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Abstract

We address suppression of artifacts in NIRS time-series
imaging. We report a fast algorithm, combining sparse
optimization and filtering, that jointly estimates two ex-
plicitly modeled artifact types: transient disruptions and
step discontinuities.

1. Introduction

This work addresses the attenuation of artifacts arising
in biomedical time-series, such as those acquired using
near infrared spectroscopic (NIRS) imaging devices [1].
We model the measured time series, y(t), as

y(t) = f(t) + z1(t) + z2(t) +w(t) teR, (1)

« f(t) is a low-pass signal, i.e., Hf ~ 0 for HPF H.

« z1(t) is a ‘Type 1’ artifact signal, intended to model
spikes. We model a Type 1 artifact signal as being
sparse and having a sparse derivative. It adheres to
a baseline value of zero.

« 29(t) is a ‘Type 2’ artifact signal, intended to model
additive step discontinuities. We model a Type 2 ar-
tifact signal as having a sparse derivative. It is com-
posed of (approximate) step discontinuities.

« w(t) is white Gaussian noise.

Both Type 1 and Type 2 artifacts are observed in NIRS
time series [3].

We devise the ‘Transient Artifact Reduction Algorithm’
(TARA) to estimate both artifacts types simultaneously,
so they can be subtracted from the raw data. TARA
has high computational efficiency and low memory re-
quirements.

2. Problem Formulation

We address the problem in the discrete-time setting.
We propose the optimization problem

L 1
{1, %2} = arg min {5/ H(y —xi —x2)]3

X1,X2

+ X0 ) do(lxiln) + A1 Y o1([Dx]n)
+d > éa([Dxol) |, N> 0. ()

H denotes the high-pass filter suppressing the low-
pass signal f. D is discrete-time first-order difference
operator, given by |Dx|,, = [x|,11 — [X|n. The low-pass
signal is estimated as

f = L(y — x| — %o) (3)

where L denotes the low-pass filter L =1 — H.
The functions ¢; are chosen to promote sparsity, e.g.,

1
d(u) = Elog(l +alul), a>0.
The high-pass filter, H, is implemented as
H=BA (4)

where A and B are banded matrices.
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3. Example 1

We illustrate a special case of TARA for Type 1 artifacts
only (x2 is absent from (2)). We use a simulated signal
(Fig. 1(a)) consisting of several additive step-transients.
With (Mg, A1) = (A),0), x deviates infrequently from
the baseline value of zero (Fig. 2(a)). With (A\g, A\{) =
(0, A}), it is approximately piecewise constant but does
not adhere to a baseline of zero (Fig. 2(b)). With

(Ao, A1) = (6)>‘87 (1 — Q)AT)v 0<6<1, (5)

with 0 tuned to 0.3, it is reasonably sparse and has a
sparse derivative (Fig. 2(c)). The interpolation given by
(5) provides a trade-off.
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Figure 1: (a) Simulated data. Processing with the (-
norm penalty (b) and the arctangent penalty (c).
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Figure 2: Estimated transient signals, X, obtained with

various (Mg, A\1). (@) 0 = 1. (b)0 = 0. (c) 8 = 0.3.

4. Example 2

This example shows TARA, for Type 1 artifacts, as ap-
plied to a near infrared spectroscopic (NIRS) time se-
ries. The data exhibits artifacts due to eye blinks.
Signals corresponding to (A3, 0) and (0, A]) are shown
in Figs. 3(b, c). With (), A1) set using (5) with 8 = 0.05,
we obtain an apparently accurate estimate of the tran-
sient artifacts (Fig. 3(d)). The corrected time series is
obtained by subtracting the estimated artifact signal
x from the original data (Fig. 3(e)). The algorithm run
time was about 80 milliseconds.
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Figure 3: Reduction of transient artifacts in NIRS time-
series data. (a) Raw data. (b, c, d) Artifact estimation with
(A3, 0), (0, A7), and (5). (e) Corrected data.

5. Run times

Algorithm run time (50 iterations)
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Run times measured using a 2013 MacBook Pro (2.5
GHz Intel Core i5) running Matlab R2011a.
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6. Example 3

This example applies TARA to a simulated time series
consisting of low-frequency sinusoids, additive rectan-
gular pulses of short duration, several additive step dis-
continuities, and additive white Gaussian noise.
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Figure 4: Decomposition and filtering with TARA.

7. Example 4

This example applies TARA to a NIRS time series ac-
quired using a pair of optodes on the back of a subject’s
head. The data exhibits a motion-induced abrupt shift
of the baseline, at time index 470. Other motion arti-
facts also are visible.

The Type 1 and Type 2 artifact signals as estimated
by TARA, are sparse and approximately piecewise con-
stant, as intended. The estimated total artifact signal
appears to accurately model the artifacts present in the
data. Note that the corrected time series has both low-
frequency and high-frequency spectral content.
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Figure 5: Artifact reduction with TARA as applied to a
NIRS time series.
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Figure 6: Detail of Fig. 5

Wavelet artifact estimation. Wavelet methods com-
pare favorably to other methods for the correction
of motion artifacts in single-channel NIRS time series
[2,4,5]. Incomparison with TARA, the wavelet method
does not correct additive step discontinuities as well.
The wavelet-estimated artifact signal smooths the ad-
ditive step discontinuity.
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Figure 7: Wavelet artifact estimation as applied to the
NIRS time series shown in Fig. 5.
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