accurate result than that shown in Fig. 4(e).

In the second experiment a 1.5-cm-diameter rod was
placed at an off-center position with respect to the source
and the detector ring. The rod had a nonhomogeneous
absorption distribution, following a sinusoidal pattern
(one positive cycle only). We will refer to an absorber
with such an absorption profile as a sinelike absorber.
The forward solution in this experiment was obtained
with a multigrid finite-difference solver described in Ref.
3. In this experiment white Gaussian noise was added to
the weights and the detector readings in the same way as
in the first experiment. We performed this experiment
five times for different noise realizations; the means of
the MSE’s and CC’s are given in Table 2. Note that
ixi2 5 1.26 3 1021 in the calculation. Figure 5 presents
the reconstruction results for one noise realization.
From Fig. 5 and Table 2 we can see that accurate results
can be obtained from the coarse-level reconstruction alone
[see Fig. 5(e)] in approximately one tenth of computation
time for the fine-grid reconstruction, because the energy
of the original image is contained mostly in the LL band.
This energy-compaction property of the wavelet trans-
form makes the reconstruction in the wavelet domain
more efficient for images that are smooth. We can also
see that, as expected, the two-grid TLS solution provided
more accurate results than the two-grid LS solution [com-
pare Figs. 5(b) and 5(f )]. To evaluate more quantita-
tively the savings in computation time by the multigrid
over the single-grid algorithm, Fig. 6 compares the value
of the the Rayleigh quotient F(q ) (in log scale) after suc-
cessive numbers of work units. A work unit here is de-
fined as the amount of computation for performing one it-
eration in the finest grid.29 It can be seen that the
multigrid method achieves better results and is signifi-
cantly faster.

In the third experiment a 1.5-cm-diameter rod was
placed at the center position with respect to the source
and the detector ring. As with the second experiment,
the rod had a nonhomogeneous absorption distribution,
following a sinusoidal pattern (one positive cycle only).
The forward solution in this experiment was also ob-

Fig. 6. Comparison of computation time required by multigrid
TLS versus one-grid TLS in terms of work units for the test me-
dium considered in Fig. 5.
tained by the multigrid finite-difference solver described
in Ref. 3. In this experiment, white Gaussian noise with
20-dB SNR was added to the detector readings. The
same amount of additive white Gaussian noise (the same
noise variance as in the detector readings) was also added
to the weights. We performed this experiment five times
for different noise realizations; the mean of the MSE’s
and CC’s are given in Table 3. Note that ixi2 5 5.96
3 1021 in the calculation. Figure 7 shows the recon-
struction results for a noise realization. From Fig. 7 and
Table 3 we see again that the two-grid TLS solution pro-
vided more accurate results than the two-grid LS solu-
tion, both qualitatively and quantitatively, with the same
or less computation time. We can also see that the
coarse-level reconstruction alone [see Fig. 7(e)] produced
fairly good results compared with the final solution in Fig.
7(f ) but with only one tenth of the computation time.
Notice that the multigrid method not only reduced com-
putation time but also suppressed noise artifacts [com-
pare Figs. 7(d) and 7(f )]. This is because the coarse so-
lution is quite robust to noise and, when used as the
initial solution in the finer resolution, makes the entire
algorithm more stable.

Figure 8 illustrates the wavelet decomposition of the
original image and the final reconstructed image for ex-
periments 2 and 3. From this figure we can see that the
LL bands (lower left corners in the displays) of the recon-
structed images are quite close to the LL bands of the
original images [compare the lower left of Figs. 8(a) and
8(b); also see lower left of Figs. 8(c) and 8(d)].

6. DISCUSSION AND CONCLUSIONS
In this paper the RQF-TLS method is used for solving the
perturbation equation in optical tomography. The statis-
tical properties of the RQF-TLS estimate are derived by
means of a perturbation analysis. The equivalency be-
tween the RQF-TLS estimator and ML estimator is
shown when the noise is Gaussian and i.i.d. To reduce
computation complexity, a wavelet-based multiresolution
TLS reconstruction scheme is proposed for solving the
perturbation equation. Experimental results indicate
that the proposed multigrid algorithm provides signifi-
cantly better reconstruction than the single-grid method
with comparable computation time.

In general, the inverse problem in optical tomography
is ill-posed. In the LS formulation, which minimizes the
perturbation in the measurement vector, a penalty term
that forces the solution vector x to be smooth or to have
finite energy can be imposed (Tikhonov regularization) to
overcome the ill-posed nature of the matrix H. With the
RQF-TLS, the finite energy constraint is embedded in the
Rayleigh quotient function. The first- or second-order
derivative type of penalty terms as well as others might
also be incorporated in the minimization of the Rayleigh
quotient. The incorporation of such constraints to fur-
ther improve the stability of the TLS solution is under in-
vestigation.

The proposed wavelet-based multigrid algorithm al-
lows one to focus on special ROI’s when going from a
coarse grid to a fine grid. Further study is needed for au-
tomatic detection of ROI’s from coarse solutions.
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Table 3. MSE and CC for Different Methods for a Test Medium Containing a Centered Sinelike Absorber

One-Grid TLS
with 85

Iterations

Two-Grid TLS with
1200 Iterations

at the Coarse Grid

One-Grid TLS
with 885
Iterations

Two-Grid TLS with
600 Iterations

at the Fine Grid
Two-Grid

LS

Average CC 3.63E 3 1021 4.71E 3 1021 5.07E 3 1021 5.31E 3 1021 2.23E 3 1021

Average MSE 1.74E 3 1024 1.63E 3 1024 1.60E 3 1024 1.60E 3 1024 1.77E 3 1024
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Fig. 8. Wavelet-transform analysis. (a) Wavelet transform of Fig. 7(a), (b) wavelet transform of Fig. 7(f ), (c) wavelet transform of Fig.
6(a), (d) wavelet transform of Fig. 6(f ). To reveal the high-frequency subsignals, we applied a square-root mapping to the signal mag-
nitude when plotting.
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