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We present an iterative total least-squares algorithm for computing images of the interior structure of highly
scattering media by using the conjugate gradient method. For imaging the dense scattering media in optical
tomography, a perturbation approach has been described previously [Y. Wang et al., Proc. SPIE 1641, 58
(1992); R. L. Barbour et al., in Medical Optical Tomography: Functional Imaging and Monitoring (Society of
Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 87–120], which solves a perturbation
equation of the form WDx 5 DI. In order to solve this equation, least-squares or regularized least-squares
solvers have been used in the past to determine best fits to the measurement data DI while assuming that the
operator matrix W is accurate. In practice, errors also occur in the operator matrix. Here we propose an
iterative total least-squares (ITLS) method that minimizes the errors in both weights and detector readings.
Theoretically, the total least-squares (TLS) solution is given by the singular vector of the matrix [WuDI] asso-
ciated with the smallest singular value. The proposed ITLS method obtains this solution by using a conjugate
gradient method that is particularly suitable for very large matrices. Simulation results have shown that the
TLS method can yield a significantly more accurate result than the least-squares method. © 1997 Optical
Society of America [S0740-3232(97)01004-1]
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1. INTRODUCTION
Over the past few years, research on medical optical to-
mography has progressed rapidly. Interest remains high
because the method appears to offer several important
advantages over other established imaging modalities.
These include use of nonionizing sources and highly sen-
sitive detectors, the ability to monitor situations and
events critical to sustaining life (e.g., tissue oxygenation),
and the availability of compact, low-cost instrumentation
that can be made portable. In addition, through use of
optical fibers, measurements can be performed simulta-
neously with the collection of imaging data from other
modalities. This avoids registration errors, which, as re-
cently shown for magnetic resonance imaging data,1 can
greatly facilitate the computation and the stability of the
optical reconstructions.
We have previously described an iterative perturbation

approach for reconstructing the optical properties of a
random scattering medium using different source condi-
tions [e.g., continuous wave (cw) and time-resolved
data].2–5 In each case this requires the solution of a lin-
ear perturbation equation at each iteration of the form

WDx 5 DI, (1)

where Dx is a vector of differences in the optical proper-
ties (absorption or scattering) between a reference and a
0740-3232/97/040799-09$10.00 ©
test medium, DI is a vector of changes in detector read-
ings between the two media, andW is a matrix of weights
describing the influence of each volume element (voxel) on
the detector readings. The elements ofW essentially are
the derivatives of the detector readings with respect to
the absorption or scattering coefficients in the reference
medium. To solve the linear perturbation equation, sev-
eral iterative algorithms have been developed, including
projection onto convex sets,2 a conjugate gradient descent
(CGD) method,2 a multigrid method,2 a layer-stripping
scheme,4,5 and wavelet-based regularized least-squares.6

These methods are all based on the least-squares (LS) for-
mulation, which finds a solution that best fits the mea-
surement Dx while assuming that the weight matrixW is
accurate. In practice, the latter assumption is not accu-
rate, and corrections to W must be made in order to com-
pute an accurate solution. Three approaches come to
mind. One would be to adopt recursive iterative methods
(Newton type) that seek to solve the linear equation by
updating alternately the forward and inverse problem so-
lutions. Several groups,7 including ours,8 have reported
some success with this scheme. This includes media hav-
ing complex backgrounds (e.g., magnetic resonance
maps1) and analysis of experimental data.9 The diffi-
culty with this is that, even for two-dimensional prob-
lems, the computational burden can become undesirable,
particularly if multiple updates are required. Another
1997 Optical Society of America
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approach would be to update W by solving a nonlinear
equation relating DI to Dx, as has been recently described
by Graber et al.10 This has the potential advantage that
corrections to W can be made by evaluating an analytical
expression, thereby avoiding the computational expense
of updating the forward problem. As the expression de-
rived is only an approximation, it seems likely that some,
perhaps fewer, updates will be needed.
A third approach, adopted in this paper, is to compute

solutions to Eq. (1) that minimize errors in both W and
DI. Methods of this type have been applied to other im-
aging problems and are referred to as the total least-
squares (TLS) method. For example, Justice and Vassil-
iou applied the TLS approach to geophysical diffraction
tomography.11 A regularized constrained TLS was pro-
posed by Mesarović et al.12 for dealing with image resto-
ration problems, where noise in the point-spread function
(the convolution operator) H and the data y are linearly
dependent (algebraically correlated). Singular-value-
decomposition- (SVD-) based TLS was employed by Li
et al.13 in phased array imaging, where it is assumed that
noise in H and y are independent. While seemingly ef-
fective, the TLS solution obtained by SVD has computa-
tional limitations for large-scale systems. This is be-
cause the SVD computation needs O(N3) multiplications,
where N is the length of vector x. Since computation is a
major concern in optical tomography, an iterative TLS
(ITLS) approach is developed here. The TLS solution is
obtained by minimizing a Rayleigh-quotient function with
use of the conjugate gradient (CG) method, which is suit-
able for large-dimension data.
The arrangement of this paper is as follows. Section 2

reviews the perturbation model for optical diffusion to-
mography derived based on the transport equation and
the diffusion equation, respectively. Section 3 presents
the TLS formulation. Section 4 describes how to solve
the TLS solution iteratively by using the CG method.
Section 5 shows simulation results of the proposed
method. Finally, Section 6 summarizes the main results
and suggests directions for future study.

2. PERTURBATION MODEL
A. Perturbation Equation Derived Based on the
Transport Equation
Under cw illumination the photon density in a scattering
medium is governed by a radiation transport equation14:

2V • ¹u~r, V! 2 m t~r, V!u~r, V!

1 E ms~r, V8 → V!u~r, V8!dV8 1 s~r, V! 5 0, (2)

where V represents the direction unit vector, u(r, V) rep-
resents photon angular intensity at r with direction V,
s(r, V) represents angular source density at r with direc-
tion V, ms(r, V8 → V) represents macroscopic angular
scattering cross section at r from direction V8 into direc-
tion V, and m t(r, V) 5 ms(r, V) 1 ma(r, V) represents
macroscopic angular total cross section at position r in
the direction V, where ms(r, V) represents macroscopic
angular scattering cross section at position r in the direc-
tion V and ma(r, V) represents macroscopic angular ab-
sorption cross section at position r in the direction V.
Symbolically, Eq. (2) can be expressed as

Lu 5 s, (3)

where L is an integrodifferential operator. Let the opti-
cal properties and the angular intensity be perturbed
from those of a reference medium. Then the transport
equation becomes

~L 1 DL !~u 1 Du ! 5 s, (4)

or

LDu 5 s 2 Lu 2 DLu 2 DLDu 5 2DLu 2 DLDu.
(5)

If the DLDu term can be ignored, then we obtain

LDu 5 2DLu. (6)

That means that if u is the solution satisfying the bound-
ary conditions with source s, then Du is the solution sat-
isfying the same boundary conditions with source

s8 5 2DLu. (7)

Let G(r1 , V1 ; r2 , V2) be the Green’s function satisfying
the transport equation for the reference medium, and as-
sume that only absorption cross sections are perturbed.
We further assume that the source density is s(r, V)
5 d(r 2 rs , V 2 Vs) and that the optical properties of
the medium are isotropic, i.e., ma(r, V) 5 ma(r) and
ms(r, V) 5 ms(r). Under these assumptions the solution
of the perturbation equation is given by

Du~rd , Vd , rs , Vs!

5 E
V

Dma~r8!wa~rd , Vd , rs , Vs ; r8!d3r8, (8)

where

wa~rd , Vd , rs , Vs ; r8!

5 E
4p

G~r8, V8; rs , Vs!G~r8,2V8; rd ,2Vd!dV8 (9)

is called the weight function. It indicates the influence
or the importance of absorption at r8 to the source–
detector pair at (rs , Vs) and (rd , Vd). In the above
equation (rs , Vs) and (rd , Va) are the source location
and direction and the detector location and direction, re-
spectively.

B. Perturbation Equation Derived Based on the
Diffusion Model
In media having high albedo (e.g., tissue at near-infrared
wavelength), the following diffusion equation provides a
good approximation to the transport equation7:

¹ • @D~r!¹u~r!# 2 ma~r!u~r! 5 2S~r!, (10)

where D 5 1/3(ma 1 ms8) is the diffusion coefficient, ms8 is
the equivalent isotropic scattering cross section, and S is
the source term.
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From the above equation we can obtain the following
integral equation:

Du~rd , rs! 5 E
V

Dma~r8!wa~rd , rs ; r8!d3r8, (11)

with

wa~rd , rs ; r8! 5 G~rd 2 r8!G~rs 2 r8!, (12)

where G is the Green’s function for the reference medium,
satisfying

¹ • @D~r!¹G~r 2 rs!# 2 ma~r!G~r 2 rs! 5 2d~r 2 rs!,

(13)
where D(r) and ma(r) are the diffusion coefficient and
the absorption cross section for the reference medium,
respectively.

C. Image Reconstruction by Solving the Discretized
Perturbation Equation
Equations (8) and (11) are the perturbation equations in
the continuous domain. By discretizing the domain into
N small voxels, we can approximate them in the following
matrix form:

WDx 5 DI, (14)

where Dx 5 @Dx1 ,...,DxN#T (where T denotes transpose),
DI 5 @DI1 ,...,DIM#T, andW 5 @Wmn#M3N . The variable
Dxn 5 Dma(rn) represents the absorption perturbation at
the voxel located at n, DIm 5 Du(rdm, rsm) represents the
detector reading for the mth source–detector pair located
at rsm and rdm, respectively, and Wmn

5 wa(rdm, rsm; rn)dv is the weight describing the influ-
ence of voxel n on source–detector pairm, where dv is the
volume of a voxel.
The absorption imaging problem (inverse problem) can

be stated as follows: For a chosen set of source–detector
pairs, given the perturbed detector reading DI and the
precalculated weight matrixW from the forward problem,
find the perturbation of the macroscopic absorption cross
section Dx of the target medium. In general, the pertur-
bation equation is both underdetermined and ill condi-
tioned. The underdeterminedness arises in situations in
which the number of detector readings, M, is less than
the number of unknowns, N. Even ifM > N, the matrix
W can be rank deficient, which also leads to an underde-
termined system. The cause of the ill conditioning is
that W contains many nearly zero columns. Very small
variations in DI can result in very large deviations in Dx.

3. TOTAL LEAST-SQUARES
FORMULATION
In general, whenM . N, the perturbation equation is in-
compatible because of errors in both W and DI. In the
conventional LS solution we assume that the measure-
ment DI is noisy but that the weight matrix W is exact,
and we seek a correction vector EDI to DI such that we

minimize iEDIi2 , (15)

subject to DI 1 EDI P Range~W!. (16)
Here i•i2 denotes the Euclidean norm. Once EDI is
found, Dx is easily determined by solving the compatible
equation

WDx 5 DI 1 EDI . (17)

It is known that the solution of the above LS problem sat-
isfies the normal equation

WTWDx 5 WTDI. (18)

In reality, as described in Section 1, the weight matrix W
may also be erroneous and should be corrected. In the
TLS approach we try to find a correction matrix EW toW,
in addition to EDI so that we

minimize iEWuEDIiF , (19)

subject to DI 1 EDI P Range~W 1 EW!. (20)

Here i•iF denotes the Frobenius norm, which is defined as
iEiF 5 @(m (n (Emn)

2#1/2. After EW and EDI are found,
then any DI satisfying

~W 1 Ew!Dx 5 DI 1 EDI (21)

is said to be the TLS solution.
The TLS solution to an incompatible linear equation

was first described by Golub and Van Loan.15 The prob-
lem described by Eqs. (19) and (20) can be restated as

minimize iEiF , (22)

subject to ~A 1 E!q 5 0, (23)

where

A 5 @WuDI#, E 5 @EwuEDI#, (24)

q 5 S Dx
21 D .

Golub and Van Loan showed that, if Rank(A) 5 N
1 1, the TLS solution is related to the right singular vec-
tor vN11 of A associated with the smallest singular value
sN11, under the condition that sN . sN11 and vN11, N11
Þ 0, where sN represents the Nth largest singular value
and vN11, N11 is the last component of the singular vector
vN11. Let vN115 @ ṽN11

T vN11, N11#T, where ṽN11
represents the subvector containing the first N compo-
nents of vN11. Then the TLS solution is Dx
5 (1/vN11, N11)ṽN11. For rank-deficient systems
the minimum Frobenius norm solution is x
5 2( i5p11

N11 vN11, iṽi /( i5p11
N11 vN11, i

2, where sp. sp11
5 ••• 5 sN11 5 0 and vi 5 @ ṽiT vN11,i#

T.
One way to obtain the TLS solution is by SVD of A.15

However, the SVD-based TLS algorithm can become com-
putationally prohibitive for large-scale systems.13,16 In
this paper we adopt an iterative scheme that is more suit-
able for large-scale problems. It has been shown17 that
the constrained minimization problem in requirements
(22) and (23) is equivalent to the following minimization
problem:

minimize F~q! 5
qTATAq

qTq
, (25)

which in turn is equivalent to finding the eigenvector q
associated with the smallest eigenvalue of ATA.17 The
function F(q) is called the Rayleigh quotient. The mini-
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mal value of F(q) is in fact equal to the minimal pertur-
bation that satisfies Eq. (21), which in turn equals the
minimal singular value, i.e., min(iEiF2) 5 min@F(q)#. In
the following we describe a CG method for the minimiza-
tion of F(q).

4. CONJUGATE GRADIENT METHOD FOR
TOTAL LEAST SQUARES
In most reported studies the TLS problem is solved by
SVD.13,16,18 In general, the SVD calculation needs O(L3)
multiplications, where L is the length of vector q. There-
fore the SVD-based method is not suitable for large-scale
systems. A recursive TLS algorithm was first used by
Davila.19 There the generalized eigenvector q was up-
dated with a correction vector chosen as a Kalman filter
gain vector, and the scalar (step size) was determined by
minimizing the Rayleigh quotient [requirement (25)].
When the underlying linear equation originates from a
one-dimensional linear convolution operation, this algo-
rithm requires only O(L) multiplications per iteration.19

Bose et al.20 applied recursive TLS to reconstruct high-
resolution images from undersampled low-resolution
noisy multiframes. In this case the convolution operator
corresponds to two-dimensional convolution operation,
and the algorithm requires O(L2) multiplications per it-
eration. In the perturbation equation considered here,
the matrix W does not correspond to a convolution opera-
tion. Our goal is to find an algorithm that is suitable for
very large matrices of arbitrary structure. Toward this
goal the CG method originally developed for other
applications21,22 has been applied here. Although the CG
method requires O(L2) multiplications per iteration, it is
well known that the CG method converges very fast and
is particularly suitable for large matrices.
As stated above, the TLS solution can be obtained by

minimizing the Rayleigh quotient in requirement (25).
Let q(k) represent the solution at the kth iteration. The
CG algorithm updates q by successive approximation:

q~k 1 1 ! 5 q~k ! 1 a~k !p~k !, (26)

where a (k) is chosen to reach the minimum of F(q) in the
direction p(k). Following Shavitt et al.,23 it can been
shown that a (k) is always real and satisfies

D@a~k !#2 1 Ba~k ! 1 C 5 0. (27)

Among the two possible solutions of Eq. (27), the one that
yields the smaller value of F(q) is given by

a~k ! 5 ~2B 1 AB2 2 4CD !/~2D !, (28)

where

D 5 Pb~k !Pc~k ! 2 Pa~k !Pd~k !, (29)

B 5 Pb~k ! 2 l~k !Pd~k !, (30)

C 5 Pa~k ! 2 l~k !Pc~k !, (31)

l~k ! 5 ^Aq~k !, Aq~k !&, (32)

Pa~k ! 5 ^Aq~k !, Ap~k !&, (33)

Pb~k ! 5 ^Ap~k !, Ap~k !&, (34)

Pc~k ! 5 ^p~k !, q~k !&, (35)
Pd~k ! 5 ^p~k !, p~k !&. (36)

In the above equations ^x,y& 5 xTy represents the inner
product of x and y. At time k 1 1 the new search direc-
tion is chosen as

p~k 1 1 ! 5 r~k 1 1 ! 1 b~k !p~k !, (37)

and the residue r(k 1 1) is given by

r~k 1 1 ! 5 l~k !q~k 1 1 ! 2 ATAq~k 1 1 !. (38)

In our implementation the method for choosing b (k) is
slightly different from that used in Ref. 21. We use the
method developed by Fletcher and Reeves,24 also de-
scribed by Yang et al.22 The b (k) is chosen as

b~k ! 5 ^r~k 1 1 !, r~k 1 1 !&/^r~k !, r~k !& (39)

to make the direction vectors p(k) ATA-conjugate, i.e.,

^ATAp~k !, p~k 1 1 !& 5 0. (40)

The convergence criterion that we use is u@l(k 1 1)
2 l(k)]/l(k)u , 1023 ; 1024. The initial solution q(0)
is set to a vector in which all elements except the last are
0 and the last element is set to 1.

5. SIMULATION RESULTS
To compare the LS and ITLS approaches, we have at-
tempted reconstructions of two test media. One was a
three-layer medium; the other was a cylindrical phantom.
Only cw measurement has been considered, although the
ITLS can be equally applied to other source conditions.
The LS solution was obtained by the CGD algorithm.1

A. Three-Layer Medium
We first present reconstruction results for the three-layer
medium. The medium is 10 mean-free-path (mfp) thick
and is composed of three layers located at depths 0–3,
3–7, and 7–10 mfp. The macroscopic total cross section
is constant throughout the slab. The absorption cross
section of the first and third layers is 1% of the total, and
that of the middle layer is 5%. Scattering is isotropic.
Figure 1 shows the geometry of the illumination and de-

Fig. 1. Position and orientation of detectors about the source.
The source is placed in the center. The open circles and the
crosses indicate positions of detectors that are inclined 10° and
80° from the normal, respectively. The small solid circles indi-
cate positions where measurements are made in both orienta-
tions. The grid size is 3 mfp 3 3 mfp.
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tection scheme used. Figure 2 shows the original three-
layer medium. One source was employed, and responses
of detectors located on the same side as the source (i.e.,
backscattering only) were computed either by using
Monte Carlo simulations (simulated data) or based on the
perturbation equation (calculated data). In both cases
the weight functions used were calculated by using Monte
Carlo simulations.25 To enhance detector discrimination,
we employed two different detector orientations: a graz-
ing angle of 10° with respect to the surface and a near-
normal angle of 80° with respect to the surface. The me-
dium was discretized into ten slices, each 1 mfp thick.
There were 40 detector readings and ten unknowns, so
the problem was overdetermined.
The weight functions were calculated for both a homo-

geneous 10-mfp slab and the actual three-layer medium.
These two sets of weights will be referred to as half-space
weights and three-layer weights, respectively. Two sets
of readings were used: One was calculated from Eq. (1)
by using the three-layer weights, and the other one was
obtained from Monte Carlo simulations. Four experi-
ments have been conducted. The purpose of the first ex-
periment was to evaluate the ITLS reconstruction algo-
rithm in an ideal situation. The calculated data and
three-layer weights were used. Gaussian white noise
was added to both the data and the weights. The noise
levels tested were 0.1%, 0.2%, and 1% in the detector
readings and 0.001%, 0.002%, and 0.01% in the weights.
Here the noise level is defined as the ratio of noise stan-
dard deviation to the mean of the signal. Each column in
the weight matrix and the data column was scaled by the
noise standard deviation in this column, so that the noise
added to the augmented matrix A has the same variance

Fig. 2. Cross section of the original three-layer medium. The
darkest gray level represents Dxmax , the maximum value of Dx.
Here Dxmax 5 5.0 3 1024.
in each column. This is required for the TLS-type algo-
rithm to work well. Once the solution for this scaled sys-
tem was obtained, the final solution was then derived by
scaling back with use of the same factors. The recon-
struction results obtained by LS and ITLS are shown in
Fig. 3. The displayed images (i.e., the image of Dx) are
all normalized, so that the maximum value in Dx in each
case is represented by the same darkness level. It can be
seen that the LS algorithm begins to break down as the
noise level increases beyond 1%, while ITLS yields a quite
consistent and accurate result under all noise levels.
This result was as expected, because the noise in both the
weights and the data were truly identically and indepen-
dently distributed. The second experiment was imple-
mented by using the same data set [i.e., data calculated
from Eq. (1) with three-layer weights] but with half-plane
weights inW. LS and ITLS methods were used to recon-
struct the images of the medium; the reconstruction re-
sults are illustrated in Figs. 4(a) and 4(b), respectively.
In this case the noise in the weight matrix was not white
but has a certain structure. The weights for voxels in the
upper slices were likely to be underestimated, while those
in the lower slices were overestimated. Even in this case
the TLS algorithm gave a fairly accurate result, signifi-
cantly better than that of the LS method. In the third
experiment simulated detector readings by Monte Carlo
methods and the three-layer weights were used. The re-
construction results obtained by LS and ITLS methods
are shown in Figs. 5(a) and 5(b), respectively. In this
case the errors in weights and data by Monte Carlo calcu-
lations were approximately independent and identically
distributed. The noise levels were fairly low because our
Monte Carlo simulations were done with a very high pre-
cision. In this case the LS algorithm gave a reasonably
good result but not as accurate as that of the ITLS. Both
correctly identified the transition from the first to the sec-
ond layer. The last experiment was conducted by using
simulated detector readings and half-plane weights. The
reconstruction results by the LS and ITLS approaches are
illustrated in Figs. 6(a) and 6(b), respectively. In this
case, as in experiment 2, the noise in the weight matrix
Fig. 3. Reconstruction results with use of the three-layer weight function and calculated data. Images in (a), (b), and (c) are the LS
reconstruction results under noise levels 0.1%, 0.2%, and 1% in detector readings and 0.001%, 0.002%, and 0.01% in weights, respec-
tively. The maximum reconstruction values are Dxmax 5 6.8 3 1024, 6.7 3 1024, and 1.9 3 1023. Images in (d), (e), and (f) are the
ITLS reconstruction results under the corresponding noise levels, with Dxmax 5 5.6 3 1024, 5.6 3 1024, and 5.8 3 1024, respectively.
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was not white. Although the result of LS was qualita-
tively similar to that in experiment 3 [Fig. 5(a)], they
were very different quantitatively. The absorption
strength was significantly overestimated in those images.
With ITLS the absorption strength was overestimated in
the upper slices. This was as expected, because the
weights there were underestimated. One interesting ob-
servation is that the ITLS algorithm yielded a smoother
reconstruction than that of the LS algorithm in all four
experiments, more clearly indicating the actual three-
layer structure. The images reconstructed by the LS al-
gorithm, on the other hand, often contained spurious
peaks and valleys.

Fig. 4. Reconstruction for the three-layer medium with use of
the half-space weights and calculated data: (a) LS reconstruc-
tion result by the CGD method, with Dxmax 5 8.7 3 1023; (b)
ITLS reconstruction result, with Dxmax 5 3.9 3 1024.

Fig. 5. Reconstruction for the three-layer medium with use of
the three-layer weights and simulated data: (a) LS reconstruc-
tion result, with Dxmax 5 8.4 3 1023; (b) ITLS reconstruction re-
sult, with Dxmax 5 8.4 3 1023.

Fig. 6. Reconstruction for the three-layer medium with use of
the half-space weights and simulated data: (a) LS reconstruc-
tion result, with Dxmax 5 6.5 3 1021; (b) ITLS reconstruction re-
sult, with Dxmax 5 1.7 3 1023.
B. Cylindrical Rod
The second test medium was an infinite medium with an
embedded cylindrical rod positioned in either a centered
or an off-center location with respect to a circular ring of
the detectors. A ring of sources and detectors was placed
around the rod, as shown in Fig. 7. In the first experi-
ment a 1-cm-diameter rod was placed in the center of the
ring. The rod was homogeneous, with absorption and
scattering coefficients ma 5 0.05 cm21 and ms
5 10 cm21. The properties of the background medium
were ma

b 5 0.02 cm21 and ms
b 5 10 cm21. A total of 16

sources and 16 detectors were evenly spread about the
rod in a ring geometry having a diameter of 8 cm (see Fig.
7). Solution to the forward problem was accomplished by
analytically solving the diffusion equation by using the
normal-mode-series method described by Yao et al.26 In
the second experiment a 1.5-cm-diameter rod was placed
at an off-center position with respect to the source and de-
tector ring. The rod had a nonhomogeneous absorption
distribution, following a sinusoidal pattern (one positive
cycle only). The forward solution in this experiment was
obtained by a multigrid finite-difference solver, described
in Ref. 27. The absorption properties (actually, the per-
turbation from the background) in a 10-cm 3 10-cm
square region enclosing the source and detector ring were
reconstructed by using the LS and ITLS methods. This
region was discretized to 32 3 32 elements. So the prob-
lem is underdetermined.
To compare LS and ITLS algorithms, we added white

Gaussian noise with a constant variance to both the
weights and the detector readings. The noise level was
3% for the detector reading and 0.01% for the weights.
Although the average noise level in weights was very
small, the actual degradation of weights in some locations
was very large. This is because the weights have a very
large dynamic range. Figure 8 shows the histogram of
noise levels in weights on a log scale. Figure 9 shows a

Fig. 7. Source–detector configurations for the cylindrical rod
computation.
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contour plot of noise levels in weights for the source–
detector pairs (1, 2) and (1, 6), respectively. From Fig. 8
we can see that more than 40% of the weights were actu-
ally corrupted by a noise level of above 10%. Figure 10(a)
shows the cross section of the original medium for the
centered case, and Figs. 10(b) and 10(c) are the recon-
struction results by LS and ITLS, respectively. Figures

Fig. 8. Histogram of the noise levels in the weights. The hori-
zontal axis represents the noise level defined by the ratio of the
noise standard deviation to the actual weight value, which is
plotted on a log10 scale. The vertical axis represents the fraction
of weights having a particular noise level.

Fig. 9. Contour plot of noise levels in weights for different
source–detector pairs: (a) contour plot for source–detector pair
(1, 2); (b) contour plot for source–detector pair (1, 6).
10(d), 10(e), and 10(f) show similar results for the off-
center case. It can be seen that ITLS yields significantly
better reconstruction results than those from LS. For
both LS and ITLS the simulation results are obtained
with 5000 iterations. One iteration of ITLS roughly re-
quires 30% more computation time than that of LS.
In order to evaluate the reconstruction accuracy more

quantitatively, we also evaluated the mean square error
(MSE) and the root mean square error (RMSE) between
the original image Dx and the reconstructed images Dx̂.
The MSE and the RMSE are defined as

MSE 5
1
n

iDx 2 Dx̂i2, (41)

RMSE 5
A1

n
iDx 2 Dx̂i2

iDxi2
, (42)

respectively. Table 1 provides the MSE and RMSE val-
ues of the reconstruction results. From this table it can
be seen that the ITLS also outperformed the LS under
these measures. However, when stronger noise (i.e., 1
order of magnitude higher) was added to the weights,
ITLS failed to give good reconstruction as well. In prac-
tice, if the weight function is calculated with sufficient nu-
merical precision, then the error in the weight should be
far less than the measurement noise. Therefore the as-
sumed noise levels in these experiments were reasonable.

6. CONCLUDING REMARKS AND
DISCUSSION
In this paper an iterative TLS reconstruction algorithm
employing a CG method is proposed for the solution of the
perturbation equation in optical tomography. It is more
suitable for large-scale systems than SVD-based TLS al-
gorithms. Compared with the LS solution, when noise is
present in both weights and detector readings, ITLS out-
performs the LS. This is true not only when the noise in
the weights is truly random but also when the weight ma-
trix is subject to a systematic error caused by the mis-
match between the reference medium and the test me-
dium. This was shown here when a half-space medium
was used as the reference medium for a three-layer me-
dium. This has important implications. It suggests that
the use of ITLS may reduce the number of iterations nec-
essary when implementing an iterative perturbation ap-
proach. Here one iteration means one cycle of forward
and inverse solutions for a previously reconstructed refer-
ence medium.
In optical tomography, because of the ill-posed nature

of the inverse problem, the weight matrix is always ill
conditioned, so regularization techniques may be needed.
In SVD-based TLS approaches this can be accomplished
by suppressing or truncating very small singular values.
With optimization-based approaches one needs to investi-
gate how to suppress the effects of insignificant but nu-
merically nonzero singular values. One way to improve
the stability and the speed in solving the perturbation
equation is by using a wavelet transform. A wavelet-
based multigrid method for solving the perturbation
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Fig. 10. Reconstruction for the cylindrical rod: (a), (b), and (c) are the original and reconstruction results by LS and ITLS, respectively,
for the centered case; (d), (e), and (f) are the original medium and reconstruction results by LS and TLS, respectively, for the off-center
case. The added noise level is 3% for the detector reading and 0.01% for the weights.
equation has been developed by using the LS formulation.
We are currently exploring a wavelet-based multigrid
method for obtaining the TLS solution.28 We are also in-
vestigating how to incorporate a regularization term in
the Rayleigh quotient to improve the robustness of the
TLS solution.
Finally, for cases in which the weight matrix is only

Table 1. MSE and RMSE of the Reconstructed
Images by the LS and TLS Approaches

Location

MSE RMSE

LS TLS LS TLS

Center 1.92 3 1025 1.01 3 1025 6.77 3 1022 4.91 3 1022

Off-center 1.13 3 1024 8.28 3 1026 1.64 3 1021 4.44 3 1022
partially subject to errors—i.e., some weights are accu-
rate, while others are noisy—constrained TLS approaches
have been developed.12,29 These techniques may be help-
ful for dealing with the very large dynamic range of
weights. We may be able to treat weights that are larger
than the noise variance by a certain magnitude as noise
free.
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